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Abstract

Objective

This in vivo study, aimed to biomechanically, histomorphometrically and histologically evalu-

ate an implant surface coated with nanostructured hydroxyapatite using the wet chemical

process (biomimetic deposition of calcium phosphate coating) when compared to a dual

acid-etching surface.

Material and methods

Ten sheep (2–4 years old) received 20 implants, 10 with nanostructured hydroxyapatite

coating (HAnano), and 10 with dual acid-etching surface (DAA). The surfaces were charac-

terized with scanning electron microscopy and energy dispersive spectroscopy; insertion

torque values and resonance frequency analysis were measured to evaluate the primary

stability of the implants. Bone-implant contact (BIC) and bone area fraction occupancy

(BAFo) were evaluated 14 and 28 days after implant installation.

Results

The HAnano and DAA groups showed no significant difference in insertion torque and reso-

nance frequency analysis. The BIC and BAFo values increased significantly (p<0.05) over

the experimental periods in both groups. This event was also observed in BIC value of

HAnano group. The HAnano surface showed superior results compared to DAA after 28

days (BAFo, p = 0.007; BIC, p = 0.01).
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Conclusion

The results suggest that the HAnano surface favors bone formation when compared to the

DAA surface after 28 days in low-density bone in sheep.

Introduction

Commercial pure titanium (Ti) and its alloys are biocompatible materials that facilitate the

osseointegration of dental implants, ensure tissue healing without foreign body reactions, and

confer favorable responses from adjacent cell populations [1]. However, with the evolution of

surface treatments, the machined or minimally roughened Ti surfaces of dental implants have

been replaced to ensure greater predictability, increase the survival rates of dental implants,

and accelerate the osseointegration process [2–5], particularly in low density bone such as the

posterior maxilla [6].

The long-term success and stability of a dental implant are increased by the interaction of

several factors, which can be classified as non-implant-related or implant-related. Non-

implant-related factors include poor patient health, the surgical technique used, surgeon expe-

rience, and loading conditions [7]. Implant-related factors refer mainly to the macrogeometry

of the implant and its topographical characteristics at the micro- or nano-scale obtained by

surface treatment [8].

Dental implants should have a suitable combination of mechanical and biological proper-

ties, but it is challenging for a single material to possess all the desired properties. Surface mod-

ifications combine the beneficial properties of different materials to overcome this difficulty.

Physical and chemical surface modification techniques can generally be divided into three

groups: (1) adding materials with desirable functions to the surface (e.g., plasma-spray coating,

physical vapor deposition, biomimetic deposition of calcium phosphate coatings, and surface

immobilization of functional molecules); (2) converting the existing surface to more desirable

compositions and topographies (e.g., ion implantation and electrochemical oxidations); (3)

removing material from the existing surface to create specific topographies (e.g., grit blasting

and acidic etchings). Changes in the implant surface that favor and anticipate the osseointegra-

tion period will be important for early implant loading and restoring patient masticatory func-

tion [9].

Hydroxyapatite (HA) is widely used as a biomaterial to fill bone defects and to coat the

metal components of prostheses and dental implants. Synthetic HA is a well-known implant

material with excellent biocompatibility characteristics, including non-toxicity, low biodegrad-

ability, bone affinity, and osteoconductivity due to its ability to strongly bond with natural

bone tissue [10]. The rationale is that because of their chemical similarities, bone tissue may

not recognize HA as foreign. Consequently, it may heal faster and integrate with HA-coated

implants more firmly and coating metallic implants with HA appears to be a consistent choice.

Early HA coatings applied with the plasma spraying method were relatively thick and

porous, and their uneven structure and low-bonding strength have been responsible for several

clinical failures [11]. Many studies have explored approaches for overcoming the shortcomings

of HA plasma spray coating.

The nanosized crystalline HA (HAnano) coating using the wet chemical process (biomi-

metic calcium phosphate deposition) is simple and cost-effective, with highly reproducible

coating layer thickness and chemical composition. After applying the HAnano surface-coating

liquid to the implant and spinning it, a short heat treatment is performed, which does not

affect the substrate, and is significantly shorter compared to traditional coating procedures,
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such as chemical vapor deposition (CVD) and thermal spray deposition (TSD). The result is a

thin and homogeneous HAnano layer.

This study compared the primary stability and biological response of implants with biomi-

metic deposition of calcium phosphate coating (HAnano) and dual acid-etched (DAA)

through resonance frequency and histomorphometric analyses of bone-implant contact (BIC)

and bone area fraction occupancy (BAFo) in low-density bone in sheep.

Material and methods

Material

This study used 20 dental implants 3.5 mm in diameter and 10 mm in length with conical

macrogeometry, double inverted support threads, compact in the cervical region and body,

and cutting at the apex divided into two groups of 10: the HAnano (Epikut Plus; S.I.N. Implant

System; Sao Paulo, Brazil) group comprised implants with a nanostructured crystalline HA

coating, and the DAA (Epikut; S.I.N. Implant System, Sao Paulo, Brazil) group comprised of

implants with surfaces treated with DAA.

Surface characterization

Scanning electron microscopy (SEM). High-resolution SEM images obtained with FEI--

QUANTA 450 (Thermo Fisher Scientific; Waltham, MA, USA) were used to examine the

implant’s surface topography (one sample per group) at an accelerating voltage of 10 kV, focal

width of 3.0, and magnifications of 3000× and 15,000×.

X-ray photoelectron spectroscopy (XPS). An X-ray energy dispersive spectroscopy anal-

ysis was used to determine the chemical composition of each surface with an accelerating volt-

age of 20 kV and focal width of 40 using an EDAX detector equipped with a dual beam

electron microscope (AMETEK Materials Analysis Division; Mahwah, NJ, USA) and the Gen-

esis software program (EDAX LLC; Mahwah, NJ, USA).

In vivo analysis

Animals. This study adhered to the guidelines of the Animal Research: Reporting of In
Vivo Experiments [12] and Planning Research and Experimental Procedures on Animals: Rec-

ommendations for Excellence [13]. Inclusion criteria would be healthy sheep, aged 2 to 4

years, weighing 30 to 45Kg. Any sheep showing disease or not meeting the age and weight cri-

teria would be excluded from the study. We used ten adult Santa Ines sheep with a mean age of

three years (range: 2–4 years) and a mean weight of 37.05 kg (31–42 kg). To minimize the

effects of subjective bias when allocating animals to treatment, they were randomly allocated

to two experimental periods of two and four weeks using the coin toss method.

All procedures were performed in accordance with the National Institutes of Health (NIH)

guide for the care and use of laboratory animals [14] and Brazilian guidelines for the care and

use of animals in teaching or scientific research activities (DBCA) of the National Council for

the Control of Animal Experimentation [15]. A veterinarian with over 20 years of experience

conducted the nutritional care, fasting, and pre- and post-operative care of animals. The study

protocol was approved by The Ethics Committee on Animal Use of the Universidade Federal

Fluminense (No. 9.531.061.119). All experiments were conducted between March and July

2020. No animals were euthanized at the end of the study in accordance with the guidelines of

the Reduction, Refinement, and Replacement (3Rs) Program, whose goal is to reduce the

number of animals used in experiments, minimize their pain and discomfort, and avoid
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euthanasia at their end [16]. All animals were immunized against common sheep diseases and

were monitored for good physical condition.

The animals were housed at the Universidade Federal Fluminense’s farm in a semi-exten-

sive fenced system with native forage and brachiaria grass (Brachiaria humidicola and Bra-
chiaria decumbens). In the preoperative period, animals received feed composed of the

pastures, and in the postoperative period, pastures with nutritional supplementation for sheep

and mineral water ad libitum. To reduce the preoperative stress levels of animals, the veterinar-

ian transferred the sheep from the farm to the research center two weeks before surgery to

allow for proper acclimatization [17]. The animals fasted for eight hours before surgery.

Sample size calculation. We used the data of a previous study [18] for the sample size cal-

culation with the online platform Sealed Envelope (https://www.sealedenvelope.com/power/

continuous-superiority/), considering a superiority study between HAnano- and HA-coated

implants. In that study, the primary endpoint of BIC after 28 days found 66.5% and 76.5% for

the experimental and control groups, respectively. Considering a significant 15% BIC effect

after 28 days, the calculated sample size was five animals per group at a 5% significance level

and 80% power (1-beta).

Surgical model. We used the sheep iliac crest animal model, consistent with previous

studies [4, 5, 19–21]. Two implants were installed in the cranial part of the right iliac crest of

each animal (n = 5/group; Fig 1).

Anesthesia and analgesia. The animals were pre-medicated intravenously with 0.05 mg/

kg of acepromazine (Acepran; Vetnil; Louveira, Sao Paulo, Brazil) and 0.2 mg/kg of Diazepam

(Teuto; Anapolis, Goias, Brazil) and intramuscularly with 0.4 mg/kg of morphine (Dimorf;

Cristalia; Itapira, Sao Paulo, Brazil). After 20 minutes, the animals were unresponsive to pain,

and cannulation of the cephalic vein was initiated with the intravenous administration of 5

mL/kg/h of Ringer’s solution with lactate (Baxter Hospitalar LTDA; Sao Paulo, Brazil). Anes-

thesia was induced intravenously with 4 mg/kg of propofol (Baxter Hospitalar LTDA) and

maintained with 1% isoflurane (Cristalia) after orotracheal intubation. In addition, 4mg/kg of

lidocaine (Xylestesin; Cristalia) and 0.1 mg/kg of morphine (Dimorf; Cristalia) was used as an

epidural block. An experienced veterinary anesthesiologist administered the anesthesia and

supervised all procedures during surgery.

Surgical procedure. The right side of the iliac crest was initially trichotomized with a

razor blade to enable the application of a 0.5% chlorhexidine antiseptic solution. An approxi-

mately 5 cm incision was made in the iliac crest region of the animal with a n˚ 3 scalpel handle

(Bard Parker; Aspen Surgical; Caledonia, MI, USA) and n˚ 15 blade (Solidor; Lamelid; Osasco,

São Paulo, Brazil). After incision, skin, muscle, and periosteum were detached to expose the

skeletal plane. The manufacturer recommended drilling sequence was used with low rotation

(1200 rpm) and abundant irrigation using 0.9% sodium chloride solution (Darrow Laborator-

ios AS; Rio de Janeiro, Brazil) to avoid tissue necrosis by overheating.

Two implants were installed with the aid of a contra-angle coupled to a surgical electric

micromotor (BLM 600 Plus; K Driller; Sao Paulo, Brazil). The implants were installed at 24

rpm in the first ewe after randomly selecting the position of each one using the sealed envelope

method. In the next ewe, the implant position was rotated clockwise, and both implants were

installed in different locations. Consequently, no implant was placed at the same site as

another. The inter-implant distance was at least 5 mm, and all were positioned equicrestally.

The insertion torque value (ITV) was documented for each implant according to the drilling

unit. For ITV >50 N/cm, an analogic wrench (S.I.N. Implant System) was used for

measurement.

A single operator performed the surgeries, and immediately after implant installation, reso-

nance frequency analysis (RFA) was performed using two different tools: Osstell with
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SmartPeg magnetic transducers (Integration Diagnostics; Savedalen, Sweden) and Penguin

with MulTipeg (Penguin, Integration Diagnostics; Goteborg, Sweden). Finally, absorbable

sutures with 4–0 Vicryl thread (Ethicon, Inc.; Somerville, NJ, USA) were used to close the

repositioned periosteal flap and skin sutures with 5–0 nylon thread (Ethicon, Inc.). The opera-

tive wounds were left uncovered, and the surgery region received no external immobilization.

Implant stability measurements. Surgeons performed RFA immediately after implant

installation with the Osstell implant stability quotient (ISQ) and Penguin RFA devices. The

MulTipeg magnetic transducers were mounted on each implant and hand-tightened using the

manufacturer’s recommended metal key. The Penguin RFA probe was held 1 mm from the

MulTipeg, and the ISQ was recorded on the digital instrument display for each implant. Three

consecutive measurements were recorded in the lateral direction. In this study, the final ISQ

value of each implant was the average of the three measured ISQ values. In addition, RFA mea-

surements were collected with the Osstell ISQ device using the SmartPeg system and the plastic

Fig 1. Surgical procedures to install the implants: (A) Installation of implants in the iliac crest while maintaining the

safety distance between them (5 mm). (B) Removal the bone blocks with the implants after 2 and 4 weeks using a

trephine drill with a 5mm internal diameter. (C) The iliac crest region after removal of the bone block with the

implant. (D) Trephined bone block with the implant.

https://doi.org/10.1371/journal.pone.0282067.g001
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key provided by the manufacturer. The average of the three ISQ values was taken as the final

ISQ for each implant.

Post-operative case. All animals received antibiotic therapy by intramuscular injection of

0.1 ml/kg of oxytetracycline (Terramycin; Pfizer; New York, NY, USA) every 48 hours for

three days. In addition, 4 mg/kg of Tramal (Pfizer) and 0.5 mg/kg of anti-inflammatory melox-

icam (Meloxivet; Duprat; Rio de Janeiro, Brazil) were administered daily over five days. Oxy-

tetracycline spray with hydrocortisone was used daily at the wound site (Terra-Cortril Spray;

Zoetis; Sao Paulo, Brazil). Zinc oxide ointment with cresylic acid (Unguento Chemitec; Che-

mitec; Sao Paulo, Brazil) was applied along with silver spray (Aerocid Total; Agener Uniao;

Aracoiaba da Serra, Brazil) to promote healing and deter insects.

Histological processing. After two and four weeks, the animals were reoperated for

implant removal with a 5-mm trephine drill (S.I.N. Implant System). The surgical procedures

were as described above, and all the sheep were subsequently returned to the farm, where they

recovered completely. Samples containing bone and implant were fixed in 4% buffered formal-

dehyde solution for 48 hours and then dehydrated in increasing alcohol solutions of 60%, 70%,

90%, and 100%. Next, infiltration with light-curing resin (Technovit 7200; Kulzer & Co.;

Wehrheim, Germany) was performed according to the manufacturer’s instructions. Then, the

samples were embedded in the same resin, cut in the apical-coronal plane using a macro-scale

cutting and grinding technique (Exakt 310 CP series; Exakt Apparatebau; Norderstedt, Ger-

many), and sanded and polished to a final thickness of 30 to 40 μm. The slides were stained

with toluidine blue to identify the bone tissue and acid fuchsin for background contrast. Light

microscopy at 10× and 20× magnification (Olympus BX43; Olympus Corporation; Tokyo,

Japan) was used to analyze the sections, with images acquired using the cellSens software

(Olympus Corporation) and polarization microscopy (Axioplan; Carl Zeiss AG; Oberkochen,

Germany) allowing visualization of the general orientation of bone collagen fibers.

Histomorphometric analysis

Photomicrographs at 10× magnification were captured in sequenced fields from each histolog-

ically processed slide (Fig 2) to scan and reconstruct the total area of the implant and adjacent

bone (Fig 2A). After reconstruction of all images, the area of interest was determined and

drawn vertically from the first implant thread to the beginning of the fourth thread (Fig 2B).

This vertical delimitation was used to determine the BIC value, which was transformed into a

percentage. The implant profile design was then duplicated and aligned at 270 μm in the hori-

zontal plane, completing the total area of interest (Fig 2C). The BAFo score was manually

determined with Image J software (NIH; Bethesda, MD, USA) and transformed into a percent-

age (Fig 2C). All histologic slides were coded according to the experimental groups and peri-

ods, and two experienced examiners blindly evaluate the slides.

Statistical analysis

The insertion torque and ISQ values using Osstell and Penguin devices did not pass the Sha-

piro-Wilk normality test. Consequently, their log-transformed values in the DAA and

HAnano groups were compared using a Student’s t-test with a significance threshold of

p<0.05.

The histomorphometric BIC and BAFo values in the DAA and HAnano groups are

reported as mean ± 95% confidence interval (CI) across five animals per group and experi-

mental period. These values passed the Shapiro-Wilk normality test and were compared using

a Student’s t-test with a significance threshold of p<0.05 to investigate between surfaces and

experimental periods.
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All statistical analyses were performed using the GraphPad Prism v.8.3 software (La Jolla,

CA, USA).

Results

Surface characterization

SEM. SEM visualization of implant surfaces showing textured microstructures and topog-

raphy (Fig 3). The surface textures observed at intermediate (3,000×) and high (15,000×) mag-

nifications showed considerable similarity in surface morphology between the HAnano

(Fig 3A and 3B) and DAA (Fig 3C and 3D) implant groups.

XPS. XPS showed the presence of calcium only in the HAnano group, while Ti, vanadium,

and phosphorus peaks were observed in both groups (S1 Fig).

ITV. ITV did not differ significantly between the HAnano and DAA groups (p>0.05),

with both groups having an average ITV of 72–74 N/cm (Fig 4; S1 Table).

RFA. RFA was performed with the Osstell/SmartPeg and Penguin/MultiPeg devices and

transducers. The log transformed ISQ values of the HAnano and DAA groups are shown in

Fig 5. Penguin/MultiPeg showed significantly higher resonance frequencies than Osstell/

SmartPeg for all surfaces (p<0.05). However, ISQ did not differ significantly between surfaces

with the same device (p>0.05; S1 Table).

Fig 2. Histomorphometry for BIC and BAFo analysis. (A) Histological reconstruction of the implant and adjacent

bone. (B) The line of interest for BIC evaluation is shown within the dotted box. In the long axis of the implant, the

profile drawing was traced from the first implant thread to the beginning of the fourth thread. The red line denotes

BIC. (C) Delineation of the BAFo area of interest. A line identical to the implant profile diagram was duplicated and

aligned at 270 μm in the horizontal plane (total area). BAFo was manually determined for further analysis (total area/

BAFo; %). Staining with toluidine blue and acid fuchsin was used. Scale bars: 400 μm, A; 100 μm, B and C.

https://doi.org/10.1371/journal.pone.0282067.g002
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In vivo study

The anesthesia, surgical intervention, and implant installation were uneventful. All animals

recovered quickly and were cleared to walk after surgery. All animals gained weight after sur-

gery except one that lost almost 10% of its initial weight 28 days after surgery. However, no

changes were observed in histological findings of this animal, so the weight loss likely did not

have biological effects. No cases of superficial or deep infection occurred. No implants showed

clinical mobility, bone loss, or infection.

Histological evaluation

A descriptive microscopic evaluation of non-decalcification enabled a qualitative assessment

of the biological response to the tested surfaces. Two weeks post-surgery, both HAnano and

DAA surfaces showed peri-implant bone healing between threads. The HAnano coating

showed more compact trabecular bone between the implant threads (Fig 6C and 6D) than the

DAA group (Fig 6A and 6B). Several BIC regions and scarce islands of bone debris in contact

with trabecular bone were observed in both groups.

At 28 days post-implantation, DAA (Fig 6E and 6F) and HAnano (Fig 6G and 6H) surfaces

show a time-dependent increase in newly formed bone volume adjacent to the implant surface

Fig 3. SEM photomicrographs of the surface of (A+B) HAnano and (C+D) DAA implants at 3000× (scale

bar = 30 μm; A+C) and 15,000× (scale bar = 5 μm; B+D) magnification.

https://doi.org/10.1371/journal.pone.0282067.g003
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compared to the previous time point. The HAnano group showed a greater increase in bone

trabecular structure than the DAA group, with intimate contact between the newly formed

bone and the implant surface. While both HAnano and DAA surfaces showed large BIC areas,

the HAnano surfaces showed an intimate and nearly complete BIC.

BIC. BIC did not differ significantly between the DAA (56.76, 95% CI: 40.22–73.31) and

HAnano (66.09, 95% CI: 49.80–82.37) groups 14 days post-implantation. However, BIC

increased significantly in a time-dependent manner in the HAnano group (p = 0.02), surpass-

ing 80% by 28 days (82.27, 95% CI: 78.08–86.47). Moreover, BIC was significantly higher in

the HAnano group than in the DAA group (71.05, 95% CI: 62.26–79.85; p = 0.01) after 28 days

(Fig 7; S2 Table).

BAFo. Similar to BIC, BAFo did not differ significantly between the DAA (40.04, 95% CI:

31.09–48.99) and HAnano (47.96; CI 41.29–54.64) groups 28 days post-implantation. How-

ever, BAFo increased significantly in both groups in a time-dependent manner compared to

the previous period (p = 0.007). In addition, BAFo was significantly higher in the HAnano

group (65.53, 95% CI: 57.80–73.27) compared to the DAA group (54.31, 95% CI: 50.18–58.45;

p = 0.007), occupying >60% of the analyzed area (Fig 8; S2 Table).

Fig 4. ITVs (N/cm) of HAnano and DAA surfaces. The graph shows the distribution of all point values as the mean

and 95% CI across five samples.

https://doi.org/10.1371/journal.pone.0282067.g004
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Discussion

This in vivo study on low-density bone used the sheep iliac crest model for implantation,

which is suitable for biomedical research due to its similarities to humans in weight, joint

structure, bone tissue, and bone regeneration [16, 22] and advantages over other experimental

animal models in bone composition, metabolism, remodeling, and regeneration time [22].

Previous studies of dental implant designs and surfaces have used sheep [19–21, 23, 24], rabbit

[7, 25, 26], and dog [27–29] models. The most commonly used sites in these animals are the

mandible [27, 28] and tibia [29] in dogs, the tibia [4, 7, 25, 26] in rabbits, and the tibia [5, 23],

iliac crest [19–21, 24], and mandible [30] in sheep. The iliac crest site offers advantages in bone

characteristics, lower postoperative morbidity, and the number of implant tests that can be

performed simultaneously. However, while the iliac crest has low bone density, its cortical is

thicker than that of the posterior maxilla region, which also has low bone density. The animal

model we selected was considered an excellent alternative because it allowed for more samples

per animal and the use of real dental implants, not prototypes, in the analyses.

Previous studies using a sheep model sacrificed the animals at the end of their experiments

[19–21, 24]. However, in this study, all animals were kept alive and healthy after its conclusion.

In addition, in this study, all implants were installed at 1,200 rpm and under copious irrigation

Fig 5. ISQ values of HAnano and DAA surfaces. The graph shows the distribution of ISQ values for the HAnano and

DAA surfaces measured using two device/transducer pairs across five samples per group. Key: ��, 0.002�p�0.003.

https://doi.org/10.1371/journal.pone.0282067.g005
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Fig 6. Representative photomicrographs of the implants at 14- and 28-days post-implantation. The dashed area is

the square magnification. (A+B) DAA and (C+D) HAnano groups 14 days post-implantation. (E+F) DAA and (G+H)

HAnano groups 28 days post-implantation. Staining used toluidine blue and acid fuchsin. Scale bar: 400 μm, A, C, E,

and G; 100 μm, B, D, F, and H.

https://doi.org/10.1371/journal.pone.0282067.g006

Fig 7. Histomorphometric BIC (%) results as a function of the DAA and HAnano surfaces and 14- and 28-day

experimental periods. BIC values are presented as the mean with 95% CI across five samples. Key: �, p = 0.02.

https://doi.org/10.1371/journal.pone.0282067.g007
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with 0.9% saline solution, which is important for limiting bone heating. However, some previ-

ous studies did not report this in their methodologies [31, 32]. Moreover, it should be noted

that, in this study, care was taken to rotate implant placement to avoid one group having more

implants placed in a specific region of the iliac crest than another. A previous study with a sim-

ilar experimental model evaluated BIC at the 14-, 28-, and 56-day periods [20], findings no sig-

nificant differences between the 28- and 56-day periods. Therefore, this study only used the

14- and 28-day experimental periods.

The exploration of HA coating on implant surfaces was initially performed at a micrometric

scale [33]. However, HA nanostructured surfaces were considered more promising for achiev-

ing rapid osseointegration in low-density bone, a challenge that persists in implant dentistry

[34]. Therefore, using HA coatings on metallic implants should improve the speed of patient

rehabilitation by decreasing the time from implant insertion to installation of the final prosthe-

sis, particularly in regions of lower bone density [35]. The rough implant surfaces achieved by

HA coatings offer osteoconductive benefits due to increased cell adhesion [36].

Surface interaction and changes at the implant-cell interface result in diverse cellular

responses. Understanding the intracellular signaling involved in the adhesion, proliferation,

and differentiation mechanisms of osteoblasts on dental implants is critical for successful

osseointegration. The first steps in this implant response involve molecular adsorption and

establishing an organic coating responsible for guiding the functions of surrounding cells,

leading to the activation of specific genes [37]. A previous in vitro study showed that the

HAnano blasted Ti surface improved wettability and made the implant surface super-hydro-

philic [38]. This increased wettability facilitates the attachment process of bone cells to the

implant surface, favoring osseointegration [39]. In addition, the HAnano surface has been

Fig 8. Histomorphometric BAFo (%) results as a function of the DAA and HAnano surfaces and 14- and 28-day

experimental periods. BAFo values are presented as the mean and 95% CI across five samples. Key: ��,

0.001�p�0.003.

https://doi.org/10.1371/journal.pone.0282067.g008
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previously found to promote cell proliferation, viability, spreading, and secretion of collagen

type I and osteopontin, favoring early osseointegration events [40].

In this study, we compared the biological performance of a new nanostructured HA coat-

ing, Epikut Plus, with a DAA surface, Epikut. Both study groups had implants with the same

macrogeometry, varying only in the surface coating. Notably, this macrogeometry was devel-

oped especially for application in areas of low bone density presenting compact spirals. The

biomechanical evaluations generally did not suggest any significant difference in osseointegra-

tion success between the two surfaces. However, histological evaluations showed a significant

difference favoring the HAnano surface.

ITV is a direct measure of bone shear strength during implant installation surgery influ-

enced by surgical bed preparation, implant design, and bone quality [41]. In this study, we

confirmed the absence of nanostructured implant surface effects on insertion torque, consis-

tent with a previous study [42]. All tested implants showed relatively high ITV of 60–80 N/cm,

likely due to the strength of the thicker cortical bone of the iliac crest region and the implant’s

macrogeometry with compacting reverse-supported threads that favor insertion torque even

in low-density bone regions. Another sheep-based study observed low ITV in all groups (<21

N/cm), but the implants used had a macrogeometry that promoted little bone compaction,

which may have contributed to the low ITVs recorded [22]. Two systematic reviews found no

correlation between insertion torque and osseointegration failure or marginal bone loss

[43, 44]. In addition, another study in rabbit tibiae observed greater peri-implant bone forma-

tion in implants with higher (>50 N/cm) compared to lower (<10 N/cm) torque [45]. In this

study, the implants used in the HAnano group, Epikut Plus, have a macrogeometry that allows

for high insertion torque with immediate loading and nanostructured HA surface to support

osseointegration. A synergistic effect of this combination has been previously reported [46].

Primary stability is defined as the absence of movement after intraosseous implant inser-

tion. RFA is one of the most used methods to evaluate the primary stability of implants quanti-

tatively. This analysis provides information about the stiffness of the bone-implant junction,

with the results recorded as the ISQ. The findings of this study are consistent with previous

randomized clinical trials that found acceptable primary stability with average ISQ values in

humans [47]. ISQ values are directly affected by surgical instrumentation [48], bone density,

implant size, and the macrogeometry of the implant body [49]. Since this study used the same

implant model, implant size, and recipient area in both experimental groups, they had similar

ISQ levels. A clinical study using tapered thread-compacted implants in the posterior maxilla

reported a mean ISQ value of 53.66±12.04 [50], very close to our results.

This study evaluated the resonance frequencies immediately after implant installation using

two different devices, Osstell and Penguin, and two magnetic transducers, SmartPeg and Mul-

Tipeg, respectively. Statistical differences were observed between them, with the combination

of Penguin and MulTipeg providing the highest values. These results differ from other study

[51], who evaluated primary stability using the same devices and transducers but found slightly

superior results in their Osstell group. However, unlike this study, they used an ex vivo model.

In this study, resonance frequency was evaluated only on implant installation. We did not

evaluate it in the later experimental periods to limit any damage caused by the insertion torque

of the transducers in the implant and to avoid prejudicing the histological and histomorpho-

metric evaluations of the bone-implant interface. A recent systematic review [52] found no

correlation between insertion torque and primary stability, suggesting that a high insertion

torque does not necessarily correspond to high ISQ. In this study, we recorded high levels of

insertion torque and primary stability.

The BIC measures the direct relationship between bone tissue and implant. Our BIC results

showed a steady increase in the trabecular bone adjacent to the implant surface from two to
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four weeks, with a significant difference found between the HAnano groups at 14 and 28 days.

Furthermore, the HAnano/28-day group showed a significant difference compared to the

DAA/28-day group. These favorable results for the HAnano group are likely related to its

nanostructured HA surface. Notably, several previous studies using nanostructured HA in ani-

mals support our BIC results [46, 53, 54].

BAFo increased from two to four weeks, with a significant difference between the HAnano

and DAA groups. While a previous study showed comparable results between HAnano, SLAc-

tive (BLX; Straumann; Basel, Switzerland), and TiUnite (NobelActive; Nobel Biocare; Göte-

borg, Sweden) surfaces [20], the HAnano surface has not previously been compared with the

DAA surface. HAnano implants are treated with DAA prior to receiving the nanostructured

HA treatment. In this study, we observed the histomorphometric benefits of this additional

treatment.

Our results are consistent with previous studies that evaluated HA-coated implants in rab-

bit tibiae after two weeks [55], in dog alveoli after four weeks [56], and in goat iliac crests after

four weeks [57]. In these studies, the biomimetic HA coating shortened the healing period of

implants by increasing bone-implant interaction. Our BIC and BAFo values in the HAnano

group were similar to other study [57], who obtained values of 57.5±8.5% for BIC and 43.6

±9% for BAFo in a study of goat iliac crests after four weeks. Other study [56] reported similar

results to this study, with BAFo (44.94±17.69%) and BIC (77.28±11.22% after four weeks in

dogs, compared to our values of 65.53±6.22% and 82.27±3.38, respectively.

Conclusions

The HAnano surface favored osseointegration in the early stages of low-density bone repair

compared to the DAA surface in the sheep model.
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LABORATÓRIO. EDIPUCRS.

15. Fischer ML, Farias MK & Carrano E (2020) A inserção da pesquisa de campo na diretriz brasileira para

o cuidado e a utilização de animais para fins cientı́ficos e didáticos. Conexão Ciência (Online) 15: 7–
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