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Abstract

Machine learning methods are widely used within the medical field. However, the reliability

and efficacy of these models is difficult to assess, making it difficult for researchers to

identify which machine-learning model to apply to their dataset. We assessed whether

variance calculations of model metrics (e.g., AUROC, Sensitivity, Specificity) through

bootstrap simulation and SHapely Additive exPlanations (SHAP) could increase model

transparency and improve model selection. Data from the England National Health Ser-

vices Heart Disease Prediction Cohort was used. After comparison of model metrics for

XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting, XGBoost

was used as the machine-learning model of choice in this study. Boost-strap simulation

(N = 10,000) was used to empirically derive the distribution of model metrics and covariate

Gain statistics. SHapely Additive exPlanations (SHAP) to provide explanations to

machine-learning output and simulation to evaluate the variance of model accuracy met-

rics. For the XGBoost modeling method, we observed (through 10,000 completed simula-

tions) that the AUROC ranged from 0.771 to 0.947, a difference of 0.176, the balanced

accuracy ranged from 0.688 to 0.894, a 0.205 difference, the sensitivity ranged from

0.632 to 0.939, a 0.307 difference, and the specificity ranged from 0.595 to 0.944, a 0.394

difference. Among 10,000 simulations completed, we observed that the gain for Angina

ranged from 0.225 to 0.456, a difference of 0.231, for Cholesterol ranged from 0.148 to

0.326, a difference of 0.178, for maximum heart rate (MaxHR) ranged from 0.081 to

0.200, a range of 0.119, and for Age ranged from 0.059 to 0.157, difference of 0.098. Use

of simulations to empirically evaluate the variability of model metrics and explanatory

algorithms to observe if covariates match the literature are necessary for increased trans-

parency, reliability, and utility of machine learning methods. These variance statistics,

combined with model accuracy statistics can help researchers identify the best model for

a given dataset.
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Introduction

Machine learning (ML) algorithms generate predictions from sample data without explicit

directions from the user [1–4]. Common ML algorithms (e.g., XGBoost, Random Forest, Neu-

ral Networks) have been found to be more accurate than traditional parametric methods (lin-

ear regression, logistic regression) [5–8]. It has been hypothesized that this increase in

accuracy can be attributed to potential non-linear relationships between the independent and

dependent variables and interactions between multiple covariates [9, 10]. However, the

increase in ML algorithms compared to traditional parametric methods comes at a significant

cost: interpretability [11–15]. Linear regression and logistic regression have clear interpretable

output that have been widely studied [16–18]. Machine-learning algorithms are often non-

interpretable, leading to their reputation as a “black box” algorithm [10, 19–21]. As a result,

the interpretability, reliability, and efficacy of machine-learning models is often difficult to

assess [14, 20, 22–24].

Without methods that explain how machine learning algorithms reach their predictions,

clinicians will not be able to identify if models are reliable and generalizable or just replicat-

ing the biases within the training datasets [11, 13, 25]. Provision of explanations about how

model predictions are researched and providing accurate summary statistics for model accu-

racy metrics (e.g., AUROC, Sensitivity, Specificity, F1, Balanced Accuracy) will increase the

transparency of machine learning methods and increase confidence when using their predic-

tions [8, 9, 26, 27]. Potential solutions to these weaknesses in machine learning that have

been applied within the field of computer science are SHapely Additive exPlanations (SHAP)

for model interpretability and bootstrap simulation for quantifying the statistical distribu-

tion of model accuracy metrics [28–30]. However, little is known about the efficacy of SHAP

and Bootstrap in evaluating machine-learning methods for medical outcomes such as heart

disease. Given these limitations in the literature, with data from the England National Health

Services Heart Disease Prediction Cohort, we leveraged SHAP to provide explanations to

machine-learning output and bootstrap simulation to evaluate the variance of model accu-

racy metrics.

Methods

A retrospective, cohort study using the publicly available Heart Disease Prediction cohort

(from the England National Health Services database) was conducted. All methods in this

research were carried out in accordance with ethical guidelines detailed by the Data Alliance

Partnership Board (DAPB) approved national information standards and data collections for

use in health and adult social care. The above was approved by the UK Research Ethics Com-

mittee (REC). All participants provided written informed consent and their confidentiality

was maintained throughout the study.

Independent variables

Demographic covariates of age and sex were collected. Clinical covariates of Resting blood

pressure, fasting blood sugar, cholesterol, resting electrocardiogram (ECG), presence of

Angina, and maximum heart rate were collected.

Dependent variable

The dependent variable of interest was heart disease, as diagnosed by a clinician.
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Model construction and statistical analysis

Descriptive statistics for all patients, patients with heart disease, and patients without heart dis-

ease were computed for all covariates and compared using chi-squared tests for categorical

variables and t-tests for continuous variables.

Multiple machine-learning methods were evaluated throughout this study (XGBoost, Ran-

dom Forest, Artificial Neural Network, and Adaptive Boosting). The model metrics were the

Area under the Receiver Operator Characteristic Curve (AUROC), Sensitivity, Specificity, Pos-

itive Predictive Value, Negative Predictive Value, F1, Accuracy, and Balanced Accuracy. Addi-

tionally, the distribution of the Gain statistic, a measure of the percentage contribution of the

variable to the model, for each covariate was assessed.

Boost-strap simulation (N = 10,000 simulations) was carried out by varying the train and

test sets (70:30), rerunning the model, and assessing model metrics on the test-set. The model

metrics from 10,000 simulations were used to construct the distribution for all model metrics

and the gain-statistic for all independent covariates. The distribution of each of statistics was

evaluated visually through histograms, and analytically through summary statistics (minimum,

5th percentile, 25th percentile, 50th percentile, 75th percentile, 95th percentile, maximum, mean,

standard deviation) and the Anderson-Darling test.

The model chosen with best performance would be based upon the median for the distribu-

tion of model metrics, not just based upon a singular value (which is what is commonly used

in the literature). The model with the highest overall model accuracy would be used to visualize

covariates through Shapely Additive Explanations (SHAP). For model explanation, SHAP

visualizations were performed for each independent covariate and visualized in figures. These

visualizations were evaluated through clinician judgement to evaluate their concordance with

understood relationships in cardiology to validate the predictions from the model.

Overall methodology framework is described in Fig 1.

Results

Of the 918 patients within the cohort, the mean age was 53.51 (SD = 9.43), with 193 females

(21%) and 725 males (79%). The mean Resting Blood Pressure was 132.4 (SD = 19.51), choles-

terol was 198.8 (SD = 109.38), 214 (23%) of patients had elevated blood sugar, 188 (20%) of

patients had Left Ventricular Hypertrophy (LVH), and 178 (19%) had ST-elevation. The

mean heart rate was 136.81 (SD = 25.46) and 371 (40%) patients had Angina. Full demo-

graphic information listed in Table 1.

Compared to patients without heart disease, patients with heart disease have a greater num-

ber of males (90% vs 65%, p<0.01), a higher resting blood pressure (134.2 vs 130.2, p<0.01),

increased rates of elevated blood sugar (33% vs 11%, p<0.01), increased rates of ST elevation

on ECG (23% vs 15%, p<0.01), and increased Angina (62% vs 13%, p<0.01).

Overall performance and variability of the models

Full statistics for model metrics in Table 2. The XGBoost model was observed as the most opti-

mal model for this dataset, with the highest median of all model metrics. We observed that the

XGBoost models had strong performance, with median AUROC = 0.87, Balanced Accu-

racy = 0.79, sensitivity = 0.786, and specificity = 0.785. Among 10,000 simulations completed,

we observed that the AUROC ranged from 0.771 to 0.947, a difference of 0.176, the balanced

accuracy ranged from 0.688 to 0.894, a 0.205 difference, the sensitivity ranged from 0.632 to

0.939, a 0.307 difference, and the specificity ranged from 0.595 to 0.944, a 0.394 difference.

Full statistics for model covariate gain statistics in Table 3. We observe that Angina, Choles-

terol, Maximum Heart Rate (MaxHR) and age are the most important predictors within the
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model by the model gain metric. Among 10,000 simulations completed, we observed that the

gain for Angina ranged from 0.225 to 0.456, a difference of 0.231, for Cholesterol ranged from

0.148 to 0.326, a difference of 0.178, the MaxHR ranged from 0.081 to 0.200, a range of 0.119,

and for Age ranged from 0.059 to 0.157, difference of 0.098.

SHAP analysis was completed and visualized for Angina, Sex, and Max Heart Rate in Fig 2.

We observe from SHAP that patients who have Angina, who are of Male gender, and with

Fig 1. Consort flow diagram of machine learning workflow. Description of the overall workflow for machine-

learning implementation described within study, starting with a cleaned dataset and ending with a final usable model

after critical evaluation of model metrics and visualization of the model through SHAP.

https://doi.org/10.1371/journal.pone.0281922.g001
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lower maximum heart rates have greater incidence of heart disease, which is concordant with

the t-test/chi-squared comparisons that were completed in the Table 1 analysis. All covariates

visualized in S1–S5 Figs.

The distributions for all model statistics and the gain statistics for all covariates are in Figs 3

and 4, respectively. The distributions for all model statistics and gain statistics were not signifi-

cantly different from a normal distribution as ascertained through by the Anderson-Darling

Test, using significance of p<0.05 (Table 4).

Discussion

The use of bootstrap simulation generates 10,000 training and test-set combinations and

thus also 10,000 model accuracy statistics and covariate gain statistics [31–33]. This method

allows for empiric evaluation of the variability in model accuracy to increase the transparency

of model efficacy [34–36].

Prior studies have found that machine learning can be an effective tool to predict outcomes

in the medical field such as heart failure, postoperative complications, and infection [15, 37–

41]. Shi et al. performed the sequence of fitting ML models and utilized SHAP to determine

feature importance to predict postoperative malnutrition in children with congenital heart dis-

ease and similarly found XGBoost to provide the most accurate predictions [38]. In a separate

study, Lu et al. pulled EHR data from UPMC and found XGBoost could predict EF score [15].

Zhou et. Al utilized a similar paradigm of first comparing machine learning models and then

utilizing SHAP for model explanation [39].

What our study brings to the literature is a comprehensive framework for machine learning

for medical applications. They consist of an initial machine learning selection methodology

that utilizes bootstrap simulation to compute confidence intervals of numerous model accuracy

statistics, which is not readily done by current studies. Furthermore, this methodology incorpo-

rates multiple feature importance statistics for feature selection. Lastly, the clinically relevant

features within the model can be visualized accurately using SHAP. This methodology will

streamline the reporting of machine learning by first highlighting the variability of machine

Table 1. Summary of cohort demographics and disease characteristics.

Heart Disease Category All Patients No-Heart Disease Heart Disease P Values

Patient Count 918 (100%) 410 (45%) 508 (55%)

Age 53.51 (SD = 9.43) 50.55 (SD = 9.44) 55.9 (SD = 9.73) p<0.01

Gender Female 192 (21%) 143 (35%) 50 (10%) p<0.01

Male 725 (79%) 267 (65%) 458 (90%) p<0.01

Resting Blood Pressure 132.4 (SD = 18.51) 130.18 (SD = 16.5) 134.19 (SD = 19.83) p<0.01

Cholesterol 198.8 (SD = 109.38) 227.12 (SD = 74.63) 175.94 (SD = 126.39) p<0.01

Fasting Blood Sugar Elevated 214 (23%) 44 (11%) 170 (33%) p<0.01

Not Elevated 704 (77%) 366 (89%) 338 (67%) p<0.01

Electrocardiogram LVHa 188 (20%) 82 (20%) 106 (21%) p<0.01

Normal 552 (60%) 267 (65%) 275 (56%) p<0.01

ST elevation 178 (19%) 61 (15%) 117 (23%) p<0.01

Maximum Heart Rate 136.81 (SD = 25.46) 148.15 (SD = 23.29) 127.66 (SD = 23.39) p<0.01

Angina No 547 (60%) 355 (87%) 192 (38%) p<0.01

Yes 371 (40%) 55 (13%) 316 (62%) p<0.01

aLVH = Left Ventricular Hypertrophy

https://doi.org/10.1371/journal.pone.0281922.t001
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learning accuracy statistics even when utilizing the same dataset, using feature importance sta-

tistics to understand how the model values each feature and finally utilizing SHAP visualization

to understand how the model is generating predictions from each covariate.

Overall variability in model accuracy

From simulations, we observed that the AUROC ranged from 0.771 to 0.947, a difference of

0.176. These simulations highlight that for smaller datasets (<10,000 patients), that there may

Table 2. Summary of model metrics for four machine-learning techniques.

XGBoost

Metrics Minimum 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile Maximum Mean Standard Deviation Range

Accuracy 0.688 0.744 0.771 0.79 0.808 0.832 0.894 0.789 0.027 0.206

F1 0.69 0.745 0.772 0.788 0.81 0.832 0.897 0.79 0.027 0.207

Sensitivity 0.678 0.759 0.788 0.808 0.825 0.85 0.906 0.806 0.028 0.228

Specificity 0.595 0.709 0.753 0.785 0.814 0.855 0.944 0.784 0.042 0.349

PPV 0.68 0.757 0.786 0.82 0.845 0.88 0.954 0.82 0.037 0.274

NPV 0.57 0.678 0.725 0.756 0.787 0.83 0.928 0.756 0.046 0.358

AUROC 0.771 0.828 0.853 0.87 0.885 0.906 0.947 0.869 0.023 0.176

Random Forest

Metrics Minimum 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile Maximum Mean Standard Deviation Range

Accuracy 0.670 0.728 0.768 0.782 0.800 0.815 0.889 0.784 0.026 0.219

F1 0.683 0.736 0.772 0.781 0.806 0.815 0.880 0.786 0.026 0.196

Sensitivity 0.663 0.747 0.784 0.797 0.807 0.846 0.893 0.797 0.029 0.229

Specificity 0.584 0.708 0.743 0.784 0.807 0.845 0.925 0.774 0.042 0.340

PPV 0.673 0.741 0.778 0.808 0.842 0.862 0.947 0.806 0.041 0.274

NPV 0.551 0.658 0.716 0.740 0.769 0.829 0.911 0.754 0.042 0.360

AUROC 0.755 0.821 0.847 0.863 0.883 0.897 0.931 0.855 0.024 0.176

Artificial Neural Network

Metrics Minimum 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile Maximum Mean Standard Deviation Range

Accuracy 0.687 0.740 0.760 0.784 0.804 0.828 0.880 0.776 0.023 0.193

F1 0.673 0.735 0.753 0.782 0.791 0.822 0.886 0.774 0.025 0.212

Sensitivity 0.672 0.747 0.776 0.797 0.806 0.832 0.888 0.796 0.024 0.217

Specificity 0.594 0.704 0.751 0.769 0.799 0.837 0.926 0.764 0.039 0.332

PPV 0.660 0.749 0.778 0.811 0.836 0.862 0.939 0.808 0.033 0.278

NPV 0.551 0.662 0.715 0.748 0.771 0.814 0.913 0.744 0.050 0.362

AUROC 0.752 0.819 0.838 0.862 0.882 0.889 0.946 0.851 0.025 0.194

Adaptive Boosting

Metrics Minimum 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile Maximum Mean Standard Deviation Range

Accuracy 0.687 0.732 0.759 0.79 0.793 0.82 0.886 0.776 0.028 0.199

F1 0.67 0.743 0.758 0.769 0.806 0.826 0.892 0.775 0.025 0.221

Sensitivity 0.674 0.752 0.781 0.808 0.812 0.835 0.89 0.796 0.023 0.216

Specificity 0.589 0.692 0.744 0.778 0.803 0.853 0.944 0.776 0.041 0.355

PPV 0.672 0.743 0.774 0.8 0.845 0.862 0.948 0.816 0.04 0.276

NPV 0.567 0.661 0.714 0.749 0.786 0.826 0.925 0.749 0.042 0.358

AUROC 0.756 0.814 0.839 0.865 0.865 0.897 0.934 0.866 0.026 0.178

Summary of model metrics within the test set for each of the four machine-learning techniques (XGBoost, Random Forest, Artificial Neural Network, and Adaptive

Boosting).

https://doi.org/10.1371/journal.pone.0281922.t002
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be considerable variation in the classification efficacy of the XGBoost model based upon differ-

ent training-test set combinations [33, 42, 43]. At the higher end, an AUROC of 0.947 implies

near perfect fit, while an AUROC of 0.771, while still significantly more predictive than ran-

dom chance, provides a much decreased level of confidence in the predictions of the model.

This highlights a potential issue in replication of machine-learning methods on similar cohorts

[22, 44–47]. Two studies may find vastly different results in the predictive accuracy of

machine-learning methods even if they use near identical models, covariates, and model sum-

mary statistics just due to the choice of the train-test sets (which are determined strictly by ran-

dom number generation) [32, 35, 36, 48, 49]. As a result, this study highlights the importance

of utilizing multiple different train and test sets when executing machine-learning for predic-

tion of clinical outcomes to accurately represent the variance that is present just in the choice

of selection of train and test sets [16, 18, 50]. This will accurately characterize the accuracy of

the model and allow for better replications of the study. While the only covariate represented

in this discussion session is AUROC, these findings were similar within the other accuracy

metrics provided in Table 2.

Table 3. Summary of model gain statistics for each covariate in the XGBoost model.

Covariates Minimum 5th Percentile 25th Percentile Median 75th Percentile 95th Percentile Maximum Mean Standard Deviation Range

Angina 0.225 0.288 0.316 0.334 0.0353 0.383 0.456 0.335 0.029 0.231

Cholesterol 0.148 0.209 0.228 0.24 0.252 0.269 0.326 0.24 0.018 0.178

Maximum Heart Rate 0.081 0.114 0.129 0.139 0.15 0.165 0.201 0.139 0.015 0.12

Age 0.059 0.082 0.095 0.103 0.112 0.124 0.156 0.103 0.013 0.097

Resting Blood

Pressure

0.027 0.051 0.061 0.069 0.076 0.087 0.109 0.069 0.011 0.082

Sex 0.026 0.038 0.044 0.049 0.054 0.062 0.082 0.049 0.007 0.056

Fasting Blood Sugar 0.007 0.029 0.037 0.043 0.05 0.063 0.142 0.044 0.011 0.135

Resting ECG 0.003 0.012 0.017 0.02 0.024 0.029 0.043 0.02 0.005 0.04

https://doi.org/10.1371/journal.pone.0281922.t003

Fig 2. SHAP analysis. For the XGBoost models A) Overall Model detailing feature importance, with purple values

representing High values and yellow values representing low values of each covariate. B) Model effect for Angina (1 –

presence of angina) C) Model effect of Sex (1 –Female, 2 –Male) D) model effect for max heart rate (MaxHR).

https://doi.org/10.1371/journal.pone.0281922.g002

PLOS ONE Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations

PLOS ONE | https://doi.org/10.1371/journal.pone.0281922 February 23, 2023 7 / 15

https://doi.org/10.1371/journal.pone.0281922.t003
https://doi.org/10.1371/journal.pone.0281922.g002
https://doi.org/10.1371/journal.pone.0281922


Fig 3. Model statistics summary. Balanced accuarcy, Accuracy, F1, Sensitivty, Specificty, Positive Predictive Value,

Negative Predictive Value, Area Under the Receiver Operator Characteristic Curve (AUROC) for the XGboost model

following bootstrap simulation.

https://doi.org/10.1371/journal.pone.0281922.g003

Fig 4. Gain statistics summary. For the XGBoost models, the distribution of th gain statistic for all covariates: Age,

Angina, Cholesterol, Fasting Blood Sugar (Fasting BS), Maximum Heart Rate (MaxHR), Resting Blood Pressure

(RestingBP), Resting electrocardiogram (RestingECG), Sex.

https://doi.org/10.1371/journal.pone.0281922.g004

PLOS ONE Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations

PLOS ONE | https://doi.org/10.1371/journal.pone.0281922 February 23, 2023 8 / 15

https://doi.org/10.1371/journal.pone.0281922.g003
https://doi.org/10.1371/journal.pone.0281922.g004
https://doi.org/10.1371/journal.pone.0281922


Overall variability in covariate gain statistics

In addition to capturing the variability in machine-learning methods in model efficacy, there

is also significant variability within the gain statistics for each of the covariates. We observed

that the gain for Angina ranged from 0.225 to 0.456, a difference of 0.231. Since the gain statis-

tic is a measure of the percentage contribution of the variable to the model, we find that

depending on the train and test set, a covariate can have vastly different contributions to the

final predictions in the model. This variability in the contribution of each covariate to the final

model highlights potential dangers of training-set bias [51, 52]. Depending on which training

set is present, a covariate can be twice as important to the final result of the model. This result

highlights the need for multiple different “seeds” to be set prior to model training when split-

ting the training and test sets in order to avoid potential training-set biases and to have the

model at least be representative of the cohort it is being trained and tested on (if not represen-

tative of the population the cohort is a sample of) [16, 30, 53]. Similar to the model accuracy

statistics, this also highlights the difficulty in replication of results in machine-learning models

from study to study [1, 54, 55]. Even in our simulation studies with identical cohorts, identical

model parameters, and identical covariates, we observed that there was significant variation in

which covariates were weighted highly in the final model output. This highlights the need to

carefully evaluate the results of the model and not rely on a single seed to set the training

and test sets for machine-learning modeling to avoid potential pitfalls that stem from training-

test bias [50, 56–61]. While the only covariate represented in this discussion session is Angina,

these findings were similar within the other accuracy metrics provided in Table 3.

Utility of SHAP for model explanation and allowing for augmented

intelligence

Given the high level of variability in model accuracy metrics as well as covariate importance

based upon different combinations of training and test sets, necessity of algorithms to explain

the model are necessary to reduce potential for algorithmic bias. After simulations of model

accuracy and covariate gain metrics, a seed can be chosen that accurately represents the center

of the distribution for model accuracy metrics and covariate gain statistics. Then SHAP may

be executed for Model Explanation to allow for interpretation of model covariates [15, 22, 26].

In traditional parametric methods such as linear regression, each covariate can be inter-

preted clearly (e.g., for each 1 increase in x, we observe 2 increases in y) [17, 49]. However, due

Table 4. XGBoost model summaries of anderson darling tests.

A B

Model Metrics Anderson Darling P-Value Model Metrics Anderson Darling P-Value

Balanced Accuracy 0.53 Balanced Accuracy 0.23

Accuracy 0.44 Accuracy 0.46

F1 0.46 F1 0.3

Sensitivity 0.18 Sensitivity 0.27

Specificity 0.36 Specificity 0.7

Positive Predictive Value 0.22 Positive Predictive Value 0.18

Negative Predictive Value 0.97 Negative Predictive Value 0.99

AUROC 0.64 AUROC 0.1

For the XGBoost models: A) Summary of Anderson Darling Test for Normality for Model Metrics B) Summary of Anderson Darling Test for Normality for Gain

Statistics for model covariates.

https://doi.org/10.1371/journal.pone.0281922.t004
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to the complexity of the non-parametric algorithms that are common in machine-learning

methods, it is impossible for a human to analyze each tree and execute an explanation of how

the machine-learning method works [1, 62–65]. Thus, using SHAP allows for a similar covari-

ate interpretation as linear regression even if the exact effect-sizes of the covariates cannot be

interpreted the way it can in linear regression [15, 22, 49, 66–68]. Fig 2A highlights the rela-

tionship between increasing values of a covariate (purple) and increased odds for heart disease.

Additionally, Fig 2B–2D allow for observation of the effect sizes of individual covariates. We

observe within these plots that patients with Angina lead to significant increase in risk for

heart disease, patients who are Male have an increased chance for heart disease, and patients

with greater maximum heart rates have a decreased risk for heart disease. In evaluating these

three covariates, a researcher/clinician can make judgment calls on if these are concordant

with medical literature (prospective clinical trials, retrospective analyses, physiological mecha-

nisms) to validate the results of the model. If the results of the model are not concordant with

the medical literature, either a potentially new interpretation of the covariate should be investi-

gated or continued evaluation of if confounders within the model may be done to rectify these

observed discrepancies.

Limitations

This study has several strengths and weaknesses. One weakness is that this study utilizes only

one cohort that may not have complete electronic health record data (charts, most labs, diag-

noses, or procedural codes) to evaluate model variance. However, since the goal was to evalu-

ate methods to increase transparency in machine-learning instead of developing models for

heart disease, this is less of a concern. Furthermore, use of a publicly available dataset already

built into an R package allows for increased replicability of this study, which is concordant

with the general recommendations within this paper. Another weakness is the need for this

methodology to be replicated on other machine-learning methods (neural networks, random-

forest) and in other cohorts, both smaller and larger, to get a better understanding of how ran-

dom chance in selecting training and test sets can significantly impact the perception of model

accuracy and the perception of the most important model covariates. Furthermore, this meth-

odology requires a high computational load that would make it difficult to replicate in larger

studies with more heterogeneous data. One method to alleviate these issues is pre-selecting

covariates that are medically meaningful and have a strong univariable statistical relationship

with the outcome. With larger sample sizes, reducing the number of bootstrap simulations can

alleviate computational load since a large sample size would naturally decrease variance. Fur-

ther studies would be needed to utilize this methodology on large heterogeneous electronic

health record data.

Conclusion

Machine learning algorithms are a powerful tool for medical prediction. Use of simulations to

empirically evaluate variance of model metrics and explanatory algorithms to observe if covari-

ates match the literature are necessary for increased transparency of machine learning meth-

ods, helping to detect true signal in the data instead of perpetuating biases within the training

datasets.

Supporting information

S1 Fig. SHAP for cholesterol. Each point represents each observation, the red line repre-

sents a trend line. X-axis is the covariate of interest, Cholesterol (mg/day). The SHAP value
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represents the log-odds for heart disease.

(TIF)

S2 Fig. SHAP for age. Each point represents each observation; the red line represents a trend

line. X-axis is the covariate of interest, Age(years). The SHAP value represents the log-odds for

heart disease.

(TIF)

S3 Fig. SHAP for fasting BS. Each point represents each observation. X-axis is the covariate

of interest, Fasting Blood Sugar. Non-elevated = 1, Elevated = 2. The SHAP value represents

the log-odds for heart disease.

(TIF)

S4 Fig. SHAP for resting BS. Each point represents each observation; the red line represents a

trend line. X-axis is the covariate of interest, Resting Blood Pressure (mean arterial pressure).

The SHAP value represents the log-odds for heart disease.

(TIF)

S5 Fig. SHAP for resting ECG. Each point represents each observation; the red line represents

a trend line. X-axis is the covariate of interest, Resting Electrocardiogram. 1 represents an ST-

elevation, 2 represents normal, and 3 represents left ventricular hypertrophy. The SHAP value

represents the log-odds for heart disease.

(TIF)

S1 File. Minimal file dataset. Heart Disease Prediction Cohort from the England National

Health Services Database.

(CSV)
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