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Abstract

We have recently been witnessing that our society is starting to heal from the impacts of

COVID-19. The economic, social and cultural impacts of a pandemic cannot be ignored and

we should be properly equipped to deal with similar situations in future. Recently, Monkey-

pox has been concerning the international health community with its lethal impacts for a

probable pandemic. In such situations, having appropriate protocols and methodologies to

deal with the outbreak efficiently is of paramount interest to the world. Early diagnosis and

treatment stand as the only viable option to tackle such problems. To this end, in this paper,

we propose an ensemble learning-based framework to detect the presence of the Monkey-

pox virus from skin lesion images. We first consider three pre-trained base learners, namely

Inception V3, Xception and DenseNet169 to fine-tune on a target Monkeypox dataset. Fur-

ther, we extract probabilities from these deep models to feed into the ensemble framework.

To combine the outcomes, we propose a Beta function-based normalization scheme of

probabilities to learn an efficient aggregation of complementary information obtained from

the base learners followed by the sum rule-based ensemble. The framework is extensively

evaluated on a publicly available Monkeypox skin lesion dataset using a five-fold cross-vali-

dation setup to evaluate its effectiveness. The model achieves an average of 93.39%,

88.91%, 96.78% and 92.35% accuracy, precision, recall and F1 scores, respectively. The

supporting source codes are presented in https://github.com/BihanBanerjee/MonkeyPox.

Introduction

The present outbreak of the Monkeypox virus has had an adverse impact on the global health

community. Monkeypox is a viral disease that can be transmitted from person to person

(https://www.ecdc.europa.eu/en/news-events/epidemiological-update-monkeypox-outbreak).
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It was first diagnosed in 1970 [1], and since then the bulk of cases have been recorded in West

Africa. The first case outside of Africa was recorded in the United States in 2003. Subsequently,

other investigations have been carried out to determine the epidemiology of this virus. Accord-

ing to the World Health Organization (WHO), Monkeypox can be transmitted in two ways:

from an animal to a human and from a human to a human. Data obtained recently by the

European Centre for Disease Prevention and Control (ECDC) and WHO reveal that males

accounted for 99% of cases in Europe (https://monkeypoxreport.ecdc.europa.eu/). The major-

ity of occurrences are of men having sex with men (MSM) [2] in countries such as Canada,

Spain and the United Kingdom. However, scientists also believe that the greater numbers of

MSM are caused by close contact, rather the virus itself classified as a sexually transmitted dis-

ease [3]. According to the most recent accessible paperwork (https://www.who.int/news-

room/fact-sheets/detail/monkeypox?gclid=Cj0KCQjwmdGYBhDRARIsABmSEeP5XA

o6H7wvAszLbY2LGLgJHABSc_lcUb3zmD4GBxFaOIcBO6EqTEgaAmSwEALw_wcB),

the community’s longest chain has expanded from 6 to 9. The Monkeypox fatality rate has

recently been estimated to be 3-6%. According to the WHO, immunization against smallpox

has been shown to be useful in the diagnosis of Monkeypox. It should be noted that Monkey-

pox is less infectious than smallpox. Its symptoms include fever, rashes, and enlarged lymph

nodes.

The polymerase chain reaction (PCR) test is now considered one of the most efficient meth-

ods to diagnose Monkeypox (https://www.nist.gov/news-events/news/2022/07/nist-develops-

genetic-material-validating-monkeypox-tests). Pox infections are frequently detected by the

visual examination of skin lesions and rashes. Skin lesions and rashes caused by Monkeypox

might seem similar to chickenpox and cowpox lesions and rashes. The clinical symptoms of

Monkeypox are similar to those of smallpox but less severe in the case of Monkeypox. Due to

clinical and visual similarities between Monkeypox diseases, it can be difficult for healthcare

professionals to diagnose the early signs of Monkeypox. Computer-assisted diagnosis has

gained popularity in recent years to assist medical practitioners in many difficult situations [4].

In the present work, we consider this as a classification task. Here, the system generally

receives an image input, performs some processing, and then labels the image to a particular

class as per the need. Nowadays, deep learning-based approaches are commonly used in the

medical image processing domain due to their advantages over handcrafted feature extraction-

based techniques [5]. Such approaches involve two components: feature extraction and classi-

fication based on the extracted features. Convolution operations are used to extract features,

while multi-layered neural networks are applied to classify them. To achieve this objective,

researchers frequently employ various forms of convolutional neural networks (CNNs). While

CNNs have lately demonstrated significant generalization capabilities [6], the use of a single

CNN model may not be adequate to address different and complex classification challenges.

Ensemble learning has also recently been the subject of extensive investigation [7]. Ensem-

ble learning approaches seek to capture an association of accessible complementary informa-

tion offered by base learners in order to make more correct predictions. Deep learners often

provide a very high confidence score for both correctly and wrongly identified instances [8].

Thus, deep learning outputs (probabilities) can be processed effectively in order to capture an

association of probabilities and create a robust prediction.

Aside from that the idea of transfer learning based models is commonly used to avoid the

need for a substantial amount of data to develop competent CNN models. Initially, the net-

work/model is trained on a very large dataset, and the trained weights are subsequently fine-

tuned on a relatively small target dataset [9]. This act of transferring information from one

domain to other benefits in reducing the reliance on huge amounts of training data for models

to demonstrate high generalization properties.
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To this end, we propose a Beta function-based ensemble network consisting of three base

learners from diverse backgrounds. At first, we use some standard techniques to augment the

data followed by online augmentation using Gaussian noise to further augment the training

data. These samples are fed to three deep learners namely InceptionV3, Xception and Dense-

Net169 to generate probability scores. These scores are then normalized using the proposed

Beta function-based normalization scheme. In the end, we use the sum rule-based aggregation

for making the final class predictions. We extensively test our ensemble network on a publicly

available dataset for Monkeypox detection using skin images. We use a 5-fold cross-validation

scheme to ensure the robustness of the proposed model. In a nutshell, our contributions are

listed below:

• We propose an ensemble of CNN models for Monkeypox detection using skin lesion

images.

• We present a novel Beta function-based scheme for normalization of probability scores gen-

erated by the base CNN models.

• We evaluate our method on a publicly available skin lesion image dataset to test the effective-

ness of the same.

The rest of the work is organized in the following manner: The related work section pro-

vides an overview of the recent works relating to medical image analysis using deep learning.

In the methods and materials section, we first discuss the dataset used and then go into greater

detail about the methodology. In the results and analysis section, we detail the result and

attempt to analyse the same. Finally, we make some concluding remarks in the conclusion sec-

tion and state some possible extensions of this work.

Related work

In this section, we revisit some of the recent methods related to deep learning with its applica-

tions to medical image analysis.

Medical image analysis using deep learning techniques has seen a certain surge in recent

times, owing to the easy availability of sophisticated hardware [10]. Typically, for a classifica-

tion-based problem, more focus has been emphasised on the feature extraction part, which is

probably the most essential part for any representation learning-based task. Recently the

authors in [11] proposes a channel attention scheme for breast cancer classification. The

authors aim to enhance the feature maps by the use of shuffling schemes between the channels

of the feature maps. Oh et al. [12] use a patch-based strategy to train a ResNet-based CNN

architecture which was trained with limited training data for COVID-19 detection. In an arti-

cle by Zhang et al. [13], the authors proposed a one-class detection technique for the diagnosis

of pneumonia. Specifically, the authors aimed to learn with the anomaly scores which they

found of great significance. Further, an interesting work presented by Wang et al. [14] explores

the possibility of self-supervised learning to train under constrained label circumstances. The

authors used augmentation-based contrastive learning to perform the self-supervision-based

pre-training task. Araújo et al. [15] proposes an augmentation technique based on patches for

breast histopathology image classification.

Recently, there has been a considerable amount of research performed to extract deep fea-

tures and select the most informative features and discard the redundant ones to form much

better and separable decision boundaries. In a work by Basu et al. [16], the authors propose a

deep feature selection approach for COVID-19 detection from Computed Tomography (CT)

scans. In a similar work by Pramanik et al. [4], the authors propose a feature selection-based
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framework with a ResNet-50-based backbone. Cao et al. [17] present a patch-based attention

network for cervical cancer detection using a DenseNet-169-based backbone network. The

work by Shen et al. [18] proposes an end-to-end CNN model using region of interest informa-

tion. There has also been progressing in research in developing CNNs with relatively low

computational overhead. One such method was carefully designed in [19] for COVID-19

detection from Chest X-Rays.

The work by Khatami et al. [20] proposes wavelet transform-based deep belief networks for

medical image analysis. The authors aim to capture an association of 3 models for medical

image classification by utilizing the idea of capturing complementary information. The

authors in [21] leverage a multi-scale ensemble approach to classify breast cancer images. In a

recent work by Pramanik et al. [22], the authors use three transfer learning-based models with

additional layers to learn data-specific features. Finally, the authors propose a novel fuzzy

aggregation method which is based on the minimization of the observed and actual error val-

ues. In a separate study by Bhowal et al [23], the authors propose a game theory-based fuzzy

integral for ensemble learning. This method was applied to breast cancer identification.

Majorly the motivations of such methods lie in the fact that the aggregation method should

capture the maximum possible complementary information.

Literature interpretation

We observe the literature to have some brainstorming ideas for solutions to the challenges in

the domain of medical image processing. In particular, there have been some preliminary stud-

ies performed in this domain [24–26]. However, deep learning-based architectures as we see

them in the literature do not provide ultimate reliability most of the time [4, 16, 17]. Some of

these methods are carefully modified for specific tasks [11, 19]. The majority of these methods

are formulated to extract better feature maps in the feature extraction part. In particular, medi-

cal image processing is a sensitive topic, considering the fact that a wrong diagnosis is not at all

acceptable. Specifically, diseases that are uncommon, such as Monkeypox, are affected due to a

lack of proper diagnostic methods.

In these situations, development of a robust and reliable method plays a vital role. In the

past, researchers have investigated several ensemble learning models [19, 22]. As stated earlier,

the aim of an ensemble learning model is to maximize performance by aggregating decisions

to provide a more reliable decision. Deep learners typically tend to provide high confidence

scores for even incorrect classification scenarios [8]. Thus, when designing an ensemble learn-

ing model, this fact should be taken into account. In this work, to bridge this gap, we have pro-

vided an ensemble learning-based methodology to identify Monkeypox in skin lesion images.

Materials and methods

In this section, we first discuss the dataset we have experimented on followed by introducing

the proposed model for identifying Monkeypox from skin lesion images. We first resize the

training samples to 224 × 224 pixels. Since we deal with a relatively small-sized dataset, we

need to take care of a major challenge while training a CNN model, i.e., the problem of overfit-

ting. To deal with this, we augment all the training images by utilizing augmentation tech-

niques including horizontal and vertical shifting, brightness changing, zooming, channel

shifting, horizontal and vertical flipping, rotating, and changing. Additionally, we consider

color spaces like YUV and HSV to make sure our framework learns discriminative embed-

dings. Further, these training images are then fed to these three pre-trained (pre-trained on

the ImageNet dataset) CNN models, namely Xception, InceptionV3 and DenseNet169. Before

feeding the images, we further augment them using Gaussian noise. These pre-trained CNN
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models are fine-tuned using this target Monkeypox Skin Lesion dataset including its inner

convolutional layers. Finally, to have a better decision over the predicted probability scores of

the individual models, an enhancement scheme is proposed based on the aggregation of Beta-

normalized output values of the respective models using the sum rule. The overall pipeline of

the proposed work is presented in Fig 1

Dataset description

For evaluating the proposed method we use a publicly available dataset, namely Monkeypox

Skin Lesion dataset [27] which is hosted in the Kaggle platform https://www.kaggle.com/

datasets/nafin59/Monkeypox-skin-lesion-dataset. We consider the original images and segre-

gate the train and test sets. There are 228 photos in this dataset, 102 of which are of the “Mon-

keypox” class and the remaining 126 being of the “Others” class, which includes cases of other

skin lesion-based diseases like chickenpox and measles that are not Monkeypox.

Addition of Gaussian noise

Generally, a deep CNN model needs a significant amount of data for proper training of the

model. Otherwise, the model would overfit the training data if it has experimented with small-

sized datasets. In the present work, this issue becomes relevant as we experiment with a rela-

tively less number of image samples. Therefore, in each iteration, we add Gaussian noise (with

mean = 0 and variance = 0.01) to the input data and this in turn introduces variability in the

learning process, thus reducing the possibility of overfitting [28].

Fig 1. The overall pipeline of the present work for Monkeypox detection from skin lesion images.

https://doi.org/10.1371/journal.pone.0281815.g001
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Inception V3

The family of InceptionNets focuses on training with low computational resources. Specifi-

cally, Inception V3 [29] uses asymmetric convolutions. The convolutions are factorized to help

capture more diverse features using lower computational costs. Furthermore, with the aim of

capturing an aggregation of these asymmetric features, these are concatenated before proceed-

ing to the next layer. In addition, the use of an auxiliary classifier helps to counter the overfit-

ting problem. In particular, the auxiliary classifier has also been used in the previous versions

of the InceptionNets. The overview of the inception architecture is given in Fig 2

Xception

Prior to leveraging 1x1 standard convolution across the depth to condense the input space,

Xception [30] applies the filters independently to each depth feature map. This solution is

almost analogous to a depthwise separable convolution that has been in use since 2014. One

noticeable difference between Xception and other CNNs is that it does not introduce non-lin-

earity with the rectified linear unit (ReLU). The author defends the idea that employing a non-

linear activation in a deeper network, similar to those in the Inception model, may be effective.

However, information might be lost when implementing a shallow network, such as the Xcep-

tion model. Experimental results corroborated the argument. In this instance as well, inception

modules lie in the centre of a discrete spectrum, encompassing pointwise and depthwise sepa-

rable convolution layers. As a result, they optimize the classification efficiency while keeping

computation costs that are equivalent to those incurred by inception-based networks by adopt-

ing depthwise separable convolutions for the typical inception modules. An illustrative struc-

ture of the Xception model is shown in Fig 3.

DenseNet169

Earlier researchers faced a frequent problem with CNNs—when the model is deep, the deriva-

tive value calculated for backpropagation becomes low, and the gradient update becomes

insignificant. It is commonly referred to as the vanishing gradient problem. To address this

problem, the researchers came up with the idea of interconnecting all the other layers to maxi-

mize the flow of information. DenseNet [31] consists of seven dense blocks, where each block

has 4 convolutional sublayers. The output from each of the sub-layers is concatenated into one

input tensor and propagated through the subsequent sub-layers. Every sublayer is symmetrical

in nature and consists of the following sequence: Batch Normalization, ReLU activation func-

tion, Dropout and Convolution. In every case, the dropout probability is 0.5, and also convolu-

tion kernel size is fixed at 5. Fig 4 shows the dense connections employed in the architecture.

Fig 2. Architecture of inception V3. Modified from [29].

https://doi.org/10.1371/journal.pone.0281815.g002
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These are inspired by the skip connections of ResNet, where a layer receives the feature map

only from the last layer. These dense connections help in producing more diversified features

as each layer receives all the preceding layers’ feature maps as the input. The role of convolu-

tional sub-masking within the DenseNet helps realize better gradient flow. The dense connec-

tions among the sub-layers follow a sequential flow. A sublayer completes its forward pass only

if all previous sublayers have completed their computations. The dense connections allow for

better gradient flow with fewer parameters.

Beta normalization based ensemble scheme

Generally, for a deep learner, the generated probabilities or the confidence scores are many

times higher, even for false positive scenarios. This behavior does not allow an aggregator to

learn complementary information obtained from multiple base learners. To deal with this, we

propose a normalization technique based on the Beta function. The Euler integral of the first

Fig 3. A basic block used of the Xception architecture.

https://doi.org/10.1371/journal.pone.0281815.g003
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kind or the Beta function as it is commonly known has a wide range of applications in calculus

primarily for approximations. The Beta function is calculated as in Eq 1, where p, q 2 <+.

bðp; qÞ ¼
Z 1

0

tp� 1ð1 � tÞq� 1dt ð1Þ

The Beta function in mathematics is regarded as generating a close association between sets of

inputs and outputs by strongly associating each input value with the associated output value by

changing the inputs to exhibit significant representational ability. We considered utilizing the

Beta function in the proposed ensemble system since it has the potential to map inputs to

coherent outputs. This is because the goal of the ensemble learning is to build an appropriate

aggregation of values (here the outputs generated by the base learners), and the use of the Beta

function to learn an aggregation can be substantiated for this purpose. To model this, we first

consider the ordered pair (p + 1, q + 1) as (α, γ), where α is the observed probability and γ is

the maximum achievable probability. Also, it should be noted that α will always be lesser than

1 which makes this function a monotonically decreasing function. Therefore, for proper utili-

zation, we subtract the whole value from 1 in our case. As a result, the calculation of the nor-

malized probability scores β(pn) is calculated as in Eq 2. The value of γ is 1, and α is the

observed probability. We consider that t is integrated within the limits of 1 and 0, and Eq 4

Fig 4. A basic block used in the DenseNet architecture. Modified from Huang et al. [31].

https://doi.org/10.1371/journal.pone.0281815.g004
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refers to this integration. The final calculation is according to Eq 5.

bðpnÞ ¼ 1 �

Z 1

0

tað1 � tÞgdt ð2Þ

bðpnÞ ¼ 1 �

Z 1

0

ðta � taþ1Þdt ð3Þ

bðpnÞ ¼ 1 �
taþ1

aþ 1
�

taþ2

aþ 2

� �1

0

ð4Þ

bðpnÞ ¼
a2 þ 3� aþ 1

a2 þ 3� aþ 2
ð5Þ

After normalizing the probabilities, let us consider P∗j ðxiÞ ¼ ðP
I
j ðxiÞ; P

X
j ðxiÞ; P

D
j ðxiÞÞ con-

cerning the jth class label, where PI, PX, PD represent the normalized probabilities for Inception,

Xception and DenseNet models for the ith sample. Correspondingly, the use of the sum rule

for each class outputs this: xjðxiÞ ¼ PI
j ðxiÞ þ PX

j ðxiÞ þ PD
j ðxiÞ. The final class label ŷi is assigned

in accordance with Eq 6

ŷi ¼ arg max
j
fxjðxiÞg ð6Þ

A graphical representation of normalized probabilities is shown in Fig 5. From the figure we

observe that the scores are very close enough to learn an aggregation. For the convenience of

the readers, we present an example in Table 1 to show how the proposed methodology works.

We observe from Table 1 that the use of the rule and the Beta transformation results in some

differences in the predictions. We observe that the probabilities are changed to become closer,

which, in turn, learns a good aggregation after transformation. It must be noted that @β(x)/

@x> 08x 2 (0, 1), which means that the function is monotonically increasing throughout,

whereas @2β(x)/@x2 < 08x 2 (0, 1) means that the function’s nature is concave downward,

which also means that the probabilities with higher values are relatively less important. This

fact helps to reduce the gap between true positive and false positive predictions.

Statement of ethical approval

All procedures performed in studies involving human participants were in accordance with

the ethical standards of the institutional and/or national research committee and with the 1964

Helsinki Declaration and its later amendments.

Results and analysis

In this section, at first, we analyze the hyperparameters used in our experiments. We next go

on to the primary findings and make an effort to analyse our results. We also compare the pro-

posed ensemble of CNN models using Beta normalization to other popular ensemble

methods.

Evaluation metrics

The evaluation metrics used to evaluate the proposed method can be found below. First, we

discuss some of the preliminaries followed by the metrics.
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• True Positives (TP): It is a scenario when the obtained class label matches the ground truth

label for the positive class.

• False Positives (FP): It is a scenario when the obtained class label does not match the ground

truth label for the positive class.

• True Negatives (TN): It is a scenario when the obtained class label matches the ground truth

label for the negative class.

• False Negatives (FN): It is a scenario when the obtained class label does not match the

ground truth label for the negative class.

We use these observations to evaluate the following metrics

Table 1. A toy example of the Beta normalization scheme with different probability values. PM&PNM refer to probabilities for Monkeypox and Non-Monkeypox classes

respectively. Other symbols have usual meanings as described above.

P∗j ðxÞ P∗MðxÞ P∗NMðxÞ bðP∗MðxÞÞ bðP∗NMðxÞÞ

PI
j ðxÞ 0.9155 0.0845 0.82094 0.55765

PX
j ðxÞ 0.000112 0.999888 0.50008 0.83332

PD
j ðxÞ 0.61412 0.38588 0.7630 0.69757

ξj(x) 1.529732 1.470268 2.08403 2.08854

https://doi.org/10.1371/journal.pone.0281815.t001

Fig 5. Normalized scores generated by the Beta function. The normalized values are plotted against the y-axis.

https://doi.org/10.1371/journal.pone.0281815.g005

PLOS ONE Monkeypox detection from skin lesion images

PLOS ONE | https://doi.org/10.1371/journal.pone.0281815 April 7, 2023 10 / 21

https://doi.org/10.1371/journal.pone.0281815.t001
https://doi.org/10.1371/journal.pone.0281815.g005
https://doi.org/10.1371/journal.pone.0281815


1. Accuracy quantifies the ratio of true predictions to the total number of samples. The accu-

racy is calculated according to Eq 7.

Accuracy ¼
TP þ TN

TP þ TN þ FPþ FN
ð7Þ

2. Precision score is the ratio of correct predictions for the positive class to the total number of

samples predicted to the positive class. It is calculated according to Eq 8

Precision ¼
TP

TPþ FP
ð8Þ

3. Recall score is the ratio of true positives to the sum of true positives and false negatives. It is

calculated according to Eq 9

Recall ¼
TP

TP þ FN
ð9Þ

4. F1 score is the harmonic mean of precision and recall. It can be calculated as in Eq 10

F1 ¼
2� Precision� Recall
Precisionþ Recall

ð10Þ

Hyperparameter selection

When training a deep CNN model, selecting the appropriate set of hyperparameters is a chal-

lenging task and it requires intensive analysis as they directly control the training processes.

The two major important hyperparameters in any deep CNN model training are the learning

rate and the batch size. The learning rate determines how much to modify the model’s

weights each time in response to the predicted error. On the other hand, the batch size deter-

mines how many training examples a model should process in one go when the model is

trained. While training deep neural networks, batch size influences the precision of the error

estimation gradients. In our experiments, we have used three basic pre-trained CNN models.

We have come to the right set of values for the hyperparameters through the popular grid-

search method, where the learning rate is selected from {1e − 3,1e − 4,1e − 5}, and batch size

from {8, 16, 32, 64}. All models have been trained for 30 epochs on the dataset under consid-

eration. The learning rate is scheduled to the 1/10th of its initial value after 20 or 25 epochs

depending on the base model to minimize any kind of overfitting. The experiments were per-

formed on a random 80 : 20 split of the dataset. Later, we ensemble the predictions of three

base models using the sum rule after normalizing them using the proposed Beta function-

based scheme.

We have also performed experiments using the 5-fold cross-validation setting by retraining

3 pre-trained (on the ImageNet dataset) CNN models, namely Xception, InceptionV3 and

DenseNet169. The result of each model on 5 folds is given in the subsequent subsections of

this paper. From Fig 6 it is clear that the three models give the best results with batch size 16

and learning rate 1e − 4.
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Results

As mentioned, the proposed method experiments on a binary-class Monkeypox dataset

namely the Monkeypox Skin Lesion dataset. The proposed approach is evaluated using a

5-fold cross-validation setting. Table 2 shows the fold-wise accuracy on the randomly split

Fig 6. Ablation study concerning different batch sizes and learning rates on the Fold-1 of the dataset. The base

models are mentioned on the top of each of the bar charts.

https://doi.org/10.1371/journal.pone.0281815.g006
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5-folds. It is evident from the results that, apart from the 4th fold, the suggested ensemble tech-

nique significantly improves the accuracy compared to the accuracy of the best base model for

the corresponding fold. On average, this method has given an overall boost of 2.17% on the

five folds. This boost can be attributed to the enhancement scheme’s successful acquisition of

possible complementary information obtained from base classifiers’ confidence scores. The

basic classifiers’ ability to avoid overfitting is a key factor in the effectiveness of the suggested

technique. When evaluating any approach, it is an important task to evaluate the performance

class-wise. Taking this into account, we present the receiver operating characteristic (ROC)

curve in Fig 7. The confusion matrix is also presented in Fig 8. From these figures, we can

ensure that our method is able to classify each of the two classes comfortably.

Table 2. Performance comparison with respect to accuracy for the base learners and the proposed ensemble method on the Monkeypox skin lesion dataset using

5-fold cross-validation methodology. All values are reported in %.

Fold Xception InceptionV3 DenseNet169 Best Model Ensemble Boost

Fold 1 93.48 89.13 89.13 93.48 97.83 4.35

Fold 2 89.13 91.30 91.30 91.30 93.48 2.18

Fold 3 93.48 93.48 89.13 93.48 95.65 2.10

Fold 4 93.33 91.11 95.56 95.56 95.56 0.00

Fold 5 82.22 80.00 82.22 82.22 84.44 2.20

Average 90.33 89.45 89.47 91.21 93.39 2.17

https://doi.org/10.1371/journal.pone.0281815.t002

Fig 7. Post-ensemble ROC curves for both the Monkeypox and non-Monkeypox classes concerning Fold-1 of the experiment.

https://doi.org/10.1371/journal.pone.0281815.g007
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Comparison with state-of-the-art ensemble methods

As we stated earlier, in this paper, we present an ensemble learning-based framework to detect

Monkeypox from skin lesion images. In this subsection, we have compared the results con-

cerning several other state-of-the-art ensemble schemes. For this task, we have considered

three diverse methods that leverage ensemble learning for final prediction. The work of Pra-

manik et al. [22] proposes a fuzzy distance-based ensemble scheme where the authors propose

a minimization scheme based on the observed label and the ideal solution. In the work of

Tabakov et al. [32], the authors use the Sugeno integral to aggregate the probability scores. Fur-

thermore, a work by Kundu et al. [33] proposes a fuzzy ranking scheme based on the Gom-

pertz function to aggregate the outcomes of the base deep learners. It should be noted that all

of these methods are based on different strategies. As a result, these methods give us the best

opportunity to compare the robustness of our method. The results are given as a bar chart

under Fig 9. From this figure, it is clear that the proposed Beta function-based ensemble

scheme gives the best results when compared with the state-of-the-art methods for all the met-

rics. We can comment that this performance enhancement becomes possible due to the nor-

malization process proposed in this work. The normalization process learns to aggregate the

probability scores effectively, thereby allowing a better composition of complementary infor-

mation to be exploited. In the case of method [22], one major shortcoming is the use of cosine

Fig 8. Post-ensemble confusion matrix for Fold-1 of the experiment.

https://doi.org/10.1371/journal.pone.0281815.g008
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distance, as stated by the authors. For the method reported in [32], an intergral approximation

is used, which negates the very marginal differences in probabilities. Whereas the method

reported in [33] considers a ranking scheme based on the user defined top k classes. As a result,

some of the candidate classes are filtered out at an early stage and thus ignored in the decision-

making process.

Evaluation using other metrics

To further investigate the behavior of our method, we present the comparative precision,

recall, and F1 scores in Tables 3–5 respectively. These results demonstrate that our method

typically outperforms the best scores or, in certain cases, maintains the greatest value.

Fig 9. Performance comparison of the proposed method with state-of-the-art ensemble techniques. Here, Method 1 refers to the work reported in

[22], Method 2 refers to the work reported in [32] and Method 3 refers to the work reported in [33]. Furthermore, the values presented are averaged

across all 5 folds of the experiments. The reported scores are in (%).

https://doi.org/10.1371/journal.pone.0281815.g009

Table 3. Fold wise precision scores concerning the base models and the ensemble method. All scores are reported in %.

Fold Method

Xception Inception V3 DenseNet 169 Ensemble

Fold 1 88.35 88.24 76.47 94.12

Fold 2 73.68 89.47 84.21 84.21

Fold 3 88.46 88.46 84.67 92.31

Fold 4 100.00 94.12 100.00 100.00

Fold 5 69.57 65.22 73.91 73.91

Average 84.01 85.10 83.85 88.91

https://doi.org/10.1371/journal.pone.0281815.t003
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Furthermore, the dataset appears to be imbalanced given that precision values are often lower

than recall scores. Additionally, there are fewer images here than in conventional datasets. We

may see situations where the precision is 100%, which implies there are never any false posi-

tives. In other words, no image other than a Monkeypox image is classified as a Monkeypox

image. Whereas if recall rate is 100%, there have been no instances of non-Monkeypox subjects

being mistakenly diagnosed as having the disease.

Error case analysis

While proposing any method, it is always important to analyse the limitations of the proposed

method. The feature extraction process is at the heart of a deep learning-based classification

task. The more informative the feature, the higher the chance of an accurate classification. Gra-

dient-weighted Class Activation Mapping (Grad-CAM) is a powerful tool that researchers are

now using to simulate the feature maps generated by CNN models. We also rely on this tool as

well, and in Figs 10 and 11, we show the Grad-CAM for a test sample of a skin lesion image to

visually understand the feature maps generated by deep learners. The Grad-CAM images are

generated using the outputs of the architectures’ final convolutional layer. In Fig 10 we present

an example where the skin lesion is of Non-Monkeypox type but is classified as Monkeypox

type. On the other hand, in Fig 11 we present an example where the skin lesion is of Monkey-

pox type but is classified as Non-Monkeypox type.

It should be noted that in Fig 10 each of the models focuses on different regions with over-

lap in the bottom region. The main aim of an ensemble learning framework is to form an asso-

ciation of complementary features. This seems to be the case here. It is important to note that

the lesions are spread out, and as a result, it becomes difficult for the models to focus on a sin-

gle region.

In Fig 11, we observe a skin lesion that is more present locally compared to the precious fig-

ure. Although the lesion does not appear mature enough to be classified into any of the

Table 4. Fold wise recall scores concerning the base models and the ensemble method. All scores are reported in %.

Fold Method

Xception Inception V3 DenseNet 169 Ensemble

Fold 1 100.00 83.33 92.86 100.00

Fold 2 100.00 89.47 94.12 100.00

Fold 3 100.00 100.00 95.65 100.00

Fold 4 85.00 84.21 89.47 89.47

Fold 5 94.12 93.75 89.47 94.44

Average 95.82 90.15 92.31 96.78

https://doi.org/10.1371/journal.pone.0281815.t004

Table 5. Fold wise F1 scores concerning the base models and the ensemble method. All scores are reported in %.

Fold Method

Xception Inception V3 DenseNet 169 Ensemble

Fold 1 90.32 85.71 83.87 96.97

Fold 2 84.85 89.47 88.89 91.43

Fold 3 93.88 93.88 89.80 96.00

Fold 4 91.89 88.89 94.44 94.44

Fold 5 80.00 76.92 80.95 82.93

Average 88.19 86.97 87.59 92.35

https://doi.org/10.1371/journal.pone.0281815.t005
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categories, this may be a strong reason why Grad-CAMs suggest the area of interest to be more

spread out compared to the size of the lesion. Like in the case of the Xception model, the

region of interest is much more localised around the lesion area, consequently, the probability

obtained is the lowest of all. However, the clean surface, combined with the small lesion size,

leads the deep models to incorrectly classify the image as a non-Monkeypox image.

Conclusion

The recent outbreak of Monkeypox and its harmful impacts pose a vulnerable challenge to

society. Early diagnosis along with treatment with the best possible medical advice is the only

way to deal with this disease. In this paper, we present an ensemble learning-based framework

comprising three deep learners as the base models. We propose a Beta function-based

Fig 10. Grad-CAM for an image belonging to Non-Monkeypox class but classified as Monkeypox. The top left image is the original image followed

by Grad-CAMs from the Xception (Top Right), Inception V3 (Bottom Left) and DenseNet 169 (Bottom Right) model. The probabilities of classification

probabilities are as follows: Xception-0.9945 (Monkeypox), Inception V3-0.9081 (Non Monkeypox) and DenseNet 169-0.9999 (Monkeypox).

https://doi.org/10.1371/journal.pone.0281815.g010
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normalization scheme for probability normalization followed by the sum rule-based ensemble.

We test the method on a publicly available Monkeypox skin lesion dataset using a 5-fold cross-

validation methodology to show the robustness of the proposed method.

One major limitation of working on this research topic is the lack of datasets. Hence, we

want to augment the dataset size using some latest deep learning-based models. We also want

to work on attention-based methods to highlight important regions for better diagnosis. Since

our method provides an end-to-end solution, it may be considered for real-time deployment.

However, the advice of medical professionals should be carefully considered before taking any

such steps. Additionally, we may collaborate with medical professionals to get handcrafted fea-

tures to increase the robustness of this method.

Fig 11. Grad-CAM for an image belonging to Monkeypox class but classified as aNon-Monkeypox class. The top left image is the original image

followed by Grad-CAMs from the Xception (top right), Inception V3 (bottom left) and DenseNet 169 (bottom right) models. The classification

probabilities are as follows: Xception-0.7049 (Non-Monkeypox), Inception V3-0.9947 (Non-Monkeypox) and DenseNet 169-0.9789 (Non-

Monkeypox).

https://doi.org/10.1371/journal.pone.0281815.g011
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