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Abstract

In Finland, the first wave of the COVID-19 epidemic caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) took place from March to June 2020, with the

majority of COVID-19 cases diagnosed in the Helsinki-Uusimaa region. The magnitude and

trend in the incidence of COVID-19 is one way to monitor the course of the epidemic. The

diagnosed COVID-19 cases are a subset of the infections and therefore the COVID-19 inci-

dence underestimates the SARS-CoV-2 incidence. The likelihood that an individual with

SARS-CoV-2 infection is diagnosed with COVID-19 depends on the clinical manifestation

as well as the infection testing policy and capacity. These factors may fluctuate over time

and the underreporting of infections changes accordingly. Quantifying the extent of underre-

porting allows the assessment of the true incidence of infection. To obtain information on the

incidence of SARS-CoV-2 infection in Finland, a series of serological surveys was initiated

in April 2020. We develop a Bayesian inference approach and apply it to data from the sero-

logical surveys, registered COVID-19 cases, and external data on antibody development, to

estimate the time-dependent underreporting of SARS-Cov-2 infections during the first wave

of the COVID-19 epidemic in Finland. During the entire first wave, there were 1 to 5 (95%

probability) SARS-CoV-2 infections for every COVID-19 case. The underreporting was high-

est before April when there were 4 to 17 (95% probability) infections for every COVID-19

case. It is likely that between 0.5%–1.0% (50% probability) and no more than 1.5% (95%

probability) of the adult population in the Helsinki-Uusimaa region were infected with SARS-

CoV-2 by the beginning of July 2020.

Introduction

When a novel virus initiates an epidemic, an important question is how fast the virus spreads

in the population. If the virus causes specific clinical disease, the rate of epidemic growth can

be monitored by the incidence of diagnosed disease cases. However, mild or asymptomatic
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infections may be difficult or impossible to observe directly, and therefore the true incidence

of infection can not be learned solely based on the diagnosed cases. Infection usually leaves a

mark in the form of antibodies, i.e. immunoglobulin proteins developed by the immune sys-

tem and capable of identifying and neutralising the virus. Consequently, the true incidence of

infection can be learned through serological surveys, i.e. studies of the prevalence of individu-

als with antibodies (seroprevalence). Comparing the seroprevalence to the cumulative inci-

dence of diagnosed cases allows one to learn about the underreporting of infections, which

consequently allows monitoring the true spread of the virus.

There are challenges in estimating the level of underreporting. The rate of infections and

diagnostic practises may quickly change, and there may be different delays from infection to

disease onset and to developing antibodies. In this case study, we propose a Bayesian approach

for estimating the time-dependent underreporting of infections during the beginning of an

epidemic and we apply our method to data from the 2020 COVID-19 epidemic in Finland. In

our analysis we integrate three data sources: series of serological surveys, registered disease

cases, and external data on antibody development.

In Finland, the first wave of the COVID-19 epidemic caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) occurred from March through June 2020. In early

March, tens of weekly COVID-19 cases were diagnosed in the Helsinki-Uusimaa region (HUS

area) with a population of 1.7 million, marking the beginning of the epidemic in the region,

while relatively few cases were diagnosed in other parts of the country. Fig 1 shows the num-

bers of new COVID-19 cases by week and municipality in the HUS area. Already by mid

March, hundreds of weekly cases were diagnosed. The rate of new cases started to decline in

early April, most likely because of a partial lockdown in the country. By mid June, the rate of

weekly cases, both in the HUS area and the country as a whole, reduced to the tens of cases,

and the first wave of the COVID-19 epidemic ended by the end of June. A total of 7286

COVID-19 cases were diagnosed during the first epidemic wave, of which 5347 cases were

diagnosed in individuals residing in the HUS area.

The clinical manifestations of SARS-CoV-2 infection range from asymptomatic to severe

and potentially fatal disease. To be diagnosed as a COVID-19 case, a SARS-CoV-2 infection

needs to be laboratory confirmed or, alternatively, a clinical diagnosis of COVID-19 made by a

medical doctor. The likelihood of a SARS-CoV-2 infection being detected thus depends on the

clinical manifestation as well as the infection testing policy and capacity at the time of

infection.

It is likely that a relatively large proportion of infections went undetected during the first

wave of the epidemic in Finland. No widespread testing of asymptomatic individuals was in

place, making it probable that at least almost all asymptomatic infections were missed. Many

symptomatic infections were likely missed as well due to the care instructions and testing

policy in place. In Finland, the underreporting was probably most prominent among the

young and healthy in the beginning of the first epidemic wave, when the official care instruc-

tions for healthy individuals with symptoms compatible with COVID-19 were to stay at

home with no contact to health care [1]. These instructions were affected by the limited

infection testing capacity. During the epidemic peak, the daily number of infection tests in

the HUS area was still increasing through rapid capacity building. The daily testing capacity

increased from approximately 300 during March to 1000 during April to 1500 tests from

May onward [2].

Based on a population-based seroepidemiological study in Spain in April-May 2020, Pollán

et al. found that approximately one third of SARS-CoV-2 infections were asymptomatic and

that a substantial proportion of symptomatic infections also went undetected [3]. Stringhini

et al. analysed the prevalence of immunoglobulin G (IgG) antibodies in Geneva during spring
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2020 and estimated that there were 11 SARS-Cov-2 infections for every detected COVID-19

case [4]. Erikstrup et al. analysed blood donation data in April-May 2020 in Denmark and esti-

mated that the ratio of the expected number of seropositives to the number of COVID-19

cases was between 7–20 [5]. To obtain information on the incidence of SARS-CoV-2 infection

in Finland, a series of serological surveys (serosurveys) was initiated in April 2020.

While there may be significant delays from SARS-CoV-2 infection until developing detect-

able antibodies, i.e. until seroconversion, symptoms and diagnosis of COVID-19 usually occur

with less delay. This means that the two sources of observations are not directly comparable at

any given time. One solution to this problem is to compare the SARS-CoV-2 seroprevalence to

the cumulative incidence of COVID-19 from 2–3 weeks ago, thus accounting for the average

delay in developing antibodies after COVID-19 symptoms. This approach can provide an esti-

mate of underreporting but it does not take into account the uncertainty and individual-level

variation in the time lag from COVID-19 symptoms to seroconversion.

Fig 1. Numbers of COVID-19 cases by week and municipality in the Helsinki-Uusimaa region during the first wave of the 2020 COVID-19

outbreak. In each map, the number of cases in each municipality is shown if it is 5 or more. Detailed data for three weeks in June (2020-06-08 /

2020-06-15, 2020-06-15 / 2020-06-22 and 2020-06-22 / 2020-06-29), with total 147 cases, are not shown in the figure.

https://doi.org/10.1371/journal.pone.0282094.g001
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To better address the delays in antibody responses, in this paper, we utilise previously pub-

lished data about the time lag from COVID-19 symptom onset to seroconversion [6]. We esti-

mate the distribution of the time lag and project the SARS-CoV-2 seroprevalence based on the

COVID-19 incidence. We then estimate the SARS-CoV-2 seroprevalence based on the obser-

vations from the series of serosurveys. Finally, we compare the seroprevalence projections with

the estimated seroprevalences over time and learn the time-evolving underreporting of

SARS-CoV-2 infections based on the ratio of the two measures of seroprevalence.

We utilise Bayesian inference and data from the HUS area to carry out the analysis. The

novelty of our methodology is in accounting for the uncertainty in the time lag from disease

symptoms to seroconversion when estimating the time-evolving underreporting of infections.

Our analysis shows how the underreporting of SARS-CoV-2 infections evolved over time dur-

ing the first epidemic wave in Finland.

Data sources

Study population

The target population in this study include individuals aged 18–69 years and living in the HUS

area with native language Finnish, Swedish, English or Russian. We utilised the Finnish Popu-

lation Information System (PIS) to retrieve the native languages of all COVID-19 cases and the

serological survey participants. We also retrieved the age distribution of the study population

from the same system. The PIS includes the Finnish personal identity code, birth date, native

language and municipality of residence for all Finnish residents [7]. We present some data for

the whole HUS area population, but our main analysis is based on data from the study

population.

COVID-19 cases

The Finnish National Infectious Diseases Register (FNIDR) collects individual-level data on

patients infected with SARS-CoV-2 [8]. These data consist of COVID-19 cases notified as

either a positive SARS-CoV-2 finding from a microbiological laboratory or a clinical diagnosis

by a medical doctor. Approximately 95% of the COVID-19 cases during the first epidemic

wave in Finland were based on a positive SARS-CoV-2 finding from a polymerase chain reac-

tion (PCR) test. The data was extracted for analysis on 31st November 2021.

The sample date of each positive PCR test and/or a doctor’s diagnosis is recorded in the

FNIDR along with information regarding the patient, including the Finnish personal identity

code. Records related to the same patient during a 12-month period are combined as a single

COVID-19 case. In our analysis, the COVID-19 diagnosis date is taken to be the first positive

PCR sample date or the first doctor’s diagnosis date, whichever occurred first. According to

expert evaluation during early 2020, the delay from symptom onset to COVID-19 diagnosis

was deemed to be on average 3.5 days in the Helsinki-Uusimaa region.

Serological surveys

In April 2020, the Finnish Institute for Health and Welfare (THL) initiated a series of serologi-

cal surveys (serosurveys) to obtain information on how large a proportion of the population

had developed antibodies to SARS-CoV-2 in different regions in Finland over time [9]. Each

survey targeted most of the largest municipalities in Finland and individuals aged 18–69. In

each survey round, individuals were randomly sampled from PIS and invited to participate.

Successive surveys were conducted weekly or biweekly.
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Fig 2 shows the recruitment to and participation in the surveys in the HUS area during the

spring 2020. Due to practical reasons, only Finnish speaking individuals were recruited during

the first two weeks, after which the study expanded to cover individuals with native language

Swedish, English or Russian. The questionnaire was translated to each language. Other lan-

guage groups were included in June 2020. The recruitment targeted only few of the largest

municipalities during the first two weeks and then expanded to cover all municipalities in the

HUS area. The sample size in the HUS area decreased after the second week and the participa-

tion rate declined from 64% to 50% during spring 2020.

The age distribution of the study population and the survey participants during the first epi-

demic wave are shown in S1 Fig. The median and the 25% quantile of the age of the survey par-

ticipants were slightly higher than in the study population, indicating that the participation

rate was higher in older age groups. Otherwise the age distribution of the participants was sim-

ilar to the study population.

Participation in the survey included giving a blood sample. The first and last blood samples

during the first epidemic wave were taken on 9th April 2020 and 3rd July 2020, respectively.

Laboratory methods

Blood samples from the serosurvey participants were analysed using a two stage procedure: (1)

a screening test, and (2) a microneutralisation test (MNT) following a positive result at stage

Fig 2. Population sampling in the Helsinki-Uusimaa region during the first 10 weeks of the serological surveys. Population sampling

was carried out weekly or biweekly and each map corresponds to a single sampling week. The first day of the week and the targeted native

languages are listed for each sampling week (fi = Finnish, sv = Swedish, ru = Russian, en = English). The number of invited individuals by

municipality are shown on each map.

https://doi.org/10.1371/journal.pone.0282094.g002
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(1). The screening test was a bead-based fluorescence immunoassay that measures IgG anti-

bodies to the SARS-CoV-2 nucleoprotein [10]. The MNT is a cytopatic effect-based test, which

measures the capacity of neutralising antibodies to prevent an infectious virus from causing

damage in cell culture. SARS-CoV-2 strains circulating in Finland in early 2020 were used in

the MNT assay; CoV-19/Finland/1/2020 (GISAID accession ID EPI_ISL_407079) and hCoV-

19/Finland/FIN-25/2020 (EPI_ISL_412971). MNT was used as the second test as it is highly

specific to SARS-CoV-2 [10, 11]. Obtaining positive results from the two tests, the screening

test and the MNT combined, was considered a confirmed presence of antibodies due to a past

or ongoing SARS-CoV-2 infection (seroconversion). In the following, the combined test is

referred to as the confirmation test.

In order to maximise accuracy, the confirmation test was calibrated utilising data unrelated

to the surveys [10]. The ground truth for a past or ongoing SARS-CoV-2 infection was based

on a positive PCR test close to 30 days prior to the antibody tests. The ground truth of no

SARS-Cov-2 was based on blood samples from 2019. Based on calibration, a sample was con-

sidered positive for the screening test if the mean fluorescent intensity (MFI) value of the test

was above 500. In the MNT, neutralising antibodies were detected from 2-fold serially diluted

serum samples starting from dilution 1:4. Based on calibration, a titer of�4 was considered

positive. S2 Fig describes the optimised test performance on the calibration data for both the

screening and confirmation tests. The screening test was 100% sensitive, after which the MNT

was both 100% specific and 100% sensitive. Therefore the optimised performance of the con-

firmation test was 100% sensitive and 100% specific. The sensitivity and specificity of the

screening test alone were 100% and 97.59%, respectively.

Development and detection of antibodies

For the screening test, we say that an individual is seropositive if the test gives a positive result.

If the seropositivity is due to a SARS-CoV-2 infection, we say that the individual is serocon-
verted. An individual may be seropositive but not seroconverted, because the screening test

may produce a false positive result due to cross-reactive IgG antibodies induced by other

human coronaviruses. Neutralising antibodies measured by the MNT are always due to

SARS-CoV-2 and therefore and individual with a positive confirmation test is always both

seropositive and seroconverted.

The time from infection to seroconversion is subject to individual-level variation. If time

from infection is short, the antibody concentration may not have reached the test detection

threshold. If time from infection is long, the antibodies may wane below the detection thresh-

old. The sensitivity of antibody detection (e.g. the confirmation test) is therefore likely to be

lower than 100% in both of these cases. When modelling the time-dependent seroconversion,

we take into account the slow development of antibodies after infection. However, we omit

waning immunity due to the relatively short study period.

For symptomatic individuals, the symptoms usually develop sooner than detectable anti-

bodies. Tan et al. present results where symptomatic SARS-CoV-2 infected patients were fol-

lowed for 6 weeks starting from symptom onset and reported the IgG positive proportions of

patients for each week [6]. The antibody test utilised in their analysis was similar to the screen-

ing test of the current study. The data are reproduced in Table 1. A total 312 tests were per-

formed on 65 patients, with 3–7 days between consecutive tests. At day 7 since symptom

onset, only 3.4% of the patients tested positive for IgG antibodies. At day 14, 50% tested posi-

tive and when 28–49 days had passed, between 74% and 87% tested positive. Tan et al. report

that of the 67 patients included in their study, 29 were classified with severe pneumonia [6].

The median age of the patients was 49 years and twenty-five patients had underlying diseases.
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Statistical models and methods

Let T = [0, D], D = 86, denote the study period, i.e. the time period starting on 9th April 2020

(the date of the first blood sample taken from the serosurvey participants), until 3rd July 2020

(the date of the last blood sample taken during the first epidemic wave). Let τi denote the day

of SARS-CoV-2 infection in individual i, i = 1, . . ., N. Here N = 1000821 is the size of the study

population. The infections we consider may have occurred before the study period but not

after (i.e. τimay be negative and τi< D).

After the infection, on day si, the individual may develop symptoms of COVID-19. Then, C
days after the symptom onset, on day ri = si + C, the individual may be diagnosed with

COVID-19. In this case, information about the diagnosis and the individual is recorded in the

FNIDR as a COVID-19 case. We assume that the delay C from symptom onset to diagnosis is

3.5 days and is the same for all individuals. The cumulative number of COVID-19 cases by day

t is R(t), where RðtÞ ¼
PN
i 1ðri � tÞ.

An individual i has seroconverted by day t if t> ai> τi, where ai is the day after which the

SARS-CoV-2 antibodies in the individual are detectable. We define AiðtÞ ¼ 1ðai < tÞ as an

indicator function taking value 1 for individual i if seroconversion has occurred by day t and 0

otherwise. For individuals with diagnosed COVID-19 we assume that seroconversion occurs

after the symptom onset day (i.e. ai> si). In those cases, we use Ui to denote the number of

days from symptom onset to seroconversion. Fig 3 summarises the notation and describes the

timeline from SARS-CoV-2 infection to seroconversion.

Regardless of the infection status, an individual from the study population may be randomly

selected to participate in one of the serosurveys. Let yðzÞi;t 2 f0; 1g denote the binary test result (i.e.

seropositivity) for individual iwho was randomly selected into the survey and gave a sample for

antibody testing on day t 2 T, where z 2 {Screen, Confirmation} denotes the test used to derive

the result. We denote the specificity of test z as d
ðzÞ
¼ PrðyðzÞi;t ¼ 0 j ti > tÞ. If the test z is not fully

specific, i.e. δ(z)< 1, then the result may be positive (yðzÞi;t ¼ 1) without a SARS-COV-2 infection.

Fig 4 displays how SARS-CoV-2 infections may have been observed as COVID-19 cases or

positive antibody test results. To compare estimates of seroprevalence based on the two types

of observation (serosurveys and COVID-19 cases), we quantify the distribution of the time lag

from COVID-19 symptom onset to seroconversion. We then project the time-dependent sero-

prevalence based on the diagnosed COVID-19 cases, which allows for comparison to the sero-

prevalence estimated from the serosurveys.

Table 1. Percentage of seroconverted COVID-19 patients by time since symptom onset.

Day Patients IgG positive %

7 58 2 3.4

10 62 12 19.4

14 61 31 50.8

21 54 32 59.3

28 35 26 74.3

35 22 17 77.3

42 15 13 86.7

49 5 4 80.0

A total 312 tests were performed on 65 patients. Day is the number of days passed since COVID-19 symptom onset,

Patients are the number of patients tested and IgG positive are the number of patients who tested positive for

SARS-CoV-2 IgG antibodies. Data from Tan et al. [6].

https://doi.org/10.1371/journal.pone.0282094.t001
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Estimation target

Under two independent models, the quantity of interest is seroprevalence π(t), i.e. the propor-

tion of the population that has seroconverted by time t, where

pðtÞ ¼ PrðAiðtÞ ¼ 1Þ ¼ EðAiðtÞÞ, for i = 1, . . ., N. We estimate π(t) using (i) observations

from the serosurveys and (ii) the incidence of COVID-19 cases. We denote π(0)(t) to indicate

the seroprevalence when based on the serosurveys and π(1)(t) when based on COVID-19 cases.

Our interest is in estimating the ratio of these two seroprevalence parameters on each day t 2
T during the study period:

DðtÞ ¼
pð0ÞðtÞ
pð1ÞðtÞ

: ð1Þ

Fig 3. Timeline from a SARS-CoV-2 infection to seroconversion.

https://doi.org/10.1371/journal.pone.0282094.g003

Fig 4. Observations related to SARS-CoV-2 infections. SARS-CoV-2 infections are observed as diagnosed COVID-19 disease cases or by

antibody testing in the participants of the serological surveys. Here, Ii(t) indicates SARS-CoV-2 infection in individual i by day t; Si(t)
indicates symptom onset in individual i by day t; ri is the diagnosis day of a COVID-19 case, with a total R(t) cases by day t; Ai(t) indicates

seroconversion in individual i by day t, possibly observed as a positive antibody test yi,t = 1 among nt blood samples taken on day t; π(t)
indicates the proportion of seroconverted individuals in the population of sizeN (seroprevalence).

https://doi.org/10.1371/journal.pone.0282094.g004
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We estimate π(0)(t) and the corresponding Δ(t) separately for data from the two anti-

body tests but consider the analysis based on the confirmation test as the main result. In

section Models we describe an Estimation model used to estimate π(0)(t) and a Projection
model used to estimate π(1)(t). We expect that π(0)(t) gives a reasonably unbiased estimate

of the true seroprevalence π(t) but expect that the projection π(1)(t) gives an underestimate

of the true π(t). We therefore expect that Δ(t) > 1 and interpret Δ(t) as an underreporting

ratio, i.e. quantifying the extent of underreporting of SARS-CoV-2 infections up until

time t.

Models

In this section, we specify the Estimation and Projection model of the seroprevalence. We then

describe the estimation of seroprevalence and underreporting under both models. We utilise a

Bayesian framework for statistical inference and numerical methods to derive the posterior

distributions of all unknown quantities.

Estimation model. This model relates to the lower part of Fig 4 (Sampling). The Estima-

tion model is used to estimate the time-dependent seroprevalence based on antibody test

results in the serosurvey participants. Due to the small numbers of daily blood samples in the

serosurveys, we split the study period T into 13 non-overlapping seven day periods (weeks),W
= [0, 7), [7, 14), . . ..[84, 86]. We assume that the seroprevalence is piecewise constant by week

and let pð0Þw denote the seroprevalence during week w 2W.

We describe the prior uncertainty in the weekly seroprevalence as follows. For the first

week, the logit of the seroprevalence gðpð0Þ1 Þ is assumed to be normally distributed with expec-

tation μ1 and variance s2
1
. Note that the normal distribution is the maximum entropy distribu-

tion for gðpð0Þ1 Þ under the constraints that its expectation is μ1 and variance is s2
1
. The logit of

the prevalence in any later week is assumed to depend on the prevalence during the previous

week with a non-decreasing trend. A shared variance parameter σ2 (which is different from σ1)

controls the strength of the dependency on the previous weeks, with σ given a gamma prior

with parameters α and β. The structure of the prior model thus is:

s � Gammaða;bÞ;

gðpð0Þ1 Þ � Nðm1; s
2
1
Þ;

gðpð0Þw Þ � Nðgðp
ð0Þ

w� 1Þ þ trendw; s2Þ for w � 2; where

trendw ¼
0;when w ¼ 2

maxf0; gðpð0Þw� 1Þ � gðp
ð0Þ

w� 2Þg;when w > 2;

8
<

:

ð2Þ

where g(π) = log(π/(1 − π)) is the logit function. This defines a prior distribution of the param-

eter vector gðpð0ÞÞ ¼ ðgðpð0Þ1 Þ; ::; gðp
ð0Þ

13 ÞÞ. We denote the prior distribution of g(π(0)) as p(g
(π(0));F), where the vector F = (α, β, μ1, σ1) collects the hyperparameters. The seroprevalence

for week w is pð0Þw ¼ g
� 1ðgðpð0Þw ÞÞ, where g−1(x) = 1/(1 + exp(−x)) is the inverse-logit function.

The observations yðzÞi;w 2 f0; 1g arise when nw randomly selected individuals from the popu-

lation give a blood sample during week w and a result is derived via antibody test z. The proba-

bility that the test result is positive for individual i is

PrðyðzÞi;w ¼ 1Þ ¼ f ðpð0Þw ; d
ðzÞ
Þ

¼ pð0Þw þ ð1 � p
ð0Þ
w Þ � ð1 � d

ðzÞ
Þ;

ð3Þ
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where 1 − δ(z) is the probability that an individual without SARS-CoV-2 infection gives a

(false) positive test result.

Let yðzÞw ¼
Pnw
i¼1
yðzÞi;w denote the number of positive samples during week w. We assume that,

conditionally on the weekly seroprevalence, the observations yðzÞi;w are independent and identi-

cally distributed. The conditional probability model of the total count yðzÞw , where w 2W, then

is

yðzÞw j gðp
ð0Þ
w Þ; d

ðzÞ
� Binomðnw; f ðpð0Þw ; d

ðzÞ
ÞÞ: ð4Þ

Based on the vector of observations yðzÞ ¼ ðyðzÞ1 ; :::; y
ðzÞ
13 Þ, the likelihood function of the logit

seroprevalence g(π(0)) is

pðyðzÞ j gðpð0ÞÞ; dðzÞÞ ¼
Y

w2W

BinomðyðzÞw jnw; f ðp
ð0Þ

w ; d
ðzÞ
ÞÞ: ð5Þ

The posterior distribution of g(π(0)) is proportional to the product of the prior (2) and the

likelihood (5):

pðgðpð0ÞÞ j yðzÞ;F; dðzÞÞ / pðgðpð0ÞÞ;FÞpðyðzÞ j gðpð0ÞÞ; dðzÞÞ: ð6Þ

The estimation model is described graphically in Fig 5. We defined an informative prior

distribution for the Estimation model seroprevalence. The chosen hyperparameter values μ1 =

logit(0.05) and σ1 = 2 correspond to an approximate prior expectation 0.13 for the seropreva-

lence at the start of the study but with large variance. The chosen hyperparameter values α = 2

and β = 40 correspond to expected value of approximately 0.5 for the standard deviation

between weekly seroprevalences on the probability scale. S3 Fig shows the prior distribution

for π(0). In the prior distribution, each weekly seroprevalence π(0)(t) has a large variance. The

prior mean and variance both increase as t increases.

Projection model. This model relates to the upper part of Fig 4 (Selection). The model is

learned from previously published data on antibody development after COVID-19 symptoms.

Fig 5. The model for seroprevalence π(0)(t) (estimation model). The study period T is split into weeksW. On day t during the study

period, where t belongs to week w, the antibody test result yðzÞi;t for individual i, i ¼ 1; . . . ; ntt2w , depends on the seroprevalence pð0Þw during

week w and the specificity δ(z) of the antibody test z, where z 2 {Screen, Confirmation}. In the prior distribution, the seroprevalence

during the first week p
ð0Þ

1 is distributed according to parameters μ1 and s2
1
, and the seroprevalence during week w depends on the two

previous weeks. The strength of the dependency is controlled by σ, with a prior distribution depending on parameters α and β.

https://doi.org/10.1371/journal.pone.0282094.g005
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We first describe the model and then show how it is utilised to project the time-dependent

seroprevalence based on COVID-19 cases in the FNIDR.

For individual j, the number of days from COVID-19 symptom onset to seroconversion is

described by the random variable Uj. We assume that each Uj has a lognormal distribution

with parameters μU and s2
U . The probability that patient j has secoconverted by day u since

symptom onset is Pr(Uj� u) = FU(u;θ), where y ¼ ðmU ; s
2
UÞ.

To estimate the parameters θ, we utilise data based on patients who had SARS-CoV-2 anti-

bodies tested on multiple days after COVID-19 symptoms [6]. The data are shown in Table 1.

We denote the test result by yqj 2 f0; 1g for individuals j = 1, . . ., nq, where nq is the number of

individuals tested q days after symptom onset, and q 2 QTan = {7, 10, 14, . . ., 42, 49}. If the test

result is positive (i.e. yqj ¼ 1), the patient is seroconverted and the seroconversion must have

occurred before day q. The probability model for the individual observation is

yqj j y � BernðFUðq; yÞÞ: ð7Þ

We assume that the test results are independent given day q and the parameters θ. Based on

the observations yTan ¼ fyqj ; j ¼ 1; :::; nq; q 2 QTang, the likelihood function of the parameters

θ is

pðyTan j yÞ ¼
Y

q2QTan

Ynq

j¼1

Bernðyqj jFUðq; yÞÞ: ð8Þ

We assume an uninformative prior distribution:

pðyÞ ¼ pðmU ; s2
UÞ / 1=s2

U : ð9Þ

The posterior distribution is proportional to the product of the prior (9) and the likelihood

(8):

pðy j yTanÞ / pðyÞpðyTan j yÞ: ð10Þ

The posterior predictive distribution of FU is

F̂U ðuÞ ¼ pðyuj j y
TanÞ ¼

Z

FUðu; yÞpðy j y
TanÞdy: ð11Þ

We utilise the posterior predictive distribution F̂U to project seroprevalence based on the

FNIDR COVID-19 cases. For each day t 2 T during the study period, we first predict the prob-

ability of seroconversion in each case i, for whom qi days have passed since symptom onset.

We assume that the symptom onset day was C = 3.5 days before the diagnosis day ri, and so qi
= t − (ri − C). The probabilities of seroconversion, each given by F̂U ðqiÞ, are then combined as

the expected number of cases seroconverted, and the seroprevalence is obtained by dividing by

the population size N. Formally, we project the seroprevalence for day t 2 T as

pð1ÞðtÞ ¼
1

N

XRðtþCÞ

i

E½AiðtÞ j yTan�

¼
1

N

XRðtþCÞ

i

F̂U ðt � ðri � CÞÞ;

ð12Þ

where R(t + C) is the number of COVID-19 cases with symptom onset before day t. We
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call π(1)(t) the projected seroprevalence. The Projection model is described graphically in

Fig 6.

Estimation of seroprevalence and underreporting

In the Estimation model, the posterior distribution for the parameter vector g(π(0)) was

obtained by sampling from p(g(π(0)) j y(z);F, δ(z)), see Eq 6. Each sample was then transformed

with g−1(.) to obtain samples from the posterior distribution of each weekly seroprevalence

pð0Þw . This provided samples for each day t 2 w of the week, resulting in samples from the poste-

rior distribution of each daily seroprevalence π(0)(t), t 2 T.

In the Projection model, the posterior distribution for θ was obtained by sampling from p(θ
j yTan), see Eq 10. For each posterior sample and for each day t 2 T during the study period,

seroprevalence was projected as described in Eq 12, resulting in samples from the posterior

predictive distribution of each daily seroprevalence π(1)(t), t 2 T.

Identical number of samples (S = 40000) were drawn from the posterior distributions of

π(0)(t) and π(1)(t). For each sample from π(0)(t) and π(1)(t), a sample from Δ(t) was obtained by

division, repeating over each day t 2 T during the study period.

We utilised the No-U-Turn Sampler algorithm for sampling, which is an efficient Markov

Chain Monte Carlo algorithm [12]. We used STAN and the R package Rstan to carry out the

sampling and monitored convergence via the Rhat statistic [13–15]. The STAN model code

and an R code example are available on github.com/TuomoNieminen/covid19underreporting.

The choices for hyperparameters and other needed quantities to carry out the estimation

are shown in S1 Table. See section Sensitivity analysis for sensitivity analysis regarding the

hyperparameter choices.

Ethics

The study protocol was approved by the ethical committee of the Hospital District of Helsinki

and Uusimaa (HUS/1137/2020). Written informed consent was obtained from all participants.

Fig 6. The model for seroprevalence π(1)(t) (projection model). Left plate: The duration from symptoms to seroconversion was modelled based on

external data. Individuals j, j = 1, . . .,N(Tan), experienced COVID-19 symptoms on day sj = 0 and were tested for antibodies q days later, where q
varied from 7 to 49 days. Individuals were tested on multiple days. Here, Aj(u) denotes whether individual j had seroconverted by day u, and (yðqÞj )

indicates the result of an antibody test taken on the q:th day. The duration from symptoms to seroconversion was modelled as a lognormal

distribution with parameters (μU, σU). Right plate: The posterior distribution of (μU, σU) is utilised to project the seroconversion status Ai(t) for each

individual i = 1, . . ., R(t + C) with COVID-19 symptom onset before day t 2 T during the study period. The symptoms are assumed to have

occurred on day ŝ i ¼ ri � C, where C is the lag from symptom onset to the COVID-19 diagnosis day ri. The individual projections are used to

derive the population level projection for the seroprevalence on day t, π(1)(t).

https://doi.org/10.1371/journal.pone.0282094.g006
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Results

SARS-CoV-2 seroprevalence and the cumulative incidence of COVID-19

Table 2 shows the weekly numbers of blood samples and antibody test results in the serosur-

veys during the first epidemic wave. Out of 1465 samples taken between 9th April 2020 and

3rd July 2020, a total 35 (2.39%) were screening test positive and a total 7 (0.48%) were confir-

mation test positive. Five of the confirmed positive samples were taken before 4th May 2020,

when the weekly numbers of samples were high, and they correspond to weekly sample sero-

prevalences 0.29%, 0.43% and 1.18%. After 4th May 2020, the weekly number of available sam-

ples decreased significantly and only two confirmed positive samples were observed.

Table 2 also shows the cumulative incidence of COVID-19 cases in the study population

and in all HUS area residents. Three weeks prior to the first confirmed positive blood sample,

the cumulative incidence of COVID-19 in the study population was 0.07% (736 cases, popula-

tion 1.0 million), and in three weeks it increased to 0.13% (1330 cases). In all HUS area resi-

dents the cumulative incidence of COVID-19 was 0.31% by the end of the first epidemic wave

(5348 cases, population 1.7 million).

Table 2. COVID-19 cases and serology survey results in the Helsinki-Uusimaa region during spring 2020.

COVID-19 casesa (cumulative) Serological surveysb (weekly)

Period HUS (%) Study (%) Samples Screening pos. (%) Confirmation pos. (%)

10.02.2020—16.02.2020 0–10 0–10 - - -

17.02.2020—23.02.2020 0–10 0–10 - - -

24.02.2020—01.03.2020 0–10 0–10 - - -

02.03.2020—08.03.2020 24 (0) 20 (0) - - -

09.03.2020—15.03.2020 220 (0.01) 190 (0.02) - - -

16.03.2020—22.03.2020 611 (0.04) 505 (0.05) - - -

23.03.2020—29.03.2020 965 (0.06) 737 (0.07) - - -

30.03.2020—05.04.2020 1578 (0.09) 1030 (0.1) - - -

06.04.2020—12.04.2020 2212 (0.13) 1332 (0.13) 23 1 (4.35) 0 (0)

13.04.2020—19.04.2020 2825 (0.16) 1621 (0.16) 339 8 (2.36) 1 (0.29)

20.04.2020—26.04.2020 3436 (0.2) 1895 (0.19) 465 13 (2.8) 2 (0.43)

27.04.2020—03.05.2020 3965 (0.23) 2138 (0.21) 170 4 (2.35) 2 (1.18)

04.05.2020—10.05.2020 4466 (0.26) 2415 (0.24) 139 2 (1.44) 0 (0)

11.05.2020—17.05.2020 4804 (0.28) 2636 (0.26) 88 2 (2.27) 1 (1.14)

18.05.2020—24.05.2020 4987 (0.29) 2747 (0.28) 47 0 (0) 0 (0)

25.05.2020—31.05.2020 5118 (0.3) 2825 (0.28) 48 0 (0) 0 (0)

01.06.2020—07.06.2020 5200 (0.3) 2863 (0.29) 48 2 (4.17) 1 (2.08)

08.06.2020—14.06.2020 5240 (0.31) 2885 (0.29) 44 1 (2.27) 0 (0)

15.06.2020—21.06.2020 5279 (0.31) 2899 (0.29) 23 0 (0) 0 (0)

22.06.2020—28.06.2020 5315 (0.31) 2915 (0.29) 9 0 (0) 0 (0)

29.06.2020—04.07.2020 5347 (0.31) 2932 (0.29) 22 2 (9.09) 0 (0)

All weeks 5347 (0.31) 2932 (0.29) 1465 35 (2.39) 7 (0.48)

The column COVID-19 cases (cumulative) shows the cumulative number and cumulative incidence of COVID-19 cases by the end of each week (Period). The column

Serological surveys (weekly) shows weekly results from the serological surveys for the target population of the current study.
a HUS: COVID-19 cases in the Helsinki-Uusimaa region of Finland; Study: COVID-19 cases in the target population of the current study. Populations 1.72M and

1.00M, respectively.
b Samples gives the weekly number of blood samples. Screening pos. (%) gives the weekly number and proportion of samples where SARS-CoV-2 IgG antibodies were

detected with the screening test. Confirmation pos. (%) gives the weekly number and proportion of positive samples confirmed via a microneutralisation test.

https://doi.org/10.1371/journal.pone.0282094.t002
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Fig 7 shows the estimates and projections of the seroprevalence, obtained under the Esti-

mation model and Projection model. Results are shown for both the screening and confir-

mation tests. Based on the confirmation test, the posterior mean of the seroprevalence

remains around 0.5% until the end of the study period where it slightly increases. The

increase at the end is affected by the prior trend, combined with a low number of available

blood samples. Based on the screening test, the seroprevalence behaves similarly but the

posterior mean is lower and the posterior variance is greater. In both cases, the posterior

mean of the projected seroprevalence (based on the COVID-19 cases) remains lower than

the posterior mean of the estimated seroprevalence. The discrepancy to the estimated sero-

prevalence is greater during the beginning of the study period compared to the rest of the

study period.

Table 3 shows the estimates and projections of the seroprevalence for selected dates during

the study period. Based on the confirmation test, the estimated seroprevalence in the HUS area

was 0.49 (95% CrI: 0.20–0.91) on 9th April 2020 and 0.58 (95% CrI: 0.23–1.16) on 28th May

2020. The corresponding seroprevalence projections based on COVID-19 cases are 0.06 (95%

CrI:0.05–0.06) and 0.23 (95% CrI:0.21–0.24), respectively. Fig 8 shows the posterior distributions

of the seroprevalence obtained under the Estimation model on 28th May 2020. Based on the con-

firmation test, the interquartile range (IQR) for the seroprevalence was 0.4%–0.67%. The sero-

prevalence based on the screening test has more uncertainty and the posterior median is lower.

Underreporting

Fig 9 shows the posterior mean and quantiles of the underreporting ratio Δ(t) (see Eq 1), based

on either the confirmation or the screening tests. For both tests, the posterior mean of Δ(t)
first decreases, indicating higher underreporting during the beginning of the epidemic, then

settles at around 2–3, and finally increased slightly toward the end of the first wave.

Table 3 shows the posterior mean and credible interval of Δ(t) for selected dates during the

study period. Based on the confirmation test, there had been 8.9 (95% CrI: 3.6–16.5) infections

for every COVID-19 case up until 9th April 2020. The underreporting then decreased, and up

Fig 7. Seroprevalence in the Helsinki-Uusimaa region during the first wave of the COVID-19 epidemic. Both

images show the posterior means and 95% credible intervals of seroprevalence π(0)(t) and projected seroprevalence

π(1)(t), using the serology survey observations and COVID-19 cases (FNIDR projection), respectively. Solid lines are

posterior means and the shaded areas correspond to 95% credible intervals derived from the pointwise 2.5% and 97.5%

quantiles. The dashed lines show the projected seroprevalence and the shaded areas correspond to 95% credible

intervals, however, the intervals for projected seroprevalence are very narrow and not visible. The image on the left

shows results for the screening test and the image on the right shows results for the confirmation test. (a) Posterior

means and 95% credible intervals of seropreva-lence π(0)(t) (Screening test) and projected seroprevalence π(1)(t). (b)

Posterior means and 95% credible intervals of seroprevalence π(0)(t) (Confirmation test) and projected seroprevalence

π(1)(t).

https://doi.org/10.1371/journal.pone.0282094.g007
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until 28th May 2020 our estimate is that there had been 2.5 (95% CrI: 1.0–5.0) SARS-CoV-2

infections for every COVID-19 case. The estimate of the underreporting ratio then remained

at the same level until the end of the first wave.

Fig 10 shows the posterior distribution for the underreporting ratio by 28th May 2020,

based on either the screening or confirmation tests. Based on the confirmation test, the IQR

for underreporting was 1.8—3.0. The estimate derived from the screening test data has more

uncertainty and shows lower underreporting.

Time from COVID-19 symptom onset to seroconversion

S4 Fig describes the posterior distributions of μU and σU, the parameters of the lognormal

distribution of the time from COVID-19 symptom onset to seroconversion. The posterior

Fig 8. Posterior distributions of seroprevalence π(0)(t). In the images, t corresponds to 8th May 2020, learned from

the screening (left image) and confirmation (right image) test data. The seroprevalence is shown in percentage scale.

(a) Posterior density of π(0)(t), where t corresponds to 8th May 2020 (Screening test). (b) Posterior density of π(0)(t),
where t corresponds to 8th May 2020 (Confirmation test).

https://doi.org/10.1371/journal.pone.0282094.g008

Table 3. Estimated and projected seroprevalences and the underreporting ratios during the study period.

COVID-19 cases Confirmation test Screening test

date π(1)(t) π(0)(t) Δ(t) π(0)(t) Δ(t)
09.04.2020 0.055 (0.050–0.061) 0.49 (0.20–0.91) 8.92 (3.64–16.53) 0.30 (0.022–0.91) 5.49 (0.40–16.53)

16.04.2020 0.080 (0.072–0.087) 0.49 (0.20–0.89) 6.14 (2.54–11.26) 0.30 (0.022–0.90) 3.79 (0.28–11.34)

23.04.2020 0.106 (0.096–0.114) 0.49 (0.21–0.89) 4.68 (1.95– 8.53) 0.30 (0.023–0.91) 2.89 (0.21– 8.58)

30.04.2020 0.132 (0.121–0.141) 0.50 (0.21–0.91) 3.81 (1.59– 6.95) 0.31 (0.023–0.92) 2.37 (0.17– 7.02)

07.05.2020 0.158 (0.145–0.168) 0.51 (0.22–0.94) 3.27 (1.37– 6.00) 0.32 (0.024–0.96) 2.05 (0.15– 6.12)

14.05.2020 0.184 (0.170–0.194) 0.53 (0.22–0.99) 2.90 (1.20– 5.43) 0.34 (0.024–1.01) 1.84 (0.13– 5.52)

21.05.2020 0.209 (0.194–0.220) 0.56 (0.23–1.06) 2.67 (1.08– 5.11) 0.36 (0.025–1.09) 1.72 (0.12– 5.24)

28.05.2020 0.230 (0.214–0.241) 0.58 (0.23–1.16) 2.54 (1.01– 5.04) 0.39 (0.027–1.21) 1.69 (0.12– 5.28)

04.06.2020 0.246 (0.231–0.257) 0.62 (0.24–1.29) 2.51 (0.96– 5.27) 0.43 (0.028–1.41) 1.73 (0.11– 5.74)

11.06.2020 0.259 (0.244–0.268) 0.66 (0.24–1.49) 2.56 (0.93– 5.75) 0.48 (0.029–1.73) 1.86 (0.11– 6.69)

18.06.2020 0.268 (0.254–0.276) 0.71 (0.25–1.76) 2.67 (0.92– 6.57) 0.56 (0.031–2.26) 2.08 (0.11– 8.50)

25.06.2020 0.274 (0.262–0.281) 0.78 (0.25–2.16) 2.86 (0.91– 7.91) 0.67 (0.032–3.14) 2.43 (0.12–11.53)

02.07.2020 0.279 (0.268–0.285) 0.88 (0.25–2.73) 3.14 (0.91– 9.80) 0.83 (0.033–4.66) 2.97 (0.12–16.71)

The column COVID-19 cases shows the projected seroprevalence π(1)(t), and the columns Confirmation test and Screening test show estimated seroprevalence π(0)(t),
and the underreporting ratio (Δ(t)), see Eq 1) of SARS-CoV-2 infections during the study period. The seroprevalences are shown in percentage scale. Displayed are the

posterior means along with 95% credible intervals, derived from the 2.5% and 97.5% quantiles of the distributions.

https://doi.org/10.1371/journal.pone.0282094.t003
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medians of μU and σU are 2.87 and 0.72, respectively. The figure also shows the posterior pre-

dictive distribution for the time from symptom onset to seroconversion. The predicted

median delay from symptom onset to seroconversion is close to 18 days and the 75% quantile

is over 29 days. By day 60 since symptom onset, the probability of seroconversion is over

95%.

Sensitivity analysis

S5 Fig shows the prior and posterior distributions of σ, the strength of dependency in the Esti-

mation model, learned from the screening and confirmation test data. In both cases, the poste-

rior distribution is similar to the (informative) prior distribution, indicating that the data do

not contain much information about σ and the analysis may be sensitive to the prior distribu-

tion of σ.
S2 Table shows estimates of the underreporting ratio Δ(t), based on data from the confirma-

tion test, using different values for hyperparameters μ1, σ1 and β. Smaller values of β corre-

spond to a higher prior expectation and higher prior variance for σ and in turn higher

posterior variance for Δ(t). Smaller values of β also correspond to slightly higher posterior

Fig 9. Extent of underreporting in the Helsinki-Uusimaa region during the first wave of the COVID-19 epidemic.

Both figures show estimates for the underreporting ratio Δ(t). Solid lines are posterior means and the shaded areas

correspond to 95% credible intervals derived from the pointwise 2.5% and 97.5% quantiles. The image on the left

shows results for the screening test and the image on the right shows results for the confirmation test. (a) Posterior

means and 95% credible intervals of Δ(t) (Screening test). (b) Posterior means and 95% credible intervals of Δ(t)
(Confirmation test).

https://doi.org/10.1371/journal.pone.0282094.g009

Fig 10. Posterior distributions of underreporting ratio Δ(t). In the images, t corresponds to 8th May 2020, learned

from the screening test (left image) and confirmation test (right image) data. (a) Posterior density of Δ(t), where t
corresponds to 8th May 2020 (Screening test). (b) Posterior density Δ(t), where t corresponds to 8th May 2020

(Confirmation test).

https://doi.org/10.1371/journal.pone.0282094.g010
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means for Δ(t), but only at the start and end of the study. For example, comparing choices β =

2 to β = 40 when α = 2, logit(μ1) = 0.05 and σ1 = 2, the 95% credible intervals for Δ(t) on 28th

May 2020 are 0.4 − 7.3 and 1.0 − 5.0, respectively, however, the posterior means are almost

identical (2.54 and 2.56). With a choice of β = 120, the underreporting ratio estimates are simi-

lar on 28th May 2020 and at the end of the study, while with smaller values of β there is more

uncertainty in the estimates at the end of the study.

Choice of a larger logit(μ1) corresponds to a higher posterior mean for Δ(t), but only mar-

ginally. For example, comparing the choice logit(μ1) = 0.005 to logit(μ1) = 0.05 when σ1 = 2, β
= 40, the posterior means for Δ(t) on 28th May 2020 are 2.4 and 2.6, respectively. A choice of

smaller σ1 reduces the posterior variance of Δ(t) and elevates the effect of the chosen μ1, but

the effects are small.

In all cases, the effects of the hyperparameter choices are magnified towards the end of the

study period, when the number of available samples from the serosurveys is low.

Discussion

We estimated that with 95% probability there were 1 to 5 SARS-CoV-2 infections for every

COVID-19 case during the first epidemic wave in Finland. A 50% probability interval for the

underreporting was 1.8–3.0. The underreporting was highest before April 2020 when there

were 4 to 17 infections for every COVID-19 case (95% probability). It is likely that the sero-

prevalence in the Helsinki-Uusimaa region was over 0.5% already by the end of May 2020

(95% CrI: 0.2–1.2), while the cumulative incidence of COVID-19 cases in the region was 0.3%

by the end of June. Based on the estimate of underreporting and the cumulative incidence of

COVID-19 cases, we estimate that between 0.5%–1% (50% probability) and no more than

1.5% (95% probability) of the population in the Helsinki-Uusimaa region were infected with

SARS-CoV-2 by the end of June 2020.

There is great uncertainty about the estimated seroprevalence and the corresponding esti-

mate of underreporting at the end of the study period, due to the small number of samples

available in the serosurveys. The estimates are therefore sensitive to the model specification

(i.e. hyperparameters). Accordingly, we consider the most robust estimate of underreporting

during the first wave pertaining to the end of May 2020. We do not expect that the magnitude

of underreporting changed significantly during the rest of the first wave, as there were no

changes in virus testing policy or capacity. While our analysis included prior information

related to the dependency between seroprevalences on consecutive weeks, our sensitivity anal-

ysis indicated that a prior choice of stronger dependency could result in more robust estimates

of underreporting towards the end of the first wave.

Our analysis leaves a small but reasonable probability that by the end of the first wave there

was no underreporting at all. Our estimation approach allowed values of the underreporting

ratio below one, which would correspond to there being more COVID-19 cases than

SARS-CoV-2 infections. This could occur in theory, in case the diagnosis procedure for

COVID-19 (i.e. PCR test) was unspecific and the virus testing was widespread. Nevertheless,

we believe this to be unrealistic in our study and simply interpret values below one to represent

absence of underreporting. It seems, however, also unrealistic that no underreporting

occurred, as in the general population the virus testing was targeted to symptomatic individu-

als only. Findings from a population-based screening in Iceland during March 2020 show that

43% of individuals who tested positive for SARS-CoV-2 were asymptomatic and findings from

Spain indicate that one third of infections were asymptomatic in April-May 2020 [3, 16]. A sys-

tematic review and meta-analysis of 95 published studies estimates that globally 41% (34%—

48%) of confirmed COVID-19 cases were asymptomatic during the pre COVID-19-vaccine
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era [17]. Our analysis also leaves a small but reasonable probability that only 20% or less of

SARS-CoV-2 infections were detected during the first epidemic wave. We believe that this

may still be plausible, as other countries show even higher underreporting [3, 5].

A key assumption in our analysis was that the serosurvey participants represented the

population of interest. The participation rate was 50%–64% and there were several factors

which may have caused selection bias, as survey participation may correlate with the likeli-

hood of SARS-CoV-2 infection. First, during the first two weeks, the surveys targeted only

few of the largest municipalities. These had the highest numbers of COVID-19 cases, which

may lead to overestimating the seroprevalence and thus the underreporting. However, an

analysis using data only from the largest municipality (Helsinki) showed similar estimates of

underreporting. Secondly, the participation rate in younger age groups (18–29) was lower

than in other age groups. Age is likely associated with the incidence of SARS-CoV-2 infec-

tion due to differences in social behaviour. In April 2020, Finns aged 18–29 had a similar fre-

quency of daily social contacts than those aged 30–59, but a higher frequency of contacts

than those aged 60–69 [18]. The underrepresentation of young adults in our study can lead

to underestimation of the seroprevalence and of underreporting. Third, in several population

health examination surveys, participation rates have been found lower among individuals

with lower education [19]. Those individuals often work in professions where working

remotely and social distancing may be more difficult to arrange, and thus they may be more

exposed to infection. If those previous findings hold in this survey, this can lead to underesti-

mation of seroprevalence and thus underreporting. Fourth, historically, the participation

rate in Finnish health examination surveys has been lower in language groups other than

Finnish and Swedish [20]. The incidence of COVID-19 during the first epidemic wave was

several times higher in language groups other than Finnish, Swedish, English or Russian (S6

Fig). However, as the target population of our study includes only those four language

groups, we do not believe that the possible underrepresentation of language groups other

than Finnish and Swedish is likely to bias our results. Finally, our preliminary analyses from

the serosurveys beyond the first wave indicate that subjects with a past confirmed

SARS-CoV-2 infection tend to have a lower participation rate. It is possible that those with a

confirmed infection were less willing to participate. This can lead to underestimation of the

seroprevalence and of underreporting.

Our study was limited to those 18–69 years old. For ethical reasons, the elderly most vulner-

able to severe COVID-19 were not invited to participate during the beginning of the epidemic

as participation required a medical site visit and therefore could increase the risk of infection

with SARS-CoV-2. Children were not invited due to difficulties in obtaining informed consent

from minors. The median age of COVID-19 cases in the HUS area showed a decreasing trend

during spring 2020, most likely due to the increase in testing capacity, allowing detection of

milder disease cases (S7 Fig). It is therefore likely that the underreporting was both higher and

decreased more in the younger age groups during the first epidemic wave. Other serological

studies have used regression analysis or post stratification to account for differences in the age

and sex distributions between the survey participants and the underlying population [3, 4, 21].

These methods could help reduce bias and allow for the estimation of age-dependent underre-

porting. We decided not to use such analytical methods due to the very small number of con-

firmed positive samples.

Another key assumption in our analysis was that the time-dependent probability of sero-

conversion after COVID-19 symptoms, as estimated from the external data set from Tan

et al., is similar to how the antibody detection in the serological surveys would perform.

Otherwise, the underreporting ratio, i.e. the ratio of the estimated seroprevalence (based on

serosurveys) and the projected seroprevalence (based on COVID-19 cases) may not
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accurately describe underreporting. The patients in Tan et al. were all hospitalised and sev-

eral of them were classified with severe pneumonia. By contrast, the majority of the FNIDR

COVID-19 cases during the first epidemic wave did not require hospital care. Severe cases

may have higher antibody responses, and this may cause us to overestimate the projected

seroprevalence and hence underestimate the underreporting [22]. Additionally, the

SARS-COV-2 antibody detection method utilised in Tan et al. differed from the methods

utilised in the serosurveys. The serosurvey antibody detection was calibrated to be 100%

sensitive by day 30 since infection. By contrast, in Tan et al., only 74% of the patients had

seroconverted by day 28 since symptom onset, and accordingly, our seroprevalence projec-

tion yielded approximately 75% probability of seroconversion by day 30 since symptom

onset. This discrepancy indicates that we may overestimate the time lag to developing

detectable antibodies after COVID-19 symptoms. This in turn indicates that we may overes-

timate the underreporting during the beginning of the epidemic, at worst by a factor of

around 0.75. Therefore, instead of 4–17 there were perhaps 3–13 infections for every

COVID-19 case before April.

When projecting the seroprevalence, we assumed that the probability of seropositivity fol-

lowing COVID-19 symptoms is strictly increasing over time. In reality, the antibody levels

eventually wane and after 8 months since SARS-CoV-2 infection, the N-IgG antibodies are

detectable in only 66% of individuals [22]. Our analysis covers a period of four months, and

there were not many infections in Finland before March 2020, so at worst we measured anti-

bodies from serosurvey participants who were infected four months ago. The detectability of

antibodies would then be at least 66% and possibly over 80%, assuming a linear decrease from

the 100% detectability at one month. By contrast, our seroprevalence projection gives an

almost 100% probability of seropositivity at four months since COVID-19 symptom onset.

This worst-case discrepancy would correspond to overestimating the underreporting by 20%

at the end of the study period. To analyse data beyond the first epidemic wave, the seropreva-

lence projection should be modified to allow for a decrease in the probability of seropositivity

after appropriate time.

We included an analysis based on the screening test to demonstrate how our method can

be used with tests which are not fully specific. The estimates of seroprevalence based on the

screening test were lower than those based on the confirmation test, when adjusting for the

expected false positive rate of the screening test. This implies that either the specificity of the

screening test was higher than expected, or alternatively, the confirmation test was not fully

specific. The confirmation test utilises a microneutralisation test (MNT) as the second test to

confirm the presence of SARS-CoV-2 antibodies. Based on an analysis of a large number of

pre-pandemic sera from different age cohorts, the MNT can be considered to be fully specific

[10]. It is therefore extremely unlikely that any of our 7 confirmed positives samples was a false

positive; more likely the true specificity of the screening test was higher than we assumed. In

our analysis, we assumed that the specificity of the screening test was a known constant, based

on a 81/83 true negative finding. In reality, however, there is uncertainty in the exact specific-

ity, and the results derived from the screening test therefore have more uncertainty than our

analysis implies. For analysing data from a test with unknown specificity, we agree with treat-

ing the specificity as an unknown parameter, as recommended by Gelman and Carpenter, and

as implemented by e.g. Stringhini et al. [4, 23].

We used a constant value 3.5 days as the delay from symptom onset to COVID-19 diagno-

sis, which was based on expert evaluation and information available during early 2020. In real-

ity, the exact delay is unknown and subject to variation. It is likely that 3.5 days is a reasonable

estimate for the average delay in the Helsinki-Uusimaa region during spring 2020, as accord-

ing to internal infection tracking data at our institute, in the capital city (Helsinki) the delay
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was close to 6 days in March 2020, close to 4 days in April and close to 3 days in May. Small

variations in this delay do not affect our analysis, as small changes in the COVID-19 symptom

onset day would not significantly alter the seroprevalence projection. Our results are therefore

not sensitive to small changes in the choice of delay.

Our results imply that the spread of SARS-CoV-2 infection was very limited in Finland dur-

ing spring 2020 compared to other European countries, as seroprevalence was still likely under

1% in the densely populated Helsinki-Uusimaa region by the beginning of June. For example

in Spain seroprevalence was likely over 10% around Madrid by May 11 [3], and in Geneva,

Switzerland, it was 10.8% (8.2–13.9) by May 9th. Finland had the advantage of being slightly

isolated from main land Europe and therefore the epidemic started a few weeks later, giving

more time to implement social distancing. The general public’s compliance with epidemic rec-

ommendations was likely very high. There was a large reduction in the daily numbers of social

contacts in the early part of the 2020 COVID-19 epidemic in Finland, which was likely a major

contributor to the steady decline of the epidemic in the country [18].

In summary, we presented a Bayesian approach to estimate the time-dependent underre-

porting of SARS-CoV-2 infections during the COVID-19 epidemic. We implemented the pro-

posed approach to data from adults living in the Helsinki-Uusimaa region of Finland during

the first epidemic wave in 2020. The analysis we here describe can also be applied in real time,

and our method informed about the spread, detection, and severity of SARS-CoV-2 infection

in Finland during 2020. Our results indicate that most SARS-CoV-2 infections were not

detected and the underreporting was most severe during the beginning of the epidemic. How-

ever, as the cumulative incidence of COVID-19 was very low, it is likely that less than 1.5% of

the population in the Helsinki-Uusimaa region had been infected with SARS-CoV-2 by the

beginning of July 2020. Assuming that the underreporting was similar in other parts of the

country and in children and the elderly, the first wave of the COVID-19 epidemic left a vast

majority of the Finnish population unaffected, with almost the entire population still unex-

posed and susceptible to SARS-CoV-2.

Supporting information

S1 Table. Parameters of the prior distribution in the estimation model, and the specifici-

ties of the screening and confirmation tests.

(PDF)

S2 Table. Influence of choices of hyperparameters on the estimation of underreporting

ratio Δ(t). Shown are posterior means and 95% credible intervals for Δ(t), based on the confir-

mation test data, for 9th April 2020 (t = 0), 28th May 2020 (t = 49) and 2nd July 2020 (t = 84),

using different values for the parameters μ1, σ1, and β. The value used for the parameter α was

2.

(PDF)

S1 Fig. Age distributions of study sub-populations. Age distributions of: population in the

Helsinki-Uusimaa region at the end of 2021 (HUS); COVID-19 cases for the HUS population

during the first wave of the COVID-19 epidemic in 2020 (FNIDR); the study population, i.e.

the target population of the current study (HUS (incl.)); COVID-19 cases from the study pop-

ulation during the first wave of the COVID-19 epidemic in 2020 (FNIDR (incl.)); serological

survey participants from the study population during the first wave (Serosurveys).

(TIF)

S2 Fig. The serological survey antibody tests and their performances on the calibration

data. The screening test is the result of the IgG antibody test, which may give false positive
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results. The confirmation test is a combination of the IgG and microneutralization tests

(MNT), where the IgG positive samples are tested again with the MNT. After optimizing per-

formance on the calibration data, which includes samples from PCR positive and negative

individuals, the sensitivity and specificity of the screening test are 33/33 (100%) and 81/83

(97.59%), respectively, while the sensitivity and specificity of the confirmation test are 33/33

(100%) and 83/83 (100%), respectively.

(TIF)

S3 Fig. Estimation model seroprevalence prior distribution. Prior mean, and 2.5% and

97.5% quantiles for each weekly seroprevalence pð0Þw in the Estimation model. The estimates

were computed based on 40000 samples generated from the prior distribution of π.

(TIF)

S4 Fig. Time from COVID-19 symptom onset to seroconversion. The three images show,

starting from the the left: the posterior distribution for μU, the posterior distribution for σU,

and the posterior predictive distribution for U, the time from COVID-19 symptom onset to

seroconversion. The distribution for U was obtained by sampling from the lognormal distribu-

tion, using samples from the joint posterior distribution for (μU, σU).

(TIF)

S5 Fig. Prior and posterior distributions for the parameter σ. Image on the left shows the

prior distribution, the middle image shows the posterior distribution based on confirmation

test data, and the image on the right shows the posterior distribution based on the screening

test data.

(TIF)

S6 Fig. Incidence of COVID-19 cases in the Helsinki-Uusimaa region by age group and

language during the first wave of the epidemic in 2020. The language groups are Finnish

(fi), Swedish (sv), English (en), Russian (ru) and other.

(TIF)

S7 Fig. Age distribution of COVID-19 cases in the Helsinki-Uusimaa region during the

first wave of the COVID-19 epidemic in 2020.

(TIF)
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