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Abstract

Hierarchical clustering of pathogen genotypes is widely used to complement epidemiologic

investigations of outbreaks. Investigators must dissect trees to obtain genetic partitions that

provide epidemiologists with meaningful information. Statistical approaches to tree dissec-

tion often require a user-defined parameter to predict the optimal partition number and aug-

menting this parameter can drastically impact resultant partition memberships. Here, we

demonstrate how to optimize a given tree dissection parameter to maximize accuracy irre-

spective of the tree dissection method used. We hierarchically clustered 1,873 genotypes of

the foodborne pathogen Cyclospora spp., including 587 possessing links to historic out-

breaks. We dissected the resulting tree using a statistical method requiring users to select

the value of a ‘stringency parameter’ (s), with a recommended value of 95% to 99.5%. We

dissected this hierarchical tree across s-values from 94% to 99.5% (at increments of

0.25%), to identify a value that maximized partitioning accuracy, defined as the degree to

which genetic partitions conform to known epidemiologic groupings. We show that s-values

of 96.5% and 96.75% yield the highest accuracy (> 99.9%) when clustering Cyclospora sp.

isolates with known epidemiologic linkages. In practice, the optimized s-value will generate

robust genetic partitions comprising isolates likely derived from a common food source,

even when the epidemiologic grouping is not known prior to genetic clustering. While the s-

value is specific to the tree dissection method used here, the optimization approach

described could be applied to any parameter/method used to dissect hierarchical trees.

Introduction

Hierarchical clustering is widely used in the field of molecular epidemiology to detect groups

of genetically related pathogen isolates. However, an important limitation of hierarchical clus-

tering is that hierarchical clusters are nested, meaning that small clusters comprising closely

related isolates exist within larger clusters that get progressively larger as genetic relationships

become increasingly distant. Consequently, investigators must dissect hierarchical trees into
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discrete genetic groupings (i.e., partitions) to facilitate prioritization of discrete genetic groups

for subsequent epidemiologic investigation. Usually, the value of some tree-dissection parame-

ter (e.g., a SNP distance threshold) is empirically selected by investigators to facilitate tree dis-

section, hopefully yielding partitions where all (or most) grouped isolates are representatives

of the same strain [1–3]. In epidemiologic contexts, the objective is always to select a parameter

value for tree dissection that groups isolates with a high likelihood of belonging to the same

strain, and thus, have a high probability of being associated with a common source.

Various statistical methods exist that can be used to guide tree dissection by predicting an

optimal partition number [4], yet these methods usually require users to select a value for one

or more input parameters that can have a significant impact on the resulting partition mem-

berships. As such, the value of any user-defined parameter for tree dissection should be set

with careful consideration. Values yielding too few partitions can link dissimilar isolates

together, making it difficult to identify suspected food vehicles. Alternatively, values yielding

too many partitions may separate genetically similar isolates, causing outbreaks to be over-

looked. Empirical selection of a user-defined input parameter value during tree dissection may

yield accurate partitions, particularly for pathogens for which a large volume of robust histori-

cal molecular epidemiologic data is available. This is because historical genetic data can inform

molecular epidemiologists of how genetically similar isolates of the same strain typically are;

however, for many human parasites, including the foodborne parasite Cyclospora spp. [5], his-

toric knowledge of circulating strains may be limited or absent, and the concept of what con-

stitutes a strain may be complicated by sexual reproduction [6].

The intersect of an epidemiologically-defined cluster and its analogous genetic cluster will

ideally be approaching 100%: this principle forms the basis of molecular epidemiology [7]. For

example, a recently described tool based on multi-locus-sequence-typing (MLST) and hierar-

chical clustering for genotyping Cyclospora spp., generally displays approximately 90% concor-

dance with epidemiologic data [8, 9]. However, routine Cyclospora spp. genotyping only began

in the United States in 2018 [8], so the volume historic molecular data available for this patho-

gen is limited compared to available data for foodborne bacterial pathogens such E. coli O157

or Salmonella [1, 10, 11]. For the latter two bacterial pathogens, data on intra-strain genetic

variation is available to inform selection of certain partitioning thresholds such as species-spe-

cific SNP-difference threshold [1, 10, 11].

Alternatively, the methods used for identification of discrete partitions within hierarchically

clustered Cyclospora spp. data requires continued optimization. Given the current lack of his-

toric ‘strain’ information for Cyclospora spp., we propose here that historic outbreak-linked

genotypes could be used to optimize tree dissection parameters, by maximizing the degree to

which genetic partitions conform to known epidemiologic groupings (i.e., maximizing parti-

tioning accuracy against an epidemiologic gold standard). Importantly, the outbreak-linked,

‘gold standard’, genotypes used in this optimization must be confidently linked to an epidemi-

ologic cluster, as speculative epidemiologic groupings may misrepresent true algorithmic per-

formance. Subsequently, following optimization, these historic genotypes could be

hierarchically clustered alongside genotypes from isolates of unknown linkage. On partition-

ing of the resultant hierarchical tree using optimized parameter values, resultant partitions

comprising isolates with unknown linkage have a high likelihood of being derived from a com-

mon source and should be prioritized for epidemiologic follow-up. Optimization with gold

standard epidemiologically linked genotypes has already proved successful in identifying high

performing genetic distance calculation algorithms to use in Cyclospora spp. genotyping. We

previously clustered matrices generated using common distance calculation approaches (e.g.,

Jaccard, Bray-Curtis, Manhattan, and Euclidean) as well as novel haplotype-based algorithms

designed for sexually reproducing parasites (Barratt’s heuristic and Plucinski’s Bayesian), with
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Barratt’s heuristic outperforming all other methods when evaluating how accurately genetic

clusters reflect gold standard epidemiologic clusters [12], as we propose to do here.

In a recent study, dissection of hierarchically clustered Cyclospora spp. MLST data to iden-

tify discrete partitions comprising closely related isolates, was performed using a statistical

framework that requires selecting a value for the user-defined ‘stringency’ parameter [4]. In

that study [4], we recommended that the stringency parameter be set to a value above 95% and

below 100%, though we justified the use of the maximum recommended s-value of 99.5% to

dissect a hierarchically clustered dataset of more than 1,000 Cyclospora spp. MLST genotypes

[4]. Setting the stringency to 99.5% resulted in the delimitation of genetic partitions where

90.8% of epidemiologically linked isolates were also linked genetically (i.e., 90.8% sensitivity)

[4]. We also advised that users should consider optimizing the stringency parameter (s) to

maximize performance, though specific details on how this may be achieved were not provided

[4]. Therefore, the aim of this study was to demonstrate how a given tree dissection parame-

ter–in this case, the value of the stringency parameter—can be optimized using historic epide-

miologic data to improve tree dissection accuracy. Ultimately, we show that compared to

when tree dissection parameter values are empirically selected, optimization of parameters in

the way described does result in genetic partitions that more accurately reflect the epidemio-

logic linkage of clustered genotypes.

Materials and methods

Genotyping data

We utilized a publicly available MLST dataset for Cyclospora spp. generated by the United

States (U.S.) Centers for Disease Control and Prevention (CDC), the Public Health Agency of

Canada, and certain U.S. State public health departments, as part of ongoing Cyclospora spp.

genotyping performed during 2018, 2019, 2020, and 2021 [8, 9, 13–18]. To maximize the diver-

sity of isolates included this analysis, we also included genotypes from persons who became

infected in China and Indonesia, and from persons presenting with cyclosporiasis in the UK

after returning from travel. Briefly, this dataset comprised 1,873 Cyclospora sp. genotypes.

These isolates had been sequenced at eight markers as previously described [8, 9, 18], including

six nuclear markers and two mitochondrial markers. Illumina data from these isolates were

accessed under NCBI BioProject Number PRJNA578931. Each isolates’ genotype had been

ascertained using bioinformatic workflows previously described [8].

Epidemiologic information

Epidemiologic information for a subset of these 1,873 genotypes was collected prior to this

study through Cyclosporiasis National Hypothesis Generating Questionnaires (CNHGQ) dur-

ing routine US public health surveillance. Each CNHGQ included information on a case-

patient’s food consumption history during a two-week period before becoming ill. Using this

information, 587 isolates included in this analysis had been confidently linked to an outbreak

or event that occurred in the USA, for which more than one isolate was genotyped (Table 1).

Genotypes possessing clear epidemiologic links represented a reference for expected (i.e.,

‘ground truth’) clustering outcomes when assessing clustering performance (see below). Iso-

lates that could not be linked confidently to an outbreak cluster were designated as possessing

“unknown epidemiologic linkage”. Isolates in this “unknown” category also included all iso-

lates from outside the USA as CNHGQs were not collected for cyclosporiasis patients outside

the USA.
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Distance calculation and partition number selection

A pairwise distance matrix was calculated from these Cyclospora spp. genotypes using Barratt’s

heuristic definition of genetic distance as previously described [3, 19, 20]. This matrix was

hierarchically clustered using Ward’s method implemented via the agnes function in the R

package ‘cluster’ [21]. Next, we applied Plucinski and Barratt’s framework as previously

described [4] to dissect the resulting hierarchical tree into a k number of discrete partitions

across 23 different stringency values (s-values): those ranging from 94% to 99.5%, at intervals

of 0.25%. The number of discrete partitions (k) predicted using each of these 23 s-values was

recorded. We subsequently dissected the hierarchical tree into the number of partitions (k)

predicted for each s-value using the cutree R function [22]. The partition memberships

Table 1. List of epidemiologic clusters and their size.

Epidemiologic Cluster Epi-Cluster

Numbera
Size Epidemiologic summary

Pre-packaged salad mix 2020_001 (2020) 01 132 Contaminated salad product identified; precise vehicle

uncertain.

Vendor A (2018) 02 94 Contaminated salad product identified, though precise vehicle

uncertain.

Pre-packaged salad mix 2020_003 (2020) 03 76 Contaminated salad product identified; precise vehicle

uncertain.

Vendor B (2018) 04 63 Contaminated vegetable tray product identified; precise vehicle

uncertain.

Distributor A–Type 17 (2019) 05 41 Vehicle (an herb) identified.

2021 July Romaine 1–Type 9 06 22 Vehicle (a leafy green) identified.

Distributor A–Type 3 (2019) 07 17 Vehicle (an herb) identified.

2021 August Butter lettuce 1 08 13 Vehicle (a leafy green) identified.

Distributor A–Type 18 (2019) 09 13 Vehicle (an herb) identified.

Restaurant A (2019) 10 13 Vehicle (an herb) identified.

Distributor A–Type 1 (2019) 11 12 Vehicle (an herb) identified.

Restaurant D (2019) 12 12 Vehicle/product uncertain

Restaurant B (2019) 13 11 Vehicle (a leafy green) identified.

Tennessee/Georgia/Virginia Mexican-style restaurant / cilantro sub-

cluster (2020)

14 10 Vehicle (an herb) identified.

2021 July Romaine 1–Type 1 15 9 Vehicle (a leafy green) identified.

Temporospatial Cluster A (2018) 16 8 Vehicle/product uncertain

Prepackaged salad 002 (2020) 17 7 Contaminated salad product identified; precise vehicle

uncertain.

Restaurant C (2019) 18 6 Herb spread product identified; precise vehicle uncertain

Supplier X–Restaurants A and B (Herb 1) Associated Cluster (2018) 19 6 Vehicle (an herb) identified.

2021 July Romaine 1–Type 5 20 5 Vehicle (a leafy green) identified.

2021 TN Restaurant 1 (TN21-022) 21 5 Vehicle/product uncertain

Salad Chain A–2020_025 (2020) 22 4 Vehicle/product uncertain

2021 Connecticut Bridal 1 23 2 Vehicle/product uncertain

2021 Florida Italian-style restaurant 24 2 Vehicle/product uncertain

North Dakota Market Salad Cluster 25 2 Contaminated salad product identified, though precise vehicle

uncertain.

Restaurant C (Herb 2) Associated Cluster (2018) 26 2 Vehicle (an herb) identified.

Full name of epidemiologic clusters included in this manuscript’s analysis. The size column indicates the number of cases with a successfully genotyped isolate in each

epidemiologic cluster. This number is independent of genetic partition membership.
aEpi-Cluster Number (E.C.N) is an arbitrary number applied to epidemiologic cluster to allow for easy reference.

https://doi.org/10.1371/journal.pone.0282154.t001
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resulting from each of these 23 tree dissection iterations was used to assess partitioning perfor-

mance for each of the corresponding 23 s-values. All hierarchical trees in this manuscript were

generated using ggtree in R [23].

Assessment of partitioning performance

For each of the 23 s-values tested, we classified clustering results obtained for each genotype as

either a true positive (TP), false positive (FP), true negative (TN), or false negative (FN), using

the definitions described below. From these classifications we calculated various performance

metrics including sensitivity, specificity, positive predictive value (PPV), negative predictive

value (NPV), and accuracy, as previously described [8]. The calculations were weighted by the

ratio of genotyped isolates in each epidemiologic cluster to the total number of genotyped iso-

lates with epidemiologic links (n = 587) so that larger epidemiologic clusters (i.e., with more

genotyped isolates) would contribute more to the final values. Given that accuracy is a measure

of proximity of results from the true value, we proposed that the optimal stringency setting

would be the value of k that results in maximum accuracy, as determined by the equation:

Accuracy ¼
TP þ TNð Þ

TP þ TN þ FPþ FNð Þ

After identifying the stringency setting that maximized accuracy, we assessed the discrimi-

natory power of obtained using this setting by calculating Simpson’s index of diversity (D) as

described elsewhere [7]. The value of D was determined by:

D ¼ 1 �
1

N N � 1ð Þ
�
XS

J¼1

nj nj � 1
� �

 !

where N is the total number of isolates (n = 1,873), S is the number of partitions (i.e., equal to

k), and nj represents the number of isolates within the jth partition. D is calculated with all iso-

lates, not just those with epidemiological linkages. Simpson’s index assesses a method’s ability

to distinguish between unrelated strains sampled randomly from a given species [7], where val-

ues of D close to 1.0 generally indicate good discriminatory power. We therefore considered

this an indicator of whether the optimal stringency value (i.e., the one that maximizes accu-

racy) also provides useful strain discrimination.

Classification of epidemiologically-linked isolates after clustering

To compute partitioning accuracy, each of the 587 isolates with epidemiologic links were clas-

sified as a TP, TN, FP, or FN based on whether they were correctly assigned to the same parti-

tion as their epidemiologically-linked partners or not. Previous investigations showed that

most epidemiologically-linked isolates included in this analysis possess a similar genetic signa-

ture [8, 9, 18]. Therefore, each epidemiologic cluster would have a partition number (i.e., a

genetic cluster) to which the majority of its epidemiologically-linked isolates would be

assigned. For the purposes of classification, we refer to this as the ‘mode’ partition number for

an epidemiologic cluster. True positives would comprise isolates that were correctly assigned

to the mode partition number for their epidemiologic cluster. Next, if we consider a fictitious

epidemiologic cluster called “Outbreak A”, true negatives for the “Outbreak A” cluster would

include all isolates from Outbreaks X, Y, and Z that were not assigned to the mode partition

for outbreak A. False negatives would include isolates that were not assigned to the mode parti-

tion number for their epidemiologic cluster. False positives would include isolates with a

particular epidemiologic linkage that were assigned to a different partition to that of their
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epi-linked partners, and to a partition alongside isolates with a different epidemiologic linkage.

Importantly, isolates belonging to different epidemiologic clusters can share the same mode

partition number (i.e., unrelated outbreaks caused by the same strain). Therefore, isolates with

the same mode partition number but possess a distinct epidemiologic linkage were not classi-

fied as false positive linkages for the purposes of our analysis. The classifications were per-

formed for each epidemiologic cluster separately and the sum of all TP, TN, FP, and FN

classifications for each epidemiologic cluster was used to compute an overall value of cluster-

ing accuracy for each stringency setting used, in addition to other performance metrics.

Ethics

Ethics approval for the use of clinical specimens was reviewed by the CDC Center for Global

Health Human Research Protection Office under project determination number 2018–123.

The need for patient informed consent was waived because the specimens were de-linked

from any personal identifiers prior to submission to CDC.

Results

Stringency values of 96.5% and 96.75% produced identical performance results (Table 2) and

were established as optimal for partitioning our hierarchically clustered dataset. All s-
values� 96.5% resulted in partitions with zero false positive links, yielding a specificity and

PPV of 1 (Table 2). Conversely, all values� 96.75% resulted in partitions with the fewest false

negatives (n = 6), which maximized sensitivity and NPV (Table 2). Consequently, the optimal

s-values of 96.5% and 96.75% meant we minimized both false positives and false negatives,

Table 2. Clustering performance for each stringency (s) value.

Stringency

values (s)
94

through

94.5

94.75 95 95.25 95.5 95.75

and 96

96.25 96.5

and

96.75

97

through

97.75

98 98.25 98.5 98.75 99 99.25 99.5

Predicted

partition

number (k)

21 23 24 25 26 27 28 30 31 32 35 40 48 57 63 67

True positives 581 581 581 581 581 581 581 581 571 568 568 568 556 555 554 548

True negatives 13921 13921 13921 13921 13922 13969 13969 13994 13994 13994 13994 13994 13994 13994 13994 13994

False Positives 73 73 73 73 72 25 25 0 0 0 0 0 0 0 0 0

False negatives 6 6 6 6 6 6 6 6 16 19 19 19 31 32 33 39

Sensitivity 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9898 0.9727 0.9676 0.9676 0.9676 0.9472 0.9455 0.9438 0.9336

Specificity 0.9948 0.9948 0.9948 0.9948 0.9949 0.9982 0.9982 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NPV 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9989 0.9986 0.9986 0.9986 0.9978 0.9977 0.9976 0.9972

PPV 0.8884 0.8884 0.8884 0.8884 0.8897 0.9587 0.9587 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Accuracy 0.9946 0.9946 0.9946 0.9946 0.9947 0.9979 0.9979 0.9996 0.9989 0.9987 0.9987 0.9987 0.9979 0.9978 0.9977 0.9973

Number of

clusters (only

epi-linked

isolates)

15 15 15 15 15 16 16 17 17 17 17 17 17 17 17 17

Simpson’s D 0.9100 0.9105 0.9109 0.9110 0.9114 0.9128 0.9131 0.9210 0.9247 0.9251 0.9253 0.9268 0.9280 0.9285 0.9310 0.9335

Cells color relates to optimal values, were red indicates values that are sub-optimal and dark green represents values that are optimal. Optimal s-values (those that

maximize accuracy) are shaded in gray and surrounded by a dark box.
aThere were 26 epidemiologic clusters. Given that some outbreak clusters were caused by the same strain (Table 3), the epidemiologic clusters were distributed across 15

to 17 genetic partitions depending on the stringency value used. Many genetic partitions were not associated with epidemiologic data, which is also why

epidemiologically-linked isolates are only spread across 15 to 17 partitions (stringency dependent).

https://doi.org/10.1371/journal.pone.0282154.t002
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which yielded partitions with the highest accuracy (99.96%). At the optimal s-values, the 1,873

genotyped isolates were distributed across 30 partitions (i.e., k = 30) (Tables 2 and 3). The opti-

mal stringency setting also maximized the number of partitions that isolates with epidemio-

logic links (n = 587) were distributed across (17 partitions, Table 2). Sub-optimal accuracy was

observed at an s-value of 99.5%, which maximized the number of false negatives (n = 39) as a

consequence of dividing many linked isolates across different partitions (Table 2). Conversely,

an s-value of 94% (the minimum value evaluated) yielded 73 false positives, due to assignment

of many unrelated isolates to the same partition.

The higher number of false positives at lower stringency values is a consequence of isolates

from different epidemiologic clusters being assigned to the same partition. Specifically, this

Table 3. Impact of stringency setting on the partition (k) membership of genotypes linked to various epidemiologic clusters.

Stringency values (s) 94 through

94.5

94.75 95 95.25 95.5 95.75 and

96

96.25 96.5 and

96.75

97 through

97.75

98 98.25 98.5 98.75 99 99.25 99.5

Predicted partition number (k) 21 23 24 25 26 27 28 30 31 32 35 40 48 57 63 67

Mode partition numbers for each stringency value are shown below

Temp. Cluster A (2018)–16a 3 3 3 3 3 27 28 30 31 32 35 40 48 57 63 67

2021 FL Italian-style res.–24a 3 3 3 3 3 3 3 19 20 21 21 22 23 24 25 26

Salad Chain A (2020)–22a 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Dist. A–Type 3 (2019)–07a 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2021 August Butter lettuce 1–08 12 12 12 12 12 12 12 12 15 16 16 17 18 19 20 20

ND Market Salad Cluster–25 12 12 12 12 12 12 12 12 15 16 16 17 18 19 20 20

Salad mix 2020_001 (2020)–01 12 12 12 12 12 12 12 12 15 16 16 17 18 19 20 20

Prepackaged salad 002 (2020)–

17

11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12

Res. A (2019)–10 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12

Supplier X–(Herb 1) - 19 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12

2021 CT Event 1–23 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2021 July Romaine 1–Type 5–20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2021 TN Res. 1 (TN21-022)–21 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Salad mix 2020_003 (2020)–03 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2021 July Romaine 1–Type 1–15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Dist. A–Type 17 (2019)–05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2021 July Romaine 1–Type 9–06 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10

Dist. A–Type 1 (2019) - 11 13 13 13 13 19 19 19 20 21 22 22 35 39 41 44 46

Dist. A–Type 18 (2019)–09 15 15 15 15 15 15 15 15 16 17 17 18 29 30 32 33

Res. B (2019)–13 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8

Res. C (2019)–18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Res. C (Herb 2) 2018–26 21 22 23 24 25 25 26 27 28 29 30 32 34 35 37 38

Res. D (2019)–12 18 19 20 20 21 21 21 22 23 24 24 26 27 28 30 31

Mexican-style res. / cilantro

sub-cluster (2020)–14

16 16 16 16 16 16 16 16 17 18 18 19 20 21 22 22

Vendor A (2018)–02 19 20 21 21 22 22 22 23 24 25 25 27 38 39 42 44

Vendor B (2018)–04 4 4 4 4 4 4 4 4 4 7 7 7 7 7 7 7

Colored rows indicate multiple outbreaks caused by the same strain, as evidenced by the fact that at all values of k the isolates associated with these different outbreaks

remained genetically linked. Therefore, genetic linkage of isolates from unrelated outbreaks shaded the same color was not considered a false-positive linkage in this

study because the causative strains were the same based on the genotyping scheme employed. Res. = restaurant, Dist. = Distributor, Temp. = temporospatial.
aFour discrete epidemiologically-defined clusters that were originally assigned to the same genetic partition at lower stringency values, yet separate into three distinct

genetic partitions at higher stringency values

https://doi.org/10.1371/journal.pone.0282154.t003
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included isolates from cyclosporiasis case-patients linked to the 2018 Temporospatial Cluster

A (Epi Cluster Number [E.C.N] - 07), 2021 Florida Italian-style restaurant (E.C.N—24), 2020

Salad Chain A (E.C.N.–22), and 2019 Distributor A Type 3 (E.C.N.–16) epidemiologic clusters;

isolates from these four distinct outbreaks were assigned to the same partition at a stringency

of 94% (Fig 1). At optimal s-values, only isolates linked to the 2020 Salad Chain A (E.C.N.–22)

and 2019 Distributor A (E.C.N.–16) epidemiological clusters remained in the same partition

(Fig 2), supporting that these two outbreaks were caused by the same strain. In contrast isolates

linked to 2018 Temporospatial Cluster A (E.C.N—07), and the 2021 FL Italian-style restaurant

(E.C.N—24) cluster were divided across two distinct genetic partitions at higher stringency

values (Fig 2). At stringency values above the established optima, some isolates were incor-

rectly separated from their epidemiologically linked partners (i.e., false negatives). For exam-

ple, out of the 132 genotyped isolates linked to the pre-packaged salad mix 2020_001 cluster,

all 132 belonged to a single genetic cluster at the optimal settings, while 11 isolates were split

into other partitions at a stringency of 99.5% (Fig 3, S1 File). Likewise, 6 of the 94 specimens

belonging to 2018 Vendor A split from their epi-linked partners at 99.5% stringency (Fig 3).

Simpson’s index of diversity ranged from 0.9100 at k = 15 (s-values of 94% through 94.5%)

to 0.9335 at k = 67 (s = 99.5%) (Table 2). At the optimal stringency values, k = 30 and Simp-

son’s index of diversity was 0.9210, which is indicative of good discriminatory power.

Fig 1. Impact of minimum stringency (s) value on genetic linking of epidemiologically-linked isolates. The hierarchical tree generated from our

distance matrix was dissected into the minimum value of k (k = 21) predicted using the 94% s-value. The outer circle of colored bars indicates the

boundary between each partition predicted and the inner circle of colored bars represents the epidemiologic linkage of various isolates, where each bar

color represents a distinct epidemiologic cluster (grey represents isolates of unknown epidemiologic linkage). Epidemiological clusters of interest are

labeled in the colored boxes. (A) At k = 21, we observe that the labeled epidemiologic clusters on the top right of the tree all belong to a single genetic

partition, indicating that different epidemiologic clusters are being unnecessarily grouped into a single genetic partition.

https://doi.org/10.1371/journal.pone.0282154.g001

PLOS ONE Optimizing hierarchical tree dissection with epidemiologic data

PLOS ONE | https://doi.org/10.1371/journal.pone.0282154 February 24, 2023 8 / 13

https://doi.org/10.1371/journal.pone.0282154.g001
https://doi.org/10.1371/journal.pone.0282154


Discussion

We recently described a framework for dissecting hierarchically clustered genetic data that

requires investigators to provide a user-defined stringency value that impacts downstream

genetic partition memberships [4]. We recommended that the stringency parameter be set to a

value between 95% and 100% and here we describe a process by which the selection of this

parameter can be refined. While this seems like a small range of values, we demonstrate that

even minor adjustments to the s-value can have a major impact on the resultant genetic parti-

tions and subsequently, the perceived genetic linkages. This underpins the need for investiga-

tors to optimize user-defined parameters that impact the process of hierarchical tree

dissection, regardless of the method employed.

Specifically, our results highlight the importance of selecting parameter values that maxi-

mize partitioning accuracy. In our investigation, all stringency values evaluated resulted in par-

titioning at an accuracy greater than 99%; however, at more relaxed stringency values (i.e., <

95%) greater than 70 false positives were observed, while at higher stringency values (i.e., >

98.5%) more than 30 false negatives were observed. At the optimal value established here, 0

false positives and only 6 false negatives were observed. Therefore, arbitrarily selecting a given

Fig 2. Impact of optimal stringency (s) value on genetic linking of epidemiologically-linked isolates. The hierarchical tree generated from our

distance matrix was dissected into the optimal value of k (k = 30) predicted using the 96.5% and 96.75% s-value. The outer circle of colored bars

indicates the boundary between each partition predicted and the inner circle of colored bars represents the epidemiologic linkage of various isolates,

where each bar color represents a distinct epidemiologic cluster (grey represents isolates of unknown epidemiologic linkage). Epidemiological clusters

of interest are labeled in the colored boxes. (A) At k = 30, we observe that the labeled epidemiologic clusters on the top right of the tree are split between

three different genetic partitions, while the two epidemiologic clusters on the bottom of the tree have 100% of isolates belonging to a single genetic

partition.

https://doi.org/10.1371/journal.pone.0282154.g002
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tree dissection parameter without a systematic evaluation across a range of potential values

may result in a loss of performance by inflating the number of false positives or false negatives.

An important characteristic of any molecular epidemiologic tool is that the intersect

between epidemiologically-defined clusters and their analogous genetic partitions should be

nearing 100% [7]. Optimization of tree dissection parameters in this context should include

computation of accuracy using epidemiologically defined clusters as a ‘ground truth’ reference

for expected clustering outcomes. These reference genotypes of known epidemiologic linkage

should be clustered alongside isolates of unknown epidemiologic linkage that represent possi-

ble candidates for downstream epidemiologic investigation. Resulting partitions identified

using optimized parameter values that containing isolates with an unknown epidemiologic

linkage will subsequently have a high likelihood of being derived from a common source, and

thus represent robust candidates for epidemiologic follow-up. This is because their assignment

to the same partition was based on parameters optimized to an internal reference of expected

genetic links.

For epidemiologic investigations of cyclosporiasis outbreaks, patients complete a CNHGQ

that collects information on the foods they recall consuming days to weeks prior to falling ill.

Cyclosporiasis often presents as intermittent, non-specific symptoms many days to weeks after

consumption of contaminated produce, meaning that weeks may elapse between illness onset

Fig 3. Impact of maximum stringency (s) value on genetic linking of epidemiologically-linked isolates. The hierarchical tree generated from our

distance matrix was dissected into the optimal value of k (k = 67) predicted using the 99.5% s-value. The outer circle of colored bars indicates the

boundary between each partition predicted and the inner circle of colored bars represents the epidemiologic linkage of various isolates, where each bar

color represents a distinct epidemiologic cluster (grey represents isolates of unknown epidemiologic linkage). Epidemiological clusters of interest are

labeled in the colored boxes. (A) At k = 99.5%, we observe that the labeled epidemiologic clusters on the bottom of the tree have isolates split across

multiple genetic partitions, suggesting that the maximum stringency value is unnecessarily splitting epidemiologic clusters between partitions.

https://doi.org/10.1371/journal.pone.0282154.g003
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and CNHGQ interview. This delay can make it difficult for patients to recall specific meal

components, potentially introducing noise to epidemiologic datasets [9]. Regardless, our expe-

rience with Cyclospora spp. has consistently demonstrated good concordance (~90% or more)

between linkages identified via CNHGQ and genetic clustering. Accuracy of 100% may never

be observed when assuming epidemiologic data as a true representative of ‘ground truth’, due

to various sources of noise [9]. However, given the generally strong concordance between gen-

otyping and these epidemiologic methods [8, 9], selecting parameter values that maximize

accuracy seems warranted, as this–- in our experience—will usually yield partitions of

unknown linkage that are more likely derived from a common source.

The discriminatory power of our dissected tree, determined by Simpson’s index of diversity

(D), was 0.9210 at the optimal s-values which resulted in 30 partitions. This is slightly lower

than the value of D = 0.95 recommended elsewhere as an indicator of good discriminator

power [7]. None of the stringency values evaluated here exceeded 0.95 (we observed a maxi-

mum D = 0.9335 at stringency = 99.5%), which is likely the result of a confluence of multiple

factors. First, our dataset is heavily weighted to isolates from cyclosporiasis case patients resid-

ing in the United States (U.S.) between 2018 and 2021, which is unlikely to reflect the full

genetic diversity of Cyclospora spp. (i.e., only genotypes causing U.S. infections during these

periods were analyzed). Second, the current MLST-based genotyping approach captures only a

portion of the ~45 megabase Cyclospora spp. genome [6]; the MLST method involves sequenc-

ing 8 genetic markers each less than 1 kilobase in length each. Finally, Simpson’s index of

diversity is a formula where datasets with greater richness (i.e., high number of clusters) and

evenness (i.e., every cluster has a similar number of isolates) will have greater D-values com-

pared to those with less richness and/or evenness. Our dataset consists of isolates from numer-

ous cyclosporiasis outbreaks of varying sizes (Table 1), meaning richness and evenness are

constrained by outbreak history, which impacts the value of D. Novel Cyclospora spp. types are

identified each year [8, 9, 18] and work is being done to increase the number of markers used

to genotype Cyclospora spp., thus discriminatory power will likely increase in response to these

updates.

The sequencing of additional/different Cyclospora spp. MLST markers would warrant a re-

assessment of the optimal s-value, as subsequent tree structures may be impacted by the inclu-

sion of the additional genetic information. Likewise, a large increase in the number of out-

breaks caused by novel Cyclospora spp. genetic types, may also augment the resultant tree

topology and thus be an impetus for re-evaluating the optimal value of the stringency parame-

ter. Generally, when factors impact tree structure (e.g., new markers) or when the gold stan-

dard epidemiologic references do not encompass the observed genetic diversity (e.g.,

outbreaks from novel types) it is highly recommended that tree dissection parameters (i.e.,

SNP distance thresholds, or the stringency parameter in this case) be re-optimized. Neverthe-

less, the presently evaluated epidemiologic clusters represent the currently observed genetic

diversity fairly well (Fig 1). Our optimal s-value (i.e., 96.5 to 96.75) was determined using a set

of genotypes with gold-standard epidemiologic groupings, plus approximately 1,300 isolates

without epidemiologic linkages. The optimal s-value described here remains a robust choice

when applied to Cyclospora spp. that include the same gold-standard genotypes and a selection

of the 1,300 additional isolates used here, in addition to any clinical isolates of interest to the

investigator. A suggested reference dataset is provided (S2 File).

To conclude, we describe a simple approach that has proven useful for optimizing hierar-

chical tree dissection parameters to facilitate subsequent epidemiologic investigations. While

the present example applies specifically to optimization of the stringency parameter for a par-

ticular tree dissection framework, this same approach could easily be used to optimize parame-

ter values that are applicable to any tree dissection approach. We anticipate that other
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molecular epidemiologists will find this work useful, especially in contexts where optimized

parameters for tree dissection have not yet been established for certain pathogens.

Supporting information

S1 File. Complete clustering results. This excel file contains a full list of calculation and

results for accuracy and Simpson’s D at each s-value.

(XLSX)

S2 File. Analysis support files. This excel file includes the list of the suggested reference iso-

lates, as well as the haplotype sheet and distance matrix used for clustering in this manuscript.

The file also includes the epidemiologic linkages for each isolate.

(XLSX)
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