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Abstract

Measurement of viscosity of crude oil is critical for reservoir simulators. Computational

modeling is a useful tool for correlation of crude oil viscosity to reservoir conditions such as

pressure, temperature, and fluid compositions. In this work, multiple distinct models are

applied to the available dataset to predict heavy-oil viscosity as function of a variety of pro-

cess parameters and oil properties. The computational techniques utilized in this work are

Decision Tree (DT), MLP, and GRNN which were utilized in estimation of heavy crude oil

samples collected from middle eastern oil fields. For the estimation of viscosity, the firefly

algorithm (FA) was employed to optimize the hyper-parameters of the machine learning

models. The RMSE error rates for the final models of DT, MLP, and GRNN are 40.52,

25.08, and 30.83, respectively. Also, the R2-scores are 0.921, 0. 978, and 0.933, respec-

tively. Based on this and other criteria, MLP is chosen as the best model for this study in esti-

mating the values of crude oil viscosity.

1. Introduction

For simulation of oil flow in different media such as in the well, pipeline, and processing, the

viscosity of oil plays crucial role, and the accuracy of simulations depends on the accuracy of

viscosity determination. Indeed, robust, and reliable models are required to estimate the vis-

cosity of oils (e.g., crude oils) for a wide range of oil sources. Sometimes, the gas might be dis-

solved in the oil, and its viscosity estimation would be challenging. Khemka et al. [1] proposed

a method for viscosity modeling of light crude oils containing dissolved gas. They used one-

parameter friction theory for estimation of viscosity of oil under gas injection. The accuracy of

the viscosity prediction is of great importance, and unrealistic models would make pitfalls in

simulation of oil behavior such as those in the reservoir.

Considering the composition of the crude oils which contain a range of hydrocarbons, the

realistic models should be able to take into account the composition of the crude oil when esti-

mating the viscosity values [2]. Kamel et al. [2] developed a methodology for estimation of

heavy crude oils based on compositional models. Their model was of empirical nature and
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outperformed other oil estimators such as corresponding-state, EoS, etc. The statistical analysis

of their model revealed that the average relative error of the fitting was 3.8%. Development of

holistic models for estimation of viscosity of oils from different sources is demanding, and

advanced methods such as machine learning (ML) could be employed for this application.

There are limited developed ML techniques for prediction of crude oils properties based on

compositional data, and there is a research gap in this area to be addressed.

Analytics are losing ground to machine learning (ML) techniques in the scientific commu-

nity owing to the power of ML methods in data analytics applications [3]. Different versions of

artificial neural networks (NN), models based on decision trees, and other linear and non-lin-

ear models are all examples of these methods in action. Now, machine learning models may

look into any issue with a set of inputs and a set of desired outcomes [4]. Using a wide variety

of methods, these models determine if there is a connection between variables [5–7]. In this

research, three methods are implemented: Multiple Layers Perceptrons (MLP), Decision Tree

(DT), and GRNN for estimation of crude oil viscosity based on compositional data [8].

The term "multilayer perceptron" (MLP) describes a specific type of neural network that

consists of several layers of perceptrons. Multi-layer Perceptrons (MLPs) are an artificial neu-

ral network type that feeds new information into the network as it is MLP consists of at least

three layers of inputs, outputs, and hidden layers. Nodes in the input layer are not switched on;

rather, they stand in for the actual data point. A d-dimensional vector reflecting the data point

would result in a d-dimensional number of nodes in the input layer [9, 10].

Radial basis function neural networks are utilized in the GRNN, which is yet another model

that is based on neural networks (RBF). RBF uses a probabilistic framework to simulate the

dependent variables of a regression function. It is impossible for other neural networks to

reach a local optimum due to its probabilistic construction [11].

A decision tree (DT) is a ML technique used to solve classification and regression roots.

The decision tree has advantages over other classification systems since it uses a hierarchical

decision-making framework rather than merely grouping features (or bands) together. To

solve many kinds of machine learning issues, the DT provides a hierarchical and understand-

able paradigm. We start at the root of the DT and move our way down the tree based on the

value of each characteristic in each node’s subtree. This procedure is repeated until no more

leaves or nodes remain [8, 12–14].

The main objective of the current study is to develop a machine learning strategy for esti-

mation of crude oil viscosity based on compositional data. For the first time, the machine

learning methods of Multiple Layers Perceptrons (MLP), Decision Tree (DT), and GRNN are

used and tuned to estimate the viscosity as the target parameter, while the input parameters

are the oil compositions and its physical properties. Statistical analysis is then performed to

evaluate the performance of the tuned machine learning models, and select the best one.

2. Data set of crude oil

We used a dataset derived from research described in [2] describing the measurements and

correlations of heavy crude oils viscosity versus a number of input parameters. A subset of

training data is divided into a subset of testing data. An analysis of 28 samples of heavy crude

oil supplied from the Middle East is included in the collection. As part of the construction of

the model, 196 separate measurements of viscosity were collected at temperatures ranging

from 20 to 80 degrees Celsius. A total of 47 additional viscosity measurements were performed

to validate the model. Additionally, previously reported methods for estimating the viscosity of

heavy oils were validated based on the composition and viscosity results. Heavy-oil viscosities

were forecast using these methods. The dataset used in this work are listed in Tables 1 and 2.
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3. Methods of computations

In this research, the data are first pre-processed with the help of Cook’s distance and Min-Max

normalization methods, and the prepared data sets are tested with the models in order to

obtain optimal configurations. For this, we use the metaheuristic FA (firefly algorithm)

Table 1. The training dataset used in this work [2].

No. API at

15˚C

%C4 %C5 %C6 %C7+ MWC7+ SGC7+ ρ (g/cc) at

20˚C

μ (cP) at

20˚C

μ (cP) at

30˚C

μ (cP) at

40˚C

μ (cP) at

50˚C

μ (cP) at

60˚C

μ (cP) at

70˚C

μ (cP) at

80˚C

1 20.4 1.02 2.57 3.37 93.04 326.40 0.94 0.930 200.59 106.07 62.6 40.177 27.268 19.367 14.258

2 20.0 0.04 0.44 1.62 97.90 331.22 0.93 0.933 243.11 131.9 76.875 48.461 32.351 22.637 16.5

3 19.6 0.25 1.57 3.94 94.24 343.10 0.94 0.935 322.46 171.13 96.462 58.975 38.663 26.759 19.225

4 19.5 0.00 0.12 1.16 98.72 295.70 0.94 0.935 312.40 158.25 88.722 54.503 35.498 24.334 17.456

5 18.7 0.08 1.13 2.09 96.70 342.65 0.94 0.941 232.12 126.17 74.171 46.59 30.978 21.568 15.598

6 18.6 0.35 1.62 3.21 94.81 338.41 0.95 0.941 196.73 108.36 64.539 41.088 27.617 19.408 14.192

7 18.0 0.46 1.23 2.06 96.25 353.31 0.95 0.945 319.57 262.18 140.28 81.78 51.562 34.484 24.369

8 18.0 0.35 1.14 1.95 96.56 353.44 0.95 0.945 285.66 151.65 87.573 54.331 35.767 24.71 17.801

9 18.0 1.05 1.53 1.92 95.50 347.26 0.95 0.945 396.52 171.08 97.209 59.809 39.16 26.93 19.336

10 17.9 0.15 1.65 3.72 94.49 357.24 0.95 0.945 516.01 205.44 115.72 70.104 45.172 30.612 21.64

11 17.6 0.18 1.16 2.73 95.93 343.69 0.95 0.947 309.50 162.45 92.869 56.966 37.234 25.471 18.215

12 17.4 0.46 0.49 1.95 97.10 367.35 0.95 0.949 494.24 249.43 137.83 81.972 52.014 34.807 23.512

13 17.1 0.00 0.23 1.19 98.58 345.72 0.95 0.951 891.90 431.67 209.77 118.36 72.911 47.536 32.358

14 16.8 0.17 0.73 2.23 96.87 354.55 0.96 0.952 374.80 192.84 108.31 65.532 42.155 28.601 20.13

15 16.7 0.16 0.96 1.87 97.00 351.13 0.96 0.953 382.14 197.41 110.22 66.462 42.623 28.759 20.242

16 16.4 0.09 0.43 1.21 98.27 372.04 0.96 0.955 521.79 259.03 141.78 83.945 53.008 35.422 24.717

17 16.2 0.00 0.09 0.40 99.51 380.46 0.96 0.956 1320.2 607.26 291.99 159.21 95.079 60.171 40.503

18 16.0 0.09 1.25 1.42 97.23 378.29 0.96 0.958 552.91 272.47 147.95 86.964 54.608 36.261 25.209

19 15.9 0.09 0.34 1.04 98.54 367.17 0.96 0.958 535.47 264.89 143.88 85.346 53.702 35.705 24.913

20 15.8 0.18 0.68 2.00 97.14 335.27 0.96 0.959 541.02 266.69 144.7 84.987 53.336 35.294 24.511

21 14.9 0.15 0.32 1.37 98.16 369.29 0.97 0.965 788.58 375.15 196.19 111.31 68.012 43.975 29.95

22 14.9 0.09 0.39 1.21 98.31 377.01 0.97 0.965 767.13 363.2 191.05 108.93 66.528 46.093 29.308

23 14.8 1.01 1.95 2.62 94.42 412.79 0.97 0.966 1294.6 420.23 217.33 123.11 74.758 48.121 32.683

24 14.8 0.69 1.32 1.91 96.09 361.14 0.97 0.965 895.64 591.89 299.11 165.25 98.236 61.867 41.218

25 14.8 0.11 0.21 0.96 98.72 364.62 0.97 0.966 746.11 353.31 185.22 105.68 64.809 42.081 28.698

26 14.5 0.13 0.25 1.05 98.58 362.00 0.97 0.968 1022.4 430.23 221.74 124.31 74.883 47.925 32.261

27 14.3 0.21 0.18 1.45 98.16 355.03 0.97 0.969 930.79 466.73 238.63 132.32 79.264 50.546 33.914

28 13.4 0.05 0.05 0.39 99.52 384.46 0.98 0.975 1430.6 632.54 312.66 170.03 99.442 62.18 41.074

https://doi.org/10.1371/journal.pone.0282084.t001

Table 2. The whole test dataset [2].

No. API at

15˚C

%C4 %C5 %C6 %C7+ MWC7+ SGC7+ ρ (g/cc) at

20˚C

μ (cP) at

20˚C

μ (cP) at

30˚C

μ (cP) at

40˚C

μ (cP) at

50˚C

μ (cP) at

60˚C

μ (cP) at

70˚C

μ (cP) at

80˚C

1 19.58 0.006 0.028 0.034 0.932 379.385 0.942 0.933 274.58 146.84 85.538 53.158 34.972 24.021

2 19.53 0.009 0.036 0.040 0.915 368.718 0.938 0.928 208.19 114.65 68.41 43.491 29.153

3 19.34 0.010 0.042 0.042 0.906 382.840 0.947 0.936 271.07 145.17 84.792 52.823 35.038

4 18.67 0.007 0.034 0.032 0.927 374.896 0.948 0.939 379.76 196.12 110.99 67.072 42.829

5 18.57 0.012 0.032 0.033 0.923 385.901 0.948 0.939 372.14 193.18 109.03 62.307

6 17.75 0.043 0.036 0.038 0.884 418.224 0.958 0.946 524.35 263.96 145.73 86.411 55.436

7 17.63 0.010 0.037 0.032 0.921 391.993 0.956 0.945 420.58 215.94 121.42 73.182 47.545

8 17.56 0.009 0.039 0.040 0.912 400.445 0.957 0.947 567.13 282.52 154.97 91.285 57.671

9 16.06 0.001 0.018 0.029 0.952 365.678 0.963 0.957 523.01 256.58 139.61 81.975 51.541 34.149 23.588

https://doi.org/10.1371/journal.pone.0282084.t002
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Fig 1. Methodology framework for correlation of crude oil viscosity.

https://doi.org/10.1371/journal.pone.0282084.g001

Fig 2. Structure of decision tree model.

https://doi.org/10.1371/journal.pone.0282084.g002
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method. In the following section, the building blocks of this innovative architecture shown in

Fig 1 are introduced in detail.

3.1. Decision tree

DT is a widely accepted learning technique that can address a variety of problems. A DT is

made up of three parts: a root (start) node, several internal (decision) nodes, and several leaf

(terminal) nodes. The model’s output is represented by the leaf (terminal) nodes, while new

information is introduced into the network at its root node [15]. There are some "decision

nodes" in between the "root" and "leaf" nodes. In a typical network, information starts at the

root node and travels outwards through the intermediate nodes until reaching the final node.

The algorithm receives data as input and proceeds to construct a tree by a process of splitting,

pruning, and terminating branches [12–14, 16, 17]. These actions start at the root node and

progress till a certain condition has been achieved in the process. Fig 2 depicts a simplified

decision tree conceptually.

Fig 3. Demonstration of Cook’s distance outlier detection.

https://doi.org/10.1371/journal.pone.0282084.g003

Table 3. The comparisons of three developed models.

Models MAE RMSE MAPE

DT 28.68 40.52 0.241

GRNN 20.41 30.83 0.177

MLP 19.06 25.08 0.156

https://doi.org/10.1371/journal.pone.0282084.t003

Table 4. Final values of R2-scores for three models.

Models Test score Train score

DT 0.921 0.909

GRNN 0.933 0.903

MLP 0.978 0.912

https://doi.org/10.1371/journal.pone.0282084.t004
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Fig 4. Actual Vs. estimated outputs (DT model).

https://doi.org/10.1371/journal.pone.0282084.g004

Fig 5. Actual Vs. estimated outputs (GRNN model).

https://doi.org/10.1371/journal.pone.0282084.g005
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3.2. Multilayer perceptron and GRNN

The concept of artificial neural networks was conceived in 1943 [18]. The perceptron, the first

functional artificial neural network, was unveiled in 1958 [19]. The use of neural networks has

increased in prominence since 1986 [20]. Neural networks use neurons as their fundamental

building element since they are modelled after the nervous system. A variety of neural net-

works can be formed based on the connections, neuron model, and weight modification meth-

ods [10, 21]. Methods such as the Multilayer Perceptron (MLP) of artificial neural networks

(ANN) could be employed to mimic the possible hidden correlations between the in and out

data of processes [8, 10, 22].

Updates and optimizations based on work complexity enable a variable approach to hidden

layer size. The MLP system’s artificial neurons are structured in a three-layered network [8, 10,

23].

The following equation is used to determine neuron input weights [22]:

z ¼ x1w1 þ � � � þ xnwn ¼ XTW

The activation function, f(z), can be calculated using a number of continuously differentia-

ble functions, including the more modern ReLU, which is widely employed in the method of

deep learning [8, 24, 25].

The GRNN model is a type of NN based on the radial basis function (RBF). RBF models the

dependent variables in a regression problem using a probabilistic framework. Because of their

probabilistic design, other neural networks are vulnerable to local optimum [26].

Fig 6. Actual Vs. estimated outputs (MLP model).

https://doi.org/10.1371/journal.pone.0282084.g006
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Fig 7. Residual plot of tuned MLP model.

https://doi.org/10.1371/journal.pone.0282084.g007

Fig 8. Effect of API and ρ (g/cc) on the output. %C4 = 0.35, %C5 = 1.62, %C6 = 3.21, %C7+ = 94.81, MWC7+ =

338.41, SGC7+ = 0.95, T (˚C) = 30.

https://doi.org/10.1371/journal.pone.0282084.g008
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3.3. Firefly algorithm (FA) optimization approach

The firefly optimization algorithm (FA) is an innovative meta-heuristic algorithm that takes its

name and inspiration from the flashing light of a firefly. The algorithm has many similarities

to other swarm intelligence approaches like PSO, BFO, and others, but is easier to understand

and implement. Accurately, FA simultaneously discovers both global and local optimums.

Yang et al. developed and published this algorithm in [27–29]. Its primary advantage is that it

is based on global communication among swarming particles (i.e., fireflies), making it appear

more successful in multi-objective optimization. Yang et al. [29] go over the theoretical and

technical aspects of the proposed method in greater detail [30].

4. Results and discussion

As mentioned in the explanation of the proposed method, before normalization, the existing

data are evaluated with the help of Cook’s distance in the field of outliers, the result of which is

shown in Fig 3. This figure shows that only 5% of the data as outliers should be removed from

the data set in order to get better results of the modeling.

Fig 9. Influence of SGC7+ and ρ (g/cc) on the output. API = 18.6, %C4 = 0.35, %C5 = 1.62, %C6 = 3.21, %C7+ =

94.81, MWC7+ = 338.41, T (˚C) = 30.

https://doi.org/10.1371/journal.pone.0282084.g009
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After the pre-processing of the dataset, with the help FA algorithm that was explained ear-

lier, the models are optimized and tuned with their hyper-parameters to obtain the final mod-

els, the results of these models in terms of R-squared emissivity and error rates in the Tables 3

and 4 are displayed. It is seen that the MLP model has better accuracy in estimation of oil vis-

cosity compared to DT and GRNN models. The statistical parameters including R2, MAE,

RMSE, and MAPE confirm the accuracy of the tuned MLP model for this particular applica-

tion in petroleum engineering.

In addition, the comparisons of the expected values and the predicted values are shown in

Figs 4–6, where the blue points are the training data, and the red points are the test data. The

comparison of these methods shows the fact that the models are very close to each other in

terms of training data, but with accuracy in the test data, the MLP model can be considered

the best model, therefore, the rest of the analyses are done with this model. Among other

things, the residuals of this final model are shown in Fig 7.

Using the MLP model, which is tuned using FA algorithm, the viscosity analysis was per-

formed the results of which are illustrated in Figs 8–13 in form of 3D and 2D plots. As seen,

the temperature has the most significant effect on the variations of crude oil viscosity and the

Fig 10. Effect of temperature and ρ (g/cc) on the output. API = 18.6, %C4 = 0.35, %C5 = 1.62, %C6 = 3.21, %C7+ =

94.81, MWC7+ = 338.41, SGC7+ = 0.95.

https://doi.org/10.1371/journal.pone.0282084.g010
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Fig 11. Trends of API on multiple temperature levels (%C4 = 0.35, %C5 = 1.62, %C6 = 3.21, %C7+ = 94.81, MWC7

+ = 338.41, SGC7+ = 0.95, ρ (g/cc) at 20˚C = 0.941).

https://doi.org/10.1371/journal.pone.0282084.g011

Fig 12. Trends of MWC7+on multiple temperature levels (API = 18.6, %C4 = 0.35, %C5 = 1.62, %C6 = 3.21, %C7+

= 94.81, SGC7+ = 0.95, ρ (g/cc) at 20˚C = 0.941).

https://doi.org/10.1371/journal.pone.0282084.g012
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value of viscosity is highly dependent on the temperature. Moreover, density and API of oils

have significant effects on the viscosity after the temperature factor. It was also revealed that

the variations of viscosity with the molecular weight and the oil compositions are not substan-

tial, compared to other parameters. The results are in agreement with the previously reported

correlations for the viscosity estimation using compositional data [2].

5. Conclusion

In the field of petroleum science, viscosity measurement of heavy crude oil is crucial, and res-

ervoir simulators are commonly used for this purpose. In this study, multiple distinct models

are used to predict the viscosity of heavy oil using the available data. The Decision Tree (DT),

MLP, and GRNN models are used in this study, and the firefly algorithm (FA) is used to opti-

mize the hyper-parameters of these models. For the final models of DT, MLP, and GRNN, the

RMSE error rates are 40.52, 25.08, and 30.83, respectively. In addition, the respective R2-scores

are 0.921, 0.978, and 0.933. MLP was selected as the best model for this study in estimating the

oil viscosity via compositional data. Compared with research reported in [2], the result

obtained from MLP is almost equal to the R2 criterion in the test, but it shows a better result in

terms of other values in the test phase. This fact shows the effect of optimizing hyper-parame-

ters and removing outliers on obtaining a better and more general model.

Fig 13. Trends of density on multiple temperature levels (API = 18.6, %C4 = 0.35, %C5 = 1.62, %C6 = 3.21, %C7+ =

94.81, SGC7+ = 0.95.

https://doi.org/10.1371/journal.pone.0282084.g013
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