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Abstract

The pandemic of COVID-19 is a severe threat to human life and the global economy.

Despite the success of vaccination efforts in reducing the spread of the virus, the situation

remains largely uncontrolled due to the random mutation in the RNA sequence of severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which demands different vari-

ants of effective drugs. Disease-causing gene-mediated proteins are usually used as

receptors to explore effective drug molecules. In this study, we analyzed two different

RNA-Seq and one microarray gene expression profile datasets by integrating EdgeR,

LIMMA, weighted gene co-expression network and robust rank aggregation approaches,

which revealed SARS-CoV-2 infection causing eight hub-genes (HubGs) including

HubGs; REL, AURKA, AURKB, FBXL3, OAS1, STAT4, MMP2 and IL6 as the host geno-

mic biomarkers. Gene Ontology and pathway enrichment analyses of HubGs significantly

enriched some crucial biological processes, molecular functions, cellular components

and signaling pathways that are associated with the mechanisms of SARS-CoV-2 infec-

tions. Regulatory network analysis identified top-ranked 5 TFs (SRF, PBX1, MEIS1,

ESR1 and MYC) and 5 miRNAs (hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-93-5p,

hsa-miR-106a-5p and hsa-miR-20a-5p) as the key transcriptional and post-transcrip-

tional regulators of HubGs. Then, we conducted a molecular docking analysis to deter-

mine potential drug candidates that could interact with HubGs-mediated receptors. This

analysis resulted in the identification of top-ranked ten drug agents, including Nilotinib,

Tegobuvir, Digoxin, Proscillaridin, Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrin-

dole and Danoprevir. Finally, we investigated the binding stability of the top-ranked three

drug molecules Nilotinib, Tegobuvir and Proscillaridin with the three top-ranked proposed

receptors (AURKA, AURKB, OAS1) by using 100 ns MD-based MM-PBSA simulations

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0281981 March 13, 2023 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sarker B, Rahaman M.M, Islam M.A,

Alamin MH, Husain M.M, Ferdousi F, et al. (2023)

Identification of host genomic biomarkers from

multiple transcriptomics datasets for diagnosis and

therapies of SARS-CoV-2 infections. PLoS ONE

18(3): e0281981. https://doi.org/10.1371/journal.

pone.0281981

Editor: Chandrabose Selvaraj, Alagappa University,

INDIA

Received: October 6, 2022

Accepted: February 5, 2023

Published: March 13, 2023

Copyright: © 2023 Sarker et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the Ministry

of Science and Technology Research Project (Ref:

505-ID, 2021–2022), Government of Bangladesh.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

https://orcid.org/0000-0001-9799-9364
https://orcid.org/0000-0002-3883-3396
https://doi.org/10.1371/journal.pone.0281981
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281981&domain=pdf&date_stamp=2023-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281981&domain=pdf&date_stamp=2023-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281981&domain=pdf&date_stamp=2023-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281981&domain=pdf&date_stamp=2023-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281981&domain=pdf&date_stamp=2023-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0281981&domain=pdf&date_stamp=2023-03-13
https://doi.org/10.1371/journal.pone.0281981
https://doi.org/10.1371/journal.pone.0281981
http://creativecommons.org/licenses/by/4.0/


and observed their stable performance. Therefore, the findings of this study might be use-

ful resources for diagnosis and therapies of SARS-CoV-2 infections.

Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a highly contagious

virus, has resulted in significant loss of human life. It first emerged in Wuhan, Hubei, China in

December 2019, and rapidly spread throughout the world. The World Health Organization

(WHO) has declared this outbreak a pandemic for the human community [1]. The global

healthcare system has been tarnished by this pandemic. As per the WHO report, as of 23 Sep-

tember 2022, there have been 6,512,438 reported fatalities out of a total of 611,421,786 con-

firmed SARS-CoV-2 infections worldwide. Clinical investigations characterized SARS-CoV-2

infections as acute respiratory tract infections with versatile symptoms, including fever, cough,

fatigue, shortness of breath and pneumonia [2]. Despite the fact that the symptoms of SARS-

CoV-2 infections are almost known, preventive cures for SARS-CoV-2 infections are not yet at

a satisfactory level [3–6]. Early detection of SARS-CoV-2 infections and its treatment with

effective drugs may play a vital role to control its outspread [7,8]. Despite the availability of a

variety of vaccines against SAR-CoV-2, including those from Pfizer, CoronaVac, BBIBP-CorV,

AstraZeneca, BBV152, Moderna, Sputnik, EpiVacCorona, Ad5-nCoV, and WIBP [1,2], scien-

tists and virologists around the world are anxious yet about their effectiveness due to the unsta-

ble virus RNA sequence patterns. So, they are continuing their research to understand the

molecular mechanism of SARS-CoV-2 infections more clearly for finding effective cures.

SARS-CoV-2 infections are developed with the mechanisms of genetic factors and host

immune responses [9–11]. Thus, exploring the significant genomic biomarkers, underlying

pathogenetic mechanisms and associated drug agents may hold the potential to provide a com-

prehensive understanding of SARS-CoV-2 infections, and ultimately leading to the discovery

of efficacious diagnostic and therapeutic strategies.

Diseases-causing genes are widely used to explore pathogenetic processes and effective drug

molecules. Several individual studies explored SARS-CoV-2 infections causing host genomic

biomarkers, and their pathogenetic processes based on a single transcriptomics dataset

[5,6,12–16]. We reviewed their articles and did not find any common infection-causing genes.

Nevertheless, difficulties may arise during the plan to take standard treatment for all against

infections of SARS-CoV-2 based on their infection-causing uncommon gene-guided drugs.

Therefore, more representative SARS-CoV-2 infections causing genes must be explored for

diagnosis and therapies.

Advanced high-throughput technologies are now producing large-scale transcriptome data

(RNA-Seq and microarray). So, it has required novel procedures to figure out the consequen-

tial information. Integrated bioinformatics and statistical approaches are widely used to

develop a novel pipeline for selecting more representative diseases causing genes [17,18].

Weighted gene co-expression network analysis (WGCNA) and robust rank aggregation (RRA)

are two powerful cross-validation procedures for exploring the unseen interaction between

insight of gene modules and gene samples [19–21]. Therefore, in this study, an attempt was

made to explore (i) more representative SARS-CoV-2 infections causing key genes from a

transcriptomics profile by cross-validation with the other two independent transcriptomics

profiles, (ii) pathogenetic processes and regulatory components of key genes and (iii) key

genes guided potential candidate drug agents for the treatment against infections of SARS-

CoV-2.
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Materials and methods

This study analyzed three transcriptomics datasets and associated meta-data on SARS-CoV-2

infections that are freely available in online sources by using integrated statistics and bioinfor-

matics approaches. The workflow of this study is displayed in Fig 1 and described in the fol-

lowing sections.

Dataset acquisition and preprocessing

In this study, two RNA-Seq count datasets (GSE152418 and GSE147507), and one microarray

dataset (GSE152075) of SARS-CoV-2 (COVID-19) were downloaded from the publicly avail-

able gene expression omnibus (GEO) database. GSE152418 raw count data contained 17

Fig 1. Workflow of the study.

https://doi.org/10.1371/journal.pone.0281981.g001
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COVID-19 and 17 healthy samples [14,22]. GSE147507 raw count data contained 6 samples (3

COVID-19 patients and 3 NHBE samples) [15,23]. GSE152075 is a microarray data containing

430 COVID-19 infected samples and 54 negative samples [16,24–26]. The microarray dataset

GSE152075 was downloaded using the Bioconductor package GEOquery, and the batch effect

of this dataset was removed by using the R package sva via Combat_seq [27,28]. GSE152418 is

used as a discovery dataset analyzed by WGCNA, GSE147507 is used as an independent vali-

dation, and GSE152075 is used as a test dataset. In the COVID-19 datasets, genes that com-

prise only zero counts have been removed.

Identification of differentially expressed genes (DEGs)

Differentially expressed genes (DEGs) were identified from the two RNA-Seq count datasets

(GSE152418 and GSE147507) through edgeR R-package [16], and a microarray dataset

(GSE152075) through limma R-package [29]. Genes were selected as DEGs that satisfy the cri-

teria of adjusted P-value (Benjamini-Hochberg) < 0.05 and |log2 (FC) |� 1.

Weighted gene co-expression network analysis (WGCNA) with DEGs

The WGCNA approach was used for exploring modules (clusters) of highly correlated DEGs,

summarizing such modules using the cluster eigengene or an intracluster hub genes, relating

clusters to each other and to external sample traits (using eigengene networking), and for

detecting cluster membership. We implemented this approach using the WGCNA R package

[30]. In WGCNA, the pickSoftThreshold function was used for fitting soft-thresholding powers

β over the value of maximum R2. Then adjacency matrix and Topological Overlap Matrix

(TOM) were created using TOM similarity. The dissimilarity of TOM (dissTOM) was com-

puted using dissimilarity modules. Modules constructions of DEGs were performed using the

hclust function from the dissTOM based dynamic cut tree (dendrogram). Different parameters

were used for preventing large and small modules i.e., medium sensitivity (deepSplit = 2) and

minimum module size (minClusterSize = 30). Module eigengene (ME) was used for merging

similar modules based onMEDissThres = 0.25 function.

Module analysis for validation of DEGs

To find the significant module of co-expressed DEGs (obtained through the WGCNA by inte-

gration of test dataset GSE152075), the module preservation function was used. Themodule
preservation function is used to identify whether a module is reproducible and robust across

the datasets or not [31]. We considered the module to be preserved if the statistic satisfied

above Z summary > 10. It is specified negative correlation between preservation statistic-

median rank and module preservation, and there is a positive correlation between the module

preservation and Z summary statistic. Then the host DEGs were identified based on 2-fold

cross-validation namely module membership statistic (MMS) calculated by the Pearson’s cor-

relation and Protein-protein interaction networks (PPIN). Genes of MMS, PPIN and DEGs

from independent datasets were chosen as host signatures by RRA. The final subsets of host

hub DEGs were separated by PPIN analysis (Fig 1).

Protein-protein interaction (PPI) network analysis based on validated

DEGs

We performed PPI network analysis to explore SARS-CoV-2 infection causing hub-genes. To

construct the PPI network for host signatures, genes data were collected from the STRING

database [32], and the Cytoscape software [33] was used to construct the network based on the
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parameter: confidence score� 0.4 and most extreme interactors = 0 for cutoff models. Simi-

larly, the hub-genes signatures were separated. After that, these hub signatures were used for

gene enrichment analysis, finding transcriptional and post transcriptional regulators and drug

repurposing with molecular docking analysis described in the next section.

Functional enrichment analysis of hub-genes

The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), WikiPath-

ways and BioCarta pathway enrichment analyses for hub-genes were performed via the web-

based tool Enrichr [34] to explore the pathogenetic processes of SARS-CoV-2 infections. P-

value (Adjusted) < 0.05 was used to extract the significant biological information.

Hub-genes regulatory network analysis

To explore transcriptional and post-transcriptional regulators of hub-genes, we performed

transcription factors (TFs) versus hub genes and micro RNAs versus hub genes interaction by

using the databases TF2DNA [35] and miRDB [36], respectively.

Meta-data collection

We collected 177 drug agents as a meta-data from the literature review of 16 COVID-19

related articles to explore the potential candidate drugs (S1 Table). To validate the proposed

repurposed candidate drugs by using molecular docking (MD) analysis with the top-ranked

receptor proteins associated with COVID-19, the metadata were obtained from the literature

review (S2 Table). We selected top-ranked COVID-19 associated 8 receptor proteins as meta-

data by reviewing 24 newly published articles to assess the binding affinity of the proposed

candidate drugs with these receptor proteins (S2 Table).

Molecular docking

To explore repurposable effective drug molecules for COVID-19 by in-silico validation, molec-

ular docking analysis was performed between the target proteins and meta-drug agents. Our

proposed HubGs mediated proteins and their associated TFs proteins were considered the

drug target receptors, and 177 meta-drugs as the drug-agents that were obtained from the liter-

ature review and other sources as mentioned earlier in the data sources (S1 Table). From Pro-

tein Data Bank (PDB) [37] and SWISS-MODEL [38], the 3-Dimensional (3D) structures of

receptor proteins were downloaded. The PubChem database [39] was used to download the

3D structures of drug agents. The PyMOL 2.4.1 software was used to visualize the 3D structure

of the target receptor proteins [40]. The protein chains which were not a part of the gene are

deleted [41]. Then, Swiss PDB viewer software was used to add charges and minimize the

energy of the target proteins [42]. The target proteins were prepared for molecular docking

analysis by eliminating water molecules and ligand heteroatoms, adding polar hydrogens, and

converting them to pdbqt format using AutoDock tools 1.5.7 [43]. Avogadro software was

used for minimizing the energy of the ligands [44]. The ligands were prepared for dynamic

simulation by setting the torsion tree and rotatable, and nonrotatable bonds present in the

ligand through AutoDock tools 1.5.7 [43]. Then, the binding affinities score between the ligand

and receptors were calculated by using AutoDock Vina [45]. The Discovery Studio Visualizer

2019 was used to analyze the docked complexes. Let Sij indicates the binding score of ith recep-

tors (i = 1, 2, . . .,m) with the jth ligand (j = 1, 2,. . ., n). Then receptors were ordered according

to the decreasing order of row means
Pn

j¼1
Sij=n; i ¼ 1; 2; . . . ;m and ligands were ordered
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according to the decreasing order of column means
Pm

i¼1
Sij=m; j ¼ 1; 2; . . . ; n to select the

top-order ligands as the candidate drug agents [5,17,46].

Molecular Dynamics (MD) simulation

To perform the dynamic properties of top-ordered protein-ligand complexes, YASARA [47]

and the AMBER14 force field [48] were used in Molecular Dynamics (MD) simulations. We

assigned the ligands parameters for the complexes by using AutoSMILES [49] algorithms,

which automatically parameterize unknown organic molecules by computing semi-empirical

AM1 Mulliken point charges with the COSMO solvation model, assigning AM1BCC [50]

atom and bond types, and assigning general AMBER force field (GAFF) [51] atom types, and

the remaining parameters of force field. In a simulation cell, the hydrogen bonding network of

protein-ligand complexes were optimized and solvated by a TIP3P [52] water model before

the simulation. We considered the solvent density of 0.997 g L-1 to maintain the periodic

boundary conditions. During solvation, titratable amino acids in the protein complex were

assigned to calculate pKa. The initial energy minimization process of each simulation system,

consisting of 53735, 54335, and 79559 atoms for AURKA vs. Nilotinib, AURKB vs. Tegobuvir,

and OAS1 vs. Proscillaridin complexes was performed by a simulated annealing method,

respectively using the steepest gradient approach (5000 cycles).

A multiple-time-step algorithm [53] with 2.50 fs time step interval under physiological con-

ditions (298 K, pH 7.4, 0.9% NaCl) [54] was used to run the simulation of each complex. The

linear constraint solver (LINCS) [55] algorithm was used to constrain all bond lengths, and

SETTLE [56] was employed to control the water molecules. PME methods [57] were used to

describe long-range electrostatic interactions, and 100 ns MD simulation was performed at

Berendsen thermostat [58] and constant pressure. The trajectories were captured at every 250

ps for further analysis, and subsequent analysis was performed by the built-in script of the

YASARA [59] macro and SciDAVis software (http://scidavis.sourceforge.net/). All the cap-

tured snapshots were used to calculate MM-Poisson–Boltzmann Surface Area (MM-PBSA)

binding free energy by YASARA software using the formula below [60]:

Binding free energy
¼ ðEpotReceptor þ EsolvReceptor þ EpotLigand þ EsolvLigandÞ � ðEpotComplex þ EsolvComplexÞ

Here, we computed MM-PBSA binding energy by YASARA default macros using AMBER

14 as a force field, with larger positive energies indicating better binding [61].

Results

Identification of DEGs

Two different raw RNA-Seq datasets (GSE152418 and GSE147507) and one microarray gene

expression profile (GSE152075) were used for differential expression analysis (Table 1). We

identified 2389 DEGs with 636 up-regulated and 1753 down-regulated genes for the

GSE152418 dataset, and 540 DEGs with 213 up-regulated and 327 down-regulated genes for

the GSE147507 dataset. We also identified 2102 DEGs with 570 up-regulated and 1532 down-

regulated genes for GSE152075. These identified DEGs are used for further analysis.

WGCNA analysis for validation of DEGs

WGCNA was performed with the DEGs in the dataset GSE152418. The power value is the

most important parameter which is contaminated with the average connectivity degree (ACD)

and independence of co-expression modules (ICEM). The power value (Fig 2A) shows that
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Table 1. Data description.

Datasets DE genes Total samples COVID-19 samples Normal samples

Up- regulated Down- regulated

GSE152418 636 1753 34 17 17

GSE147507 213 327 6 3 3

GSE152075 570 1532 484 430 54

https://doi.org/10.1371/journal.pone.0281981.t001

Fig 2. Cross-validation of DEGs by WGCNA. (A) Illustration of soft-thresholding powers based on the scale-free tropology model fit (left) and the mean

connectivity (right). (B) The dendrogram of all DEGs clustered based on a dissimilarity measure (1-TOM). (C) The dendrogram of eigengene module and

cluster analysis of eigengene network by heatmap summarize the modules yielded in the clustering analysis. (D) Median rank preservation (left) and Z

summary preservation (Right); the black, red, yellow and turquoise indicate the strong preservation above dashed lines Z = 2 and Z = 10.

https://doi.org/10.1371/journal.pone.0281981.g002
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ACD was greater, and the value of ICEM reached the expected value 0.8. Thus, the power

value is ready to create the co-expression module and constructed with multiple colors pre-

sented in Fig 2B. The co-expression network constructed seven modules, namely black, red,

yellow, turquoise, green, brown and blue, based on the soft threshold power β = 6 with R2 =

0.80. The Eigengene dendrogram and eigengene network heatmap represent the interactions

among the co-expression modules (Fig 2C). Then the dataset GSE152418 was compared with

the test dataset GSE152075, and the summary of preservation statistic was visualized (Fig 2D).

We observed that among the seven modules black, red, yellow and turquoise are the most sta-

ble modules (Zsummary statistic: above Z = 2 and Z = 10). The remaining modules were con-

sidered nonstable (Z summary statistic < 10). Black, red, yellow, and turquoise colors showed

minimum median rank statistic which indicated that their preservation is best than the other

modules.

Identification of hub-genes from validated DEGs

We identified 475 significant genes using high connectivity modules black, red, yellow and tur-

quoise through the threshold |cor.geneModuleMembership| > 0.8. Again, the PPI network

extracted 658 significant genes based on the highest degree> 9 for the four modules. These

two gene sets were validated using the validation DEGs set. Validation DEGs set obtained

from the GSE147507 dataset to confirm the most stable gene set of COVID-19. We used RRA

to identify the top 50 significant genes in this case. Finally, eight hub genes (REL, AURKA,

AURKB, FBXL3, OAS1, STAT4,MMP2 and IL6) are identified from the top 50 genes through

the PPI network analysis (Fig 3).

Functional enrichment analysis of hub-genes

Various pathway enrichment analyses were performed to explore further biological insight of

the HubGs. GO and pathway terms with P-value (adjusted)< 0.05 were considered significant.

The information of GO with their three subsections (BPs, MFs, CCs) is presented in Table 2.

The significant BPs are mainly enriched in the negative regulation of chemokine production,

liver development and response to peptide, etc. The significant MFs enriched in the histone

serine kinase activity, histone kinase activity, interleukin-6 receptor binding, etc. The signifi-

cant CCs are enriched in the spindle microtubule, condensed chromosome, microtubule, etc.

Different pathways; KEGG, WikiPathways, and BioCarta analysis results are presented in

Table 3. The KEGG pathways for the hub genes are enriched in several pathways such as

inflammatory bowel disease, AGE-RAGE signaling pathway in diabetic complications, path-

ways in cancer and coronavirus disease, etc. The WikiPathways pathway analysis results

enhanced in Photodynamic therapy-induced NF-kB survival signaling WP3617, FOXP3 in

COVID-19 WP5063, COVID-19 adverse outcome pathway WP4891, STING pathway in

Kawasaki-like disease and COVID-19 WP4961, and Host-pathogen interaction of human

coronaviruses—interferon induction WP4880, etc. BioCarta is mostly involved in Interleukin-

27-mediated signaling events, FRA pathway, Interleukin-23-mediated signaling events and so

on.

Hub-genes regulatory network analysis

We identified SRF, PBX1, MEIS1, ESR1 and MYC hub-TFs (Fig 4A), and hsa-miR-106b-5p,

hsa-miR-20b-5p, hsa-miR-93-5p, hsa-miR-106a-5p and hsa-miR-20a-5p hub-miRNAs

(Fig 4B) from the TFs-HubGs and miRNA-HubGs interaction network, respectively.
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Exploring candidate drugs by molecular docking simulation

We considered HubGs mediated 8 proteins (REL, AURKA, AURKB, FBXL3, OAS1, STAT4,

MMP2 and IL6) and their regulatory 5 hub-TFs proteins (SRF, PBX1, MEIS1, ESR1 and

MYC) as the receptor proteins. The 3D structure of REL, AURKA, AURKB, FBXL3, OAS1,

STAT4, MMP2, IL6, SRF, PBX1, MEIS1, ESR1 and MYC; targets were downloaded from PDB

(Protein Data Bank) using the codes 1a3q, 6gra, 3af3, 4i6j, 4ig8, 4gj2, 3ayu, 5fuc, 1srs, 1puf,

5ego, 1uom, and 6e16, respectively. Then we considered 177 drug molecules (drug agents) that

were selected by the literature review of COVID-19 related articles (S1 Table) and downloaded

their 3D structures from the PubChem database. Then we performed molecular docking anal-

ysis of each receptor with each agent.

Fig 5A displayed the binding affinity score matrix between the ordered receptors and drug

agents. We observed that each of the top 10 lead compounds (Nilotinib, Tegobuvir, Digoxin

Proscillaridin, Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrindole and Danoprevir)

produces binding affinity scores less than or equal to -7.0 kcal/mol with all of our suggested

Fig 3. PPI network of validated DEGs to identify hub-genes.

https://doi.org/10.1371/journal.pone.0281981.g003
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Table 2. Significantly enriched top-ranked 6 GO-terms with hub-genes.

Category GO-ID GO-terms P-values (Adjusted) Hub-genes

Biological process (BP) GO:0032682 negative regulation of chemokine production <0.001 IL6, OAS1

GO:0001889 liver development <0.001 IL6, AURKA

GO:1901652 response to peptide <0.001 MMP2, STAT4

GO:0060700 regulation of ribonuclease activity 0.003 OAS1

GO:0061888 regulation of astrocyte activation 0.003 IL6

GO:0032466 negative regulation of cytokinesis 0.003 AURKB

Molecular Function (MF) GO:0035174 histone serine kinase activity <0.001 AURKA, AURKB

GO:0035173 histone kinase activity <0.001 AURKA, AURKB

GO:0005138 interleukin-6 receptor binding 0.009 IL6

GO:0004674 protein serine/threonine kinase activity 0.018 AURKA, AURKB

GO:0070566 adenylyltransferase activity 0.018 OAS1

GO:0004222 metalloendopeptidase activity 0.041 MMP2

Cellular Component

(CC)

GO:0005876 spindle microtubule 0.002 AURKA, AURKB

GO:0005874 microtubule 0.007 AURKA, AURKB

GO:0005819 spindle 0.007 AURKA, AURKB

GO:0000779 condensed chromosome, centromeric region 0.009 AURKB

GO:0015630 microtubule cytoskeleton 0.013 AURKA, AURKB

GO:0043231 Intracellular membrane-bounded organelle 0.032 OAS1, REL, FBXL3, AURKA, AURKB

https://doi.org/10.1371/journal.pone.0281981.t002

Table 3. Significantly enriched top-ranked 6 biological pathways with hub-genes in different databases.

Databases Pathways P-values (Adjusted) Hub-genes

KEGG Inflammatory bowel disease 0.003 IL6, STAT4

AGE-RAGE signaling pathway in diabetic

complications

0.003 IL6, MMP2

Pathways in cancer 0.003 IL6, MMP2, STAT4

Measles 0.003 IL6, OAS1

Influenza A 0.003 IL6, OAS1

Coronavirus disease 0.004 IL6, OAS1

WikiPathways Photodynamic therapy-induced NF-kB survival

signaling WP3617

<0.001 IL6, MMP2, REL

miRNAs involvement in the immune response in

sepsis WP4329

<0.001 IL6, REL

Interferon type I signaling pathways WP585 <0.001 REL, STAT4

FOXP3 in COVID-19 WP5063 0.007 IL6

COVID-19 adverse outcome pathway WP4891 0.007 IL6

STING pathway in Kawasaki-like disease and

COVID-19 WP4961

0.009 REL

Host-pathogen interaction of human coronaviruses—

interferon induction WP4880

0.013 OAS1

BioCarta Interleukin-27-mediated signaling events <0.001 IL6, STAT4

FRA pathway <0.001 IL6, MMP2

Interleukin-23-mediated signaling events <0.001 IL6, STAT4

Aurora B signaling <0.001 AURKB, AURKA

Alpha-M beta-2 integrin signaling <0.001 IL6, MMP2

FOXM1 transcription factor network <0.001 MMP2, AURKB

https://doi.org/10.1371/journal.pone.0281981.t003
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receptors (Section-I in S1 File for score matrix). Therefore, we considered these 10 drugs as

the candidate drug agents in this study. To validate the proposed drugs against the state-of-

the-art alternative independent receptors, we considered the top-ranked 8 hub-genes (CASP3,

CXCL8, ICAM1, IL6, NFKBIA, STAT1, TNF and IRF7) that are common in at least 3 articles

(S2 Table) out of 24. The 3D structures of these 8 independent receptor proteins were down-

loaded from Protein Data Bank (PDB) with codes 4ps0, 6n2u, 5mza, 5fuc, 1nfi, 1bf5, and 7kba,

and receptor protein IRF7 were retrieved from the SWISS-MODEL using the UniProt IDs

Q92985, respectively. Fig 5B represents the binding affinities (kcal/mol) between the proposed

drugs and publicly available top-ranked independent receptors. We observed that three lead

compounds (lead1: Tegobuvir, lead2: Nilotinib, lead3: Proscillaridin) strongly bind with all

independent receptors (Section-II in S1 File for score matrix). Table 4 represents the summary

results of interacting properties of the top targets with top-ranked lead compounds that pro-

duced highest binding scores. We also examined their complete interaction profile including

hydrophobic, hydrogen bonds, and electrostatic interactions. We illustrated 2D structure of

proteins and ligands interaction in Fig 6. The 3D structure of their interacting complex and

top-ranked lead compounds are shown in the Fig 7. To investigate the stability of the top three

complexes, we performed molecular dynamic simulations as discussed in the next section.

Molecular Dynamic (MD) simulations

Three predicted drug agents (Nilotinib, Tegobuvir, and Proscillaridin) showed the highest

binding affinities with AURKA, AURKB, and OAS1 proteins, respectively (Table 4). There-

fore, three complexes (AURKA vs. Nilotinib, AURKB vs. Tegobuvir, and OAS1 vs. Proscillari-

din) were considered for stability analysis using 100 ns MD-based MM-PBSA simulations. We

observed that these 3 complexes (AURKA vs. Nilotinib, AURKB vs Tegobuvir, OAS1 vs. Pros-

cillaridin) showed significant stability between the variations of moving and initial drug-target

protein complexes (Fig 8A). RMSD values corresponding to each complex were calculated. All

the systems projected the RMSD values around 1.5 Å to 4.15 Å. The average RMSD values for

AURKA vs. Nilotinib, AURKB vs. Tegobuvir, and OAS1 vs. Proscillaridin complexes were

Fig 4. Hub-genes regulatory network analysis with (A) Transcription factors (TFs) and (B) micro RNAs (miRNAs).

https://doi.org/10.1371/journal.pone.0281981.g004
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2.543 Å, 2.863 Å, and 2.324 Å, respectively. The OAS1 vs. Proscillaridin complex displayed a

more rigid conformation than the other complexes, reached equilibrium at 35 ns, and

remained almost stable, after that AURKA vs. Nilotinib complex showed almost stable perfor-

mance during 10 ns to 35 ns, 52 ns to 70 ns and the remaining times there were irregular fluc-

tuations in the RMSD. On the contrary, AURKB vs. Tegobuvir complexes exhibited irregular

fluctuation and RMSD values fluctuate from 2.0 Å to 4.15 Å over the time period. In addition,

Fig 5. Matrix of binding affinity scores between receptors and ligands computed by molecular docking. (A) Row indicates ordered 13 proposed receptor

proteins and column indicates the top-ordered 50 drug agents out of 158, where red colors indicate the strong binding affinities, (B) Row indicates top-ranked

8 receptor proteins obtained through published literature, and column indicates the proposed top-ordered 10 drug agents out of 158, where red colors indicate

the strong binding affinities.

https://doi.org/10.1371/journal.pone.0281981.g005
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MM-PBSA binding energy for three complexes were also calculated, and Fig 8B illustrated the

binding energies of the complexes. On average, AURKA vs. Nilotinib, AURKB vs. Tegobuvir,

and OAS1 vs. Proscillaridin complexes produced MM-PBSA binding energies 58.5 kcal/mol,

53.92 kcal /mol, and– 6.834 kcal /mol, respectively.

Discussion

COVID-19 is the most recent and ongoing pandemic that has adversely affected on human

health and the world’s economy. Though vaccination programs were started globally at a mar-

ginal rate, it is still a threat to public health. Gene signatures are the pathological indicator for

describing diseases at a molecular level. In this study, we used bioinformatics approach to

detect gene signatures and potential therapeutic drugs for the treatment of COVID-19

patients. The present study employed three different datasets (Table 1) to identify potential

DEGs between COVID-19 and control samples. The results of the analysis revealed a total of

2389 and 540 DEGs from two RNA-Seq datasets and 2102 DEGs from the microarray dataset.

To select the potential DEGs, we validated these 3 DEGs-sets by WGCNA, PA and RRA proce-

dures. Then we selected top-ranked 50 DEGs as the most potential DEGs. We performed pro-

tein-protein interaction (PPI) network analysis of those 50 DEGs to select the HubGs. Finally,

we selected top-ranked 8 DEGs (REL, AURKA, AURKB, FBXL3, OAS1, STAT4,MMP2, IL6) as

the HubGs (Fig 3), that were used for further investigation of SARS-CoV-2 infections. The lit-

erature review also supported these HubGs as the SARS-CoV-2 infection-causing genes

(Fig 9A). As for example, the gene REL has been previously reported as a hub gene for SARS-

CoV-2 infections [16]. By combining some studies, we found that the gene AURKA is a com-

mon targeted protein for both COVID-19 and lung adenocarcinoma patients [14,17,62]. The

gene AURKB plays a crucial role as a biomarker gene in the diagnosis and prognosis of

COVID-19 patients [14]. The gene FBXL3 has been identified as a core gene of COVID-19

[14,63–65]. It has been noted that the gene OAS1 is an important gene influencing COVID-19

patients [66–70]. The gene STAT4 is the human transcriptomic factor of COVID-19 [71–73].

The geneMMP2 has been recognized as a hub gene in COVID-19-infected patients [13,74].

The gene IL-6 can safeguard against basic circumstances with coronavirus, diminishing IL-6

articulation [75–83]. The interaction network analysis between HubGs and transcription fac-

tors (TFs) revealed the top-ranked 5 TFs genes (SRF, PBX1, MEIS1, ESR1 and MYC) as the

key transcriptional regulators of HubGs (Fig 4A). Notably, the SRF gene demonstrated a

unique and dysfunctional pattern in COVID-19 [5,6,84,85]. The TF genes PBX1 has been

found to possess multiple functions relevant to cell development and has been associated with

tumor agents and COVID-19 [16,86], MEIS1 has been identified as the targeted agent of

SARS-CoV-2 [16,87], ESR1 has been noted to act as an antiviral signature that disrupts the

Table 4. Docking results of interacting proteins and drugs. The last row shows key interactions of amino acids and their binding types with potential targets.

Potential Targets AURKA AURKB OAS1

Potential Ligands Nilotinib Tegobuvir Proscillaridin

Binding Affinity (kcal/ mol) -12 -11 -9.8

Interacting

Amino Acids

Hydrogen

Bond

LYS143 LEU83, GLU161 SER63, ASN307, GLN 194, GLY306

Hydrophobic

Interactions

LEU169, LEU263, LEU164, ALA273, ALA213,

LYS143, VAL147, ALA160, LEU194, GLU211,

LEU139, GLU260, GLY140, LYS162, ASN261,

GLU181, LEU208, LEU178, GLN177, VAL174

GLU204, LYS106, PYS106,

PHE219, LEU207, ALA217,

VAL91, LEU154, PHE88,

LEU83,

PRO228, LEU308, TYR230, ASP300,

THR188, ASP77, LEU308, LEU150, SER187,

GLY184, GLY306, GLY311, GLY310, GLN

183

Electrostatic LYS143 - -

https://doi.org/10.1371/journal.pone.0281981.t004
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viral membrane of the SARS-CoV-2 protein [88]. Furthermore, MYC is another target gene of

COVID-19, has been reported to have various functions, including regulation of chromatin

sites, modulation of cellular metabolism, and versatility across various cell types [87,88]. The

hub-genes versus micro-RNA interaction network analysis revealed top-ranked 5 miRNAs

(hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-93-5p, hsa-miR-106a-5p and hsa-miR-20a-5p)

as the post-transcriptional regulators of hub-genes (Fig 4B). The miRNA, hsa-miR-106b-5p,

Fig 6. The 2D view of strong binding interactions between targets and drugs are shown by Ligplot. (A) AURKA vs.
Nilotinib, (B) AURKB vs. Tegobuvir, and (C) OAS1 vs. Proscillaridin.

https://doi.org/10.1371/journal.pone.0281981.g006
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has been identified as a tumor promoter and targeted receptor for different cancers [89]. The

hsa-miR-20b-5p miRNA has been shown to play an antiviral role in patients infected with

SARS-CoV and SARS-CoV-2, as well as the up-regulated signature of the influenza virus [90].

The hsa-miR-93-5p miRNA is associated with human cancerous growth and encourages

angiogenic operation [91]. The miRNA, hsa-miR-106a-5p, promotes virus mechanism of

Fig 7. Lead compound (left side) and three complexes of three-dimensional chemical interactions (right side) obtained from molecular docking. (a) AURKA

vs. Nilotinib, (b) AURKB vs. Tegobuvir, and (c) OAS1 vs. Proscillaridin.

https://doi.org/10.1371/journal.pone.0281981.g007
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COVID-19 [92]. The miRNA, hsa-miR-20a-5p has been shown to play a significant role in

respiratory viruses including adenovirus 2, influenza A and RSV [93].

To explore the biological insights underlying HubGs we used web-based tool Enrichr. Path-

ological information of HubGs described the significance of biomarker agents by using gene

ontology and pathway analysis. GO analysis enriched with the regulation of acute inflamma-

tory response [11], interleukin-6 receptor binding [94], and Intracellular membrane-bounded

organelle [95] (Table 2). KEGG pathway associated with influenza A, coronavirus disease [96],

bladder cancer and malaria. WikiPathways Interferon type I signaling pathways WP585,

FOXP3 in COVID-19 WP5063, COVID-19 adverse outcome pathway WP4891, STING path-

way in Kawasaki-like disease and COVID-19 WP4961 (Table 3). To find the effective drug

Fig 8. MD simulations of top-ranked three complexes. (A) Time evolution of RMSDs for each of the top-ranked three complexes. (B) Binding free energy

(kcal/mol) of each snapshot was calculated by MM-PBSA, representing the change in binding stability of each complex during simulations; positive values

indicate better binding. Complexes: blue AURKA vs. Nilotinib, red AURKB vs. Tegobuvir, and green. OAS1 vs. Proscillaridin.

https://doi.org/10.1371/journal.pone.0281981.g008
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molecules against COVID-19, we used the proposed 8 target proteins and their regulatory 5

key TFs proteins as the receptor proteins. We performed their docking analysis with 177 meta-

drug agents (S1 File).

Fig 9. Validation of hub genes and candidate drugs in favor of SARS-CoV-2 by the literature review. (A) Validation of the proposed

HubGs: circles with node color indicates hub genes, and each connected network with number(s) indicates the reference(s) of gene(s) of

SARS-CoV-2 (B) Validation of the proposed candidate drugs: circles with green color indicate FDA approved, light blue color indicates

investigational drugs and purple color indicates experimental drugs and red color indicates unapproved drugs, and each connected

network with number(s) indicates the reference(s) of drug(s) of SARS-CoV-2.

https://doi.org/10.1371/journal.pone.0281981.g009
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Then we picked up the top-ranked 10 drugs (Nilotinib, Tegobuvir, Digoxin, Proscillaridin,

Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrindole, and Danoprevir) as the candidate

drug agents based on their strong binding affinities with all the target proteins (Fig 5A). These

drug molecules are also supported by other individual studies for the treatment against SARS-

CoV-2 infections which includes Nilotinib [97–102], Tegobuvir [103–109], Digoxin [110–

115], Proscillaridin [116–121], Olysio [109,122,123], Simeprevir [119,124–128], Hesperidin

[129–133], Oleanolic Acid [133–136], Danoprevir [6,114,137–143], Naltrindole [144] for the

treatment against COVID-19 (Fig 9B). Fig 5B displays the results of cross-validation of our

suggested ten candidate drug agents with the top-ranked independent receptor proteins, and

observed their strong binding affinities. Finally, the binding stability of the top three com-

plexes (AURKA vs. Nilotinib, AURKB vs. Tegobuvir, and OAS1 vs. Proscillaridin) were inves-

tigated by molecular dynamics (MD) based MM-PBSA simulations, which revealed their

stable performance (Fig 8) [145,146].

The phylogenetic tree and pairwise alignment results on identities, similarities and gaps of

HubGs (REL, AURKA, AURKB, FBXL3, OAS1, STAT4,MMP2 and IL6) protein sequences

showed that AURKA and AURKB proteins are more-closer to each other with largest identity

(54.3%) and similarity (63.4%) and, smallest gap (28.3%) compares to any other pair of HubGs

(S2 File for MSA, phylogenetic tree, identity, similarity, score and gaps). The binding affinity

scores of these two proteins were found significantly larger and almost same with respect to

our suggested drug molecules (Fig 5A). On the other hand, we also observed that proteins

OAS1 and FBXL3 are second more-closer to each other with larger identity (28.7%) and simi-

larity (37.0%) and, smaller gap (52.7%) compares to any other pair of the rest HubGs. The

binding affinity scores for these two proteins were also larger and almost similar against our

suggested drug molecules. The MD simulation-based MM-PBSA analysis showed the average

binding free energy for AURKA and AURKB are almost similar (58.5 kcal/mol & 53.92 kcal/

mol) but far different from OAS1 (-6.834 kcal/mol). Thus, the molecular signatures and poten-

tial repurposable drug agents that we have identified in this study may serve as valuable

resources for wet-lab validation and the development of an effective treatment plan against

SARS-CoV-2 infections.

Conclusions

This study suggested SARS-CoV-2 infection causing core genes (REL, AURKA, AURKB,

FBXL3, OAS1, STAT4,MMP2 and IL6) by highlighting their key transcriptional regulators

(SRF, PBX1, MEIS1, ESR1 and MYC) and post-transcriptional regulators (hsa-miR-106b-5p,

hsa-miR-20b-5p, hsa-miR-93-5p, hsa-miR-106a-5p and hsa-miR-20a-5p). To explore the

effective drugs for SARS-CoV-2 infections by the molecular docking analysis, core gene medi-

ated proteins and five TFs proteins were considered as the receptors. Based on our computa-

tional analysis, we nominated top-ranked 10 candidate drugs (Nilotinib, Tegobuvir, Digoxin,

Proscillaridin, Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrindole, and Danoprevir)

that showed the highest docking scores, indicating their favorable binding affinity with the

receptors. Then we validated the suggested drug molecules against the state-of-the-art alterna-

tives publicly available top-ranked 8 independent receptors (CASP3, CXCL8, ICAM1, IL6,

NFKBIA, STAT1, TNF and IRF7) by molecular docking and found their significant binding

affinities. Finally, we examined the stability of top-ranked three receptor-ligand complexes

(AURKA vs. Nilotinib, AURKB vs. Tegobuvir, OAS1 vs. Proscillaridin) by computing the

RMSD scores and binding free energies through the 100 ns MD-simulation based MM-PBSA

approach, and observed their stable performance. In this regard, this study might open up a

new gateway to explore more effective drug molecules computationally against SARS-CoV-2
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infections. Thus, the outputs of this study might be useful inputs for wet-lab experiment to

make a proper treatment plan against SARS-CoV-2 infections.
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predictive factor for a severe course of Covid-19: retrospective data analysis of patients from a long-

term care facility during Covid-19 outbreak. BMC infectious diseases. 2021; 21: 1–8.

97. Murugan NA, Kumar S, Jeyakanthan J, Srivastava V. Searching for target-specific and multi-targeting

organics for Covid-19 in the Drugbank database with a double scoring approach. Scientific reports.

2020; 10: 1–16.

98. de Oliveira OV, Rocha GB, Paluch AS, Costa LT. Repurposing approved drugs as inhibitors of SARS-

CoV-2 S-protein from molecular modeling and virtual screening. Journal of Biomolecular Structure and

Dynamics. 2021; 39: 3924–3933.

99. Cagno V, Magliocco G, Tapparel C, Daali Y. The tyrosine kinase inhibitor nilotinib inhibits SARS-CoV-

2 in vitro. Basic & clinical pharmacology & toxicology. 2021; 128: 621–624. https://doi.org/10.1111/

bcpt.13537 PMID: 33232578

100. Bouchlarhem A, Haddar L, Lamzouri O, Nasri S, Aichouni N, Bkiyar H, et al. Multiple cranial nerve pal-

sies revealing blast crisis in patient with chronic myeloid leukemia in the accelerated phase under nilo-

tinib during severe infection with SARS-COV-19 virus: case report and review of literature. Radiology

Case Reports. 2021; 16: 3602–3609. https://doi.org/10.1016/j.radcr.2021.08.030 PMID: 34422148

101. Banerjee S, Yadav S, Banerjee S, Fakayode SO, Parvathareddy J, Reichard W, et al. Drug repurpos-

ing to identify nilotinib as a potential SARS-CoV-2 main protease inhibitor: insights from a computa-

tional and in vitro study. Journal of chemical information and modeling. 2021; 61: 5469–5483. https://

doi.org/10.1021/acs.jcim.1c00524 PMID: 34666487

102. Heidari A, Caissutti A, Henderson M, Schmitt K, Besana E, Esposito J, et al. Recent New Results and

Achievements of California South University (CSU) BioSpectroscopy Core Research Laboratory for

COVID-19 or 2019-nCoV Treatment: Diagnosis and Treatment Methodologies of “Coronavirus. Jour-

nal of Current Viruses and Treatment Methodologies. 2020; 1: 3–41.

103. Ruan Z, Liu C, Guo Y, He Z, Huang X, Jia X, et al. SARS-CoV-2 and SARS-CoV: Virtual screening of

potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). Journal of medical

virology. 2021; 93: 389–400. https://doi.org/10.1002/jmv.26222 PMID: 32579254

104. Chandel V, Sharma PP, Raj S, Choudhari R, Rathi B, Kumar D. Structure-based drug repurposing for

targeting Nsp9 replicase and spike proteins of severe acute respiratory syndrome coronavirus 2. Jour-

nal of Biomolecular Structure and Dynamics. 2022; 40: 249–262. https://doi.org/10.1080/07391102.

2020.1811773 PMID: 32838660

PLOS ONE Identification of host genomic biomarkers for diagnosis and therapies of SARS-CoV-2 infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0281981 March 13, 2023 24 / 27

https://doi.org/10.1016/j.heliyon.2021.e06395
https://doi.org/10.1016/j.heliyon.2021.e06395
http://www.ncbi.nlm.nih.gov/pubmed/33688586
https://doi.org/10.12688/f1000research.50850.3
http://www.ncbi.nlm.nih.gov/pubmed/33968364
https://doi.org/10.1016/j.biopha.2020.110211
https://doi.org/10.1016/j.biopha.2020.110211
http://www.ncbi.nlm.nih.gov/pubmed/32422566
https://doi.org/10.18632/oncotarget.22300
https://doi.org/10.18632/oncotarget.22300
http://www.ncbi.nlm.nih.gov/pubmed/29291009
https://doi.org/10.1016/j.mgene.2021.100990
https://doi.org/10.1016/j.mgene.2021.100990
http://www.ncbi.nlm.nih.gov/pubmed/34722158
https://doi.org/10.3389/fgene.2020.571274
http://www.ncbi.nlm.nih.gov/pubmed/33173539
https://doi.org/10.1016/S2213-2600%2821%2900139-9
http://www.ncbi.nlm.nih.gov/pubmed/33930329
https://doi.org/10.1016/j.coviro.2011.09.008
http://www.ncbi.nlm.nih.gov/pubmed/22440839
https://doi.org/10.1111/bcpt.13537
https://doi.org/10.1111/bcpt.13537
http://www.ncbi.nlm.nih.gov/pubmed/33232578
https://doi.org/10.1016/j.radcr.2021.08.030
http://www.ncbi.nlm.nih.gov/pubmed/34422148
https://doi.org/10.1021/acs.jcim.1c00524
https://doi.org/10.1021/acs.jcim.1c00524
http://www.ncbi.nlm.nih.gov/pubmed/34666487
https://doi.org/10.1002/jmv.26222
http://www.ncbi.nlm.nih.gov/pubmed/32579254
https://doi.org/10.1080/07391102.2020.1811773
https://doi.org/10.1080/07391102.2020.1811773
http://www.ncbi.nlm.nih.gov/pubmed/32838660
https://doi.org/10.1371/journal.pone.0281981


105. Li Y, Zhang J, Wang N, Li H, Shi Y, Guo G, et al. Therapeutic drugs targeting 2019-nCoV main prote-

ase by high-throughput screening. BioRxiv. 2020.

106. Encinar JA, Menendez JA. Potential drugs targeting early innate immune evasion of SARS-coronavi-

rus 2 via 2’-O-methylation of viral RNA. Viruses. 2020; 12: 525. https://doi.org/10.3390/v12050525

PMID: 32397643

107. Sahoo BM, Ravi Kumar BVV, Sruti J, Mahapatra MK, Banik BK, Borah P. Drug repurposing strategy

(DRS): Emerging approach to identify potential therapeutics for treatment of novel coronavirus infec-

tion. Frontiers in Molecular Biosciences. 2021; 8: 628144. https://doi.org/10.3389/fmolb.2021.628144

PMID: 33718434

108. Ruan Z, Liu C, Guo Y, He Z, Huang X, Jia X, et al. Potential inhibitors targeting RNA-dependent RNA

polymerase activity (NSP12) of SARS-CoV-2. 2020.

109. Zhou Y-W, Xie Y, Tang L-S, Pu D, Zhu Y-J, Liu J-Y, et al. Therapeutic targets and interventional strate-

gies in COVID-19: mechanisms and clinical studies. Signal transduction and targeted therapy. 2021;

6: 1–25.

110. Cho J, Lee YJ, Kim JH, Kim SS, Choi B-S, Choi J-H. Antiviral activity of digoxin and ouabain against

SARS-CoV-2 infection and its implication for COVID-19. Scientific reports. 2020; 10: 1–8.

111. Xing Y, Yin L, Guo M, Shi H, Qi T, Wang L, et al. Therapeutic Monitoring of Plasma Digoxin for

COVID-19 Patients Using a Simple UPLC-MS/MS Method. Current Pharmaceutical Analysis. 2021;

17: 1308–1316.

112. Peltzer B, Lerman BB, Goyal P, Cheung JW. Role for digoxin in patients hospitalized with COVID-19

and atrial arrhythmias. Journal of Cardiovascular Electrophysiology. 2021; 32: 880. https://doi.org/10.

1111/jce.14901 PMID: 33522631

113. Rattanawong P, Shen W, El Masry H, Sorajja D, Srivathsan K, Valverde A, et al. Guidance on short-

term management of atrial fibrillation in coronavirus disease 2019. Journal of the American Heart

Association. 2020; 9: e017529. https://doi.org/10.1161/JAHA.120.017529 PMID: 32515253

114. Talluri S. Molecular docking and virtual screening based prediction of drugs for COVID-19. Combinato-

rial Chemistry & High Throughput Screening. 2021; 24: 716–728. https://doi.org/10.2174/

1386207323666200814132149 PMID: 32798373

115. Sekhar T. Virtual Screening based prediction of potential drugs for COVID-19. Combinatorial Chemis-

try & High Throughput Screening. 2020; 23.

116. Aishwarya S, Gunasekaran K, Margret AA. Computational gene expression profiling in the exploration

of biomarkers, non-coding functional RNAs and drug perturbagens for COVID-19. Journal of Biomo-

lecular Structure and Dynamics. 2020; 1–16. https://doi.org/10.1080/07391102.2020.1850360 PMID:

33228475

117. Xu J, Xue Y, Zhou R, Shi P, Li H, Zhou J. Drug repurposing approach to combating coronavirus:

Potential drugs and drug targets. Med Res Rev. 2021; 41: 1375–1426. https://doi.org/10.1002/med.

21763 PMID: 33277927

118. Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, et al. Identification of Antiviral Drug Candidates against

SARS-CoV-2 from FDA-Approved Drugs. Antimicrob Agents Chemother. 2020; 64: e00819–20.

https://doi.org/10.1128/AAC.00819-20 PMID: 32366720

119. Mosharaf MdP Kibria MdK, Hossen MdB Islam MdA, Reza MdS Mahumud RA, et al. Meta-Data Analy-

sis to Explore the Hub of the Hub-Genes That Influence SARS-CoV-2 Infections Highlighting Their

Pathogenetic Processes and Drugs Repurposing. Vaccines. 2022; 10: 1248. https://doi.org/10.3390/

vaccines10081248 PMID: 36016137

120. Feng Z, Chen M, Liang T, Shen M, Chen H, Xie X-Q. Virus-CKB: an integrated bioinformatics platform

and analysis resource for COVID-19 research. Briefings in Bioinformatics. 2021; 22: 882–895. https://

doi.org/10.1093/bib/bbaa155 PMID: 32715315

121. Feng Z, Chen M, Xue Y, Liang T, Chen H, Zhou Y, et al. MCCS: a novel recognition pattern-based

method for fast track discovery of anti-SARS-CoV-2 drugs. Briefings in Bioinformatics. 2021; 22: 946–

962. https://doi.org/10.1093/bib/bbaa260 PMID: 33078827

122. Ruan Z, Liu C, Guo Y, He Z, Huang X, Jia X, et al. SARS-CoV-2 and SARS-CoV: Virtual screening of

potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J Med Virol. 2021;

93: 389–400. https://doi.org/10.1002/jmv.26222 PMID: 32579254

123. Jamalipour Soufi G, Iravani S. Potential inhibitors of SARS-CoV-2: recent advances. Journal of Drug

Targeting. 2021; 29: 349–364. https://doi.org/10.1080/1061186X.2020.1853736 PMID: 33210953

124. Lo HS, Hui KPY, Lai H-M, He X, Khan KS, Kaur S, et al. Simeprevir potently suppresses SARS-CoV-2

replication and synergizes with remdesivir. ACS central science. 2021; 7: 792–802. https://doi.org/10.

1021/acscentsci.0c01186 PMID: 34075346

PLOS ONE Identification of host genomic biomarkers for diagnosis and therapies of SARS-CoV-2 infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0281981 March 13, 2023 25 / 27

https://doi.org/10.3390/v12050525
http://www.ncbi.nlm.nih.gov/pubmed/32397643
https://doi.org/10.3389/fmolb.2021.628144
http://www.ncbi.nlm.nih.gov/pubmed/33718434
https://doi.org/10.1111/jce.14901
https://doi.org/10.1111/jce.14901
http://www.ncbi.nlm.nih.gov/pubmed/33522631
https://doi.org/10.1161/JAHA.120.017529
http://www.ncbi.nlm.nih.gov/pubmed/32515253
https://doi.org/10.2174/1386207323666200814132149
https://doi.org/10.2174/1386207323666200814132149
http://www.ncbi.nlm.nih.gov/pubmed/32798373
https://doi.org/10.1080/07391102.2020.1850360
http://www.ncbi.nlm.nih.gov/pubmed/33228475
https://doi.org/10.1002/med.21763
https://doi.org/10.1002/med.21763
http://www.ncbi.nlm.nih.gov/pubmed/33277927
https://doi.org/10.1128/AAC.00819-20
http://www.ncbi.nlm.nih.gov/pubmed/32366720
https://doi.org/10.3390/vaccines10081248
https://doi.org/10.3390/vaccines10081248
http://www.ncbi.nlm.nih.gov/pubmed/36016137
https://doi.org/10.1093/bib/bbaa155
https://doi.org/10.1093/bib/bbaa155
http://www.ncbi.nlm.nih.gov/pubmed/32715315
https://doi.org/10.1093/bib/bbaa260
http://www.ncbi.nlm.nih.gov/pubmed/33078827
https://doi.org/10.1002/jmv.26222
http://www.ncbi.nlm.nih.gov/pubmed/32579254
https://doi.org/10.1080/1061186X.2020.1853736
http://www.ncbi.nlm.nih.gov/pubmed/33210953
https://doi.org/10.1021/acscentsci.0c01186
https://doi.org/10.1021/acscentsci.0c01186
http://www.ncbi.nlm.nih.gov/pubmed/34075346
https://doi.org/10.1371/journal.pone.0281981


125. J A, Francis D, C.S S, K.G A, C S, Variyar EJ. Repurposing simeprevir, calpain inhibitor IV and a

cathepsin F inhibitor against SARS-CoV-2 and insights into their interactions with M pro. Journal of Bio-

molecular Structure and Dynamics. 2022; 40: 325–336. https://doi.org/10.1080/07391102.2020.

1813200 PMID: 32873185

126. Behera S, Mahapatra N, Tripathy C, Pati S. Drug repurposing for identification of potential inhibitors

against SARS-CoV-2 spike receptor-binding domain: An in silico approach. Indian J Med Res. 2021;

153: 132. https://doi.org/10.4103/ijmr.IJMR_1132_20 PMID: 33818470

127. Kadioglu O, Saeed M, Greten HJ, Efferth T. Identification of novel compounds against three targets of

SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Computers

in Biology and Medicine. 2021; 133: 104359. https://doi.org/10.1016/j.compbiomed.2021.104359

PMID: 33845270

128. Khan RJ, Jha RK, Singh E, Jain M, Amera GM, Singh RP, et al. Identification of promising antiviral

drug candidates against non-structural protein 15 (NSP15) from SARS-CoV-2: an in silico assisted

drug-repurposing study. Journal of Biomolecular Structure and Dynamics. 2022; 40: 438–448. https://

doi.org/10.1080/07391102.2020.1814870 PMID: 32885740

129. Cheng F-J, Huynh T-K, Yang C-S, Hu D-W, Shen Y-C, Tu C-Y, et al. Hesperidin Is a Potential Inhibitor

against SARS-CoV-2 Infection. Nutrients. 2021; 13: 2800. https://doi.org/10.3390/nu13082800 PMID:

34444960

130. Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits.

Antioxidants. 2020; 9: 742. https://doi.org/10.3390/antiox9080742 PMID: 32823497

131. Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibi-

tors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure

and Dynamics. 2020; 1–11. https://doi.org/10.1080/07391102.2020.1763201 PMID: 32362245

132. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-

CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B.

2020; 10: 766–788. https://doi.org/10.1016/j.apsb.2020.02.008 PMID: 32292689

133. Balmeh N, Mahmoudi S, Mohammadi N, Karabedianhajiabadi A. Predicted therapeutic targets for

COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Informatics in Medicine

Unlocked. 2020; 20: 100407. https://doi.org/10.1016/j.imu.2020.100407 PMID: 32835083

134. Matondo A, Kilembe JT, Ngoyi EM, Kabengele CN, Kasiama GN, Lengbiye EM, et al. Oleanolic Acid,

Ursolic Acid and Apigenin from Ocimum basilicum as Potential Inhibitors of the SARS-CoV-2 Main

Protease: A Molecular Docking Study. IJPR. 2021; 1–16. https://doi.org/10.9734/ijpr/2021/v6i230156

135. Kumar A, Choudhir G, Shukla SK, Sharma M, Tyagi P, Bhushan A, et al. Identification of phytochemi-

cal inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of

Biomolecular Structure and Dynamics. 2021; 39: 3760–3770. https://doi.org/10.1080/07391102.2020.

1772112 PMID: 32448034

136. Fitriani IN, Utami W, Zikri AT, Santoso P. In Silico Approach of Potential Phytochemical Inhibitor from

Moringa oleifera, Cocos nucifera, Allium cepa, Psidium guajava, and Eucalyptus globulus for the treat-

ment of COVID-19 by Molecular Docking. In Review; 2020 Jul. https://doi.org/10.21203/rs.3.rs-42747/

v1

137. Chen H, Zhang Z, Wang L, Huang Z, Gong F, Li X, et al. First clinical study using HCV protease inhibi-

tor danoprevir to treat COVID-19 patients. Medicine (Baltimore). 2020; 99: e23357. https://doi.org/10.

1097/MD.0000000000023357 PMID: 33235105

138. Zhang Z, Wang S, Tu X, Peng X, Huang Y, Wang L, et al. A comparative study on the time to achieve

negative nucleic acid testing and hospital stays between danoprevir and lopinavir/ritonavir in the treat-

ment of patients with COVID-19. J Med Virol. 2020; 92: 2631–2636. https://doi.org/10.1002/jmv.26141

PMID: 32501538

139. Liu J, Zhai Y, Liang L, Zhu D, Zhao Q, Qiu Y. Molecular modeling evaluation of the binding effect of

five protease inhibitors to COVID-19 main protease. Chem Phys. 2021; 542: 111080. https://doi.org/

10.1016/j.chemphys.2020.111080 PMID: 33519023

140. Jonny, Violetta L, Kartasasmita AS, Amirullah Roesli RM, Rita C. Pharmacological Treatment Options

for Coronavirus Disease-19 in Renal Patients. Uribarri J, editor. International Journal of Nephrology.

2021; 2021: 1–9. https://doi.org/10.1155/2021/4078713 PMID: 34858665

141. Santos-Filho OA. Identification of Potential Inhibitors of Severe Acute Respiratory Syndrome-Related

Coronavirus 2 (SARS-CoV-2) Main Protease from Non-Natural and Natural Sources: A Molecular

Docking Study. SciELO journals; 2021. p. 1428671 Bytes. https://doi.org/10.6084/M9.FIGSHARE.

14304102.V1

142. Teoh SL, Lim YH, Lai NM, Lee SWH. Directly Acting Antivirals for COVID-19: Where Do We Stand?

Front Microbiol. 2020; 11: 1857. https://doi.org/10.3389/fmicb.2020.01857 PMID: 32849448

PLOS ONE Identification of host genomic biomarkers for diagnosis and therapies of SARS-CoV-2 infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0281981 March 13, 2023 26 / 27

https://doi.org/10.1080/07391102.2020.1813200
https://doi.org/10.1080/07391102.2020.1813200
http://www.ncbi.nlm.nih.gov/pubmed/32873185
https://doi.org/10.4103/ijmr.IJMR%5F1132%5F20
http://www.ncbi.nlm.nih.gov/pubmed/33818470
https://doi.org/10.1016/j.compbiomed.2021.104359
http://www.ncbi.nlm.nih.gov/pubmed/33845270
https://doi.org/10.1080/07391102.2020.1814870
https://doi.org/10.1080/07391102.2020.1814870
http://www.ncbi.nlm.nih.gov/pubmed/32885740
https://doi.org/10.3390/nu13082800
http://www.ncbi.nlm.nih.gov/pubmed/34444960
https://doi.org/10.3390/antiox9080742
http://www.ncbi.nlm.nih.gov/pubmed/32823497
https://doi.org/10.1080/07391102.2020.1763201
http://www.ncbi.nlm.nih.gov/pubmed/32362245
https://doi.org/10.1016/j.apsb.2020.02.008
http://www.ncbi.nlm.nih.gov/pubmed/32292689
https://doi.org/10.1016/j.imu.2020.100407
http://www.ncbi.nlm.nih.gov/pubmed/32835083
https://doi.org/10.9734/ijpr/2021/v6i230156
https://doi.org/10.1080/07391102.2020.1772112
https://doi.org/10.1080/07391102.2020.1772112
http://www.ncbi.nlm.nih.gov/pubmed/32448034
https://doi.org/10.21203/rs.3.rs-42747/v1
https://doi.org/10.21203/rs.3.rs-42747/v1
https://doi.org/10.1097/MD.0000000000023357
https://doi.org/10.1097/MD.0000000000023357
http://www.ncbi.nlm.nih.gov/pubmed/33235105
https://doi.org/10.1002/jmv.26141
http://www.ncbi.nlm.nih.gov/pubmed/32501538
https://doi.org/10.1016/j.chemphys.2020.111080
https://doi.org/10.1016/j.chemphys.2020.111080
http://www.ncbi.nlm.nih.gov/pubmed/33519023
https://doi.org/10.1155/2021/4078713
http://www.ncbi.nlm.nih.gov/pubmed/34858665
https://doi.org/10.6084/M9.FIGSHARE.14304102.V1
https://doi.org/10.6084/M9.FIGSHARE.14304102.V1
https://doi.org/10.3389/fmicb.2020.01857
http://www.ncbi.nlm.nih.gov/pubmed/32849448
https://doi.org/10.1371/journal.pone.0281981


143. Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic

opportunities. Clinica Chimica Acta. 2020; 508: 254–266. https://doi.org/10.1016/j.cca.2020.05.044

PMID: 32474009

144. Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may

act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model.

Computational and Structural Biotechnology Journal. 2020; 18: 784–790. https://doi.org/10.1016/j.

csbj.2020.03.025 PMID: 32280433

145. Lovering AL, Seung SL, Kim YW, Withers SG, Strynadka NCJ. Mechanistic and structural analysis of

a family 31 α-glycosidase and its glycosyl-enzyme intermediate. Journal of Biological Chemistry.

2005; 280. https://doi.org/10.1074/jbc.M410468200 PMID: 15501829

146. Blatt JM, Weisskopf VF, Critchfield CL. Theoretical Nuclear Physics. American Journal of Physics.

1953; 21. https://doi.org/10.1119/1.1933407

PLOS ONE Identification of host genomic biomarkers for diagnosis and therapies of SARS-CoV-2 infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0281981 March 13, 2023 27 / 27

https://doi.org/10.1016/j.cca.2020.05.044
http://www.ncbi.nlm.nih.gov/pubmed/32474009
https://doi.org/10.1016/j.csbj.2020.03.025
https://doi.org/10.1016/j.csbj.2020.03.025
http://www.ncbi.nlm.nih.gov/pubmed/32280433
https://doi.org/10.1074/jbc.M410468200
http://www.ncbi.nlm.nih.gov/pubmed/15501829
https://doi.org/10.1119/1.1933407
https://doi.org/10.1371/journal.pone.0281981

