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Abstract

There are challenges associated with recruiting children to take part in randomised clinical

trials and as a result, compared to adults, in many disease areas we are less certain about

which treatments are most safe and effective. This can lead to weaker recommendations

about which treatments to prescribe in practice. However, it may be possible to ‘borrow

strength’ from adult evidence to improve our understanding of which treatments work best in

children, and many different statistical methods are available to conduct these analyses. In

this paper we discuss four Bayesian methods for extrapolating adult clinical trial evidence to

children. Using an exemplar dataset, we compare the effect of their modelling assumptions

on the estimated treatment effect and associated heterogeneity. These modelling assump-

tions range from adult evidence being completely generalisable to being completely unre-

lated to the children’s evidence. We finally discuss the appropriateness of these modelling

assumptions in the context of estimating treatment effect in children.

Introduction

There are various challenges associated with conducting randomised control trials (RCTs) to

compare the efficacy and safety of medical interventions in children. A lower disease incidence

in children means fewer patients are eligible to take part in clinical trials and research groups

and pharmaceutical companies are wary of the increased effort which is required to conduct

research with this population. Further to this, young people and/or their parents/carers may

not wish to take on the additional burden and time commitment associated with being in a

clinical trial [1, 2].

Despite many diseases affecting both adults and children, these challenges mean that when

compared to adults, there are usually fewer RCTs in children and therefore, a greater uncer-

tainty about which medicines work ‘best’ to treat a particular disease or condition. This can

lead to medicines being licenced (authorised for marketing on the basis of quality, safety and
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efficacy) in adults some years before they become available for children [2]. Prescribers may

also have little alternative but to use medicines off-label without having direct information to

inform their decision. This in turn, can create inconsistency in which medicines are prescribed

to children to treat a particular condition and may mean that not all children are receiving the

most effective treatment available.

To inform decision making within healthcare (including which medicines to prescribe for a

condition), RCT evidence is often combined using evidence synthesis techniques, such as

meta-analysis (MA), that take a weighted average of efficacy or safety results from multiple

clinical trials (or studies) to produce a summary estimate of the comparative or relative efficacy

(the effect of one treatment compared to another) of two interventions [3]. An extension of

this technique is a network-meta-analysis (NMA), sometimes referred to as a mixed-treatment

comparison, that allows for synthesis of three or more treatments and the simultaneous com-

parison of each treatment with every other. NMA can also provide ‘indirect comparisons’

through which estimates of the relative efficacy or safety of treatments that have not been com-

pared in head-to-head clinical trials are produced, provided they are present in a ‘connected

network’ of treatments i.e., a network where there is a path between any two interventions

with paths formed of randomised comparisons [4].

In paediatric research, however, these analyses may still not provide sufficient evidence for

healthcare decision making as the required RCT evidence may be from a small number of

patients and form only a sparse or disconnected network of comparisons, meaning the pooled

treatment effect remains uncertain. To overcome these issues, it may be possible to ‘extrapo-

late’ or ‘borrow strength’ from clinical trial evidence in a separate but related population. For

the paediatric population, this could be an adult population. Information from the adult popu-

lation would be extended to make inference about the efficacy of treatments in children and

may reduce the uncertainty of treatment effect estimates in children. To justify this type of

extrapolation, the disease manifestation and progression of the disease of interest, along with

the exposure response relationship (that is the observed effects of a treatment at different

doses) should already be established in children and the similarities and/or differences with

the adult population understood [5].

If these conditions are satisfied, ‘borrowing of strength’ from the adult efficacy data can be

facilitated by an extension of Bayesian MA or NMA, referred to as a Bayesian information

sharing model (ISM). Working within a Bayesian framework allows you to combine prior

information (e.g., data from adult clinical trials or clinician’s perspective) about a parameter

(e.g., the relative treatment effect), with that from a new study, to produce a ‘posterior proba-

bility distribution’ i.e. the revised or updated probability of an event occurring after taking into

consideration new information [6]. If no specific prior information is available, then a vague

prior distribution can be specified in the ISM.

In order to ‘borrow strength’ from the adult population, ISMs need to make certain

assumptions about the relationship between adult and paediatric populations, in terms of the

clinical efficacy of the treatment [7]. This can range from clinical trial information of the adult

population being completely generalisable to the paediatric population, where full information

sharing would be appropriate, to the clinical trial information of the two populations being

completely independent of one another and no information sharing can take place. The extent

to which strength is borrowed from one population to another is then determined by the

modelling assumptions, the precision of the data available for the different populations, and

the extent of agreement across data sources [7].

In this paper, we use an exemplar dataset of 16 RCTs comparing two anti-sickness regimens

(combinations of anti-sickness medicines) for the prevention chemotherapy-induced nausea

and vomiting, to investigate how the modelling assumptions of four ISMs, that extend the
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traditional MA, impact the treatment effect estimates and associated heterogeneity in children.

These modelling assumptions range from adult evidence being completely generalisable to

being completely unrelated to the children’s evidence. We discuss the appropriateness of these

assumptions in the context of estimating treatment effect in children.

Exemplar data set

Information sharing methods were motivated by an exemplar dataset containing outcomes

from 16 RCTs (four from paediatric populations and 12 from adult populations) comparing

aprepitant (a newer antiemetic) or fosaprepitant (the intravenous version of aprepitant) with a

control regimen of a 5HT3 antagonist + dexamethasone, for the treatment of chemotherapy-

induced nausea and vomiting.

To create this dataset, we identified all RCTs comparing these antiemetic medications in

adults and paediatric populations, from a recent clinical antiemetic guideline from the Paediat-

ric Oncology Group of Ontario (POGO) [8] and the Multinational Association for Supportive

Care in Cancer (MASCC) [9]. All relevant RCTs identified in these guidelines were included

in the analyses. Data were commonly reported as the proportion of patients experiencing a

‘complete response’ i.e., no vomiting, from the point of chemotherapy administration, up to

five days afterwards. These data were extracted from the RCTs identified and converted into

the number of participants experiencing a vomiting event in the treatment and in the control

arm. Study characteristics were also extracted and these are reported along with the outcome

data in S1 Table.

As the incidence of cancer in children is much rarer than in adults, but the therapeutic che-

motherapies used are often the same, and the effects of antiemetic medications are clinically

believed to be similar, it was considered appropriate to explore information sharing methods

for this example.

Methods

The meta-analysis model

In the standard MA model for each study i and each arm k, the binary data in the form of

events rik and total number of patients nik, are described as coming from a binomial likeli-

hood:

rik � Binomialðpik ; nikÞ

where pik is the probability of an event in arm k of study i, modelled on the log-scale and defin-

ing the linear predicator θik i.e., the log risk of an event in arm k of trial i:

log pi;k
� �

¼ yi;k ¼ μi þ min di;k � logðpi;1 Þ
� �

ð1Þ

where μi is the study specific baseline treatment effects (i.e., the baseline risk of an outcome,

which must be positive) in arm 1 of trial i, defined as μi = log(pi,1) where pi,1 is given a vague

prior distribution (Uniform(0,1)), δi,k is the study specific relative treatment effect (i.e. the log

risk ratio) of the treatment in arm k compared to the treatment in arm 1 in that trial where the

relative effect of a treatment compared to itself, is set to zero: δi,1 = 0.

Models can be specified as having a common/fixed effect, where it is assumed that all stud-

ies estimate the same relative effect i.e. the relative effect is not expected to differ between

study populations included in the analysis; or models may have random effects, where relative

effects of studies are assumed exchangeable or similar, i.e. the relative effect is expected to
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differ between study populations included in the analysis, but is expected to fall within a cer-

tain range or distribution [3].

For random effects model the study specific relative treatment effects are assumed to be

drawn from a normal distribution with a common mean and between trial variability (i.e., the

heterogeneity parameter) τ2. As we are only comparing two treatments in our application the

common mean d1,2, represents the pooled relative effect of the treatment regimen 2 (aprepi-

tant/fosaprepitant + a 5HT3 antagonist + dexamethasone) compared to the comparator treat-

ment regimen 1 (a 5HT3 antagonist + dexamethasone):

di;k ¼ Normal ðd1;2 ; t
2 Þ ð2Þ

The parameter d1,2 is to be estimated and given a non-informative prior: d1,2 ~ Normal

(0,1002).

For the fixed effects model Eq 2 is replaced by:

di;k ¼ d1;2 ð3Þ

Bayesian information sharing models

We now describe the four ISMs compared in this paper. These ISMs differ in parameters in

which they share information: either relative treatment effects, or between study heterogeneity

(for random effects models). As a result, different assumptions are made about the relationship

between the two populations, and different amounts of information are shared between them.

N.B ISMs that relate the parameters of the evidence sets using an exchangeability-based

relationship (where a common distribution is imposed on the parameters e.g., in the multilevel

models and the random walk model) are most useful when there are multiple sources of evi-

dence [7]. As we are only considering two populations, these models are not discussed in this

paper.

The splitting model. The first model we implement is the splitting model, which simply

extends the standard MA model to accommodate the inclusion of two evidence sets but esti-

mates model parameters separately for each population j [7].

For the random effect model, Eq 2 is edited to include population specific parameters:

di;k ¼ Normal ðdj;1;2 ; t
2 Þ

where j defines the population. j = 1 when study index i = 1,. . ., nsA (indicating the adult stud-

ies), and j = 2 when i = nsA + 1,. . .., nsA + nsC (indicating the children studies), where nsA is

the number of adult studies and nsC is the number of children studies.

For the fixed effects model, Eq 3 is edited to include population specific parameters:

di;k ¼ dj;1;2 ð4Þ

The treatment effects for population j are given vague priors: dj,1,2~ Normal(0,1002).

As such, one MA is performed on the adult data, and another on data from the children,

although both analyses are conducted simultaneously. In the random effects model, informa-

tion on between-study heterogeneity is shared between populations and is assumed the same

for adults and children i.e., the variation in treatment effect between clinical trials is assumed

the same in the adult and paediatric populations (although other assumptions could also be

imposed e.g., that heterogeneity in children is proportional to adults). This produces a mar-

ginal benefit, in terms of supporting the estimation of treatment effect in children, as when

there are few children studies there is little information about the variation in treatment effect

between studies.
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The fixed effect version of this model does not share any information between the popula-

tions, rather it estimates the treatment effects separately in adults and children, assuming they

are completely independent of each other (see Eq 4).

Functional relationship models. This ISM assumes parameters are related using a deter-

ministic function i.e. assuming that the relative effect in one population can be written as a

function of the relative effect in the other [7]:

dChild ¼ f ðdAdultÞ ð5Þ

Where dChild is the parameter that relates to the children’s evidence and dAdult the parameter

that relates to the adult evidence. The function f () can take different forms. Here we explore

two relationships.

The ‘lumping’ model, ‘lumps’ the data together from the evidence sets and therefore

assumes the adult data is completely generalisable to the children i.e., the function in Eq 5 is

the identity function and there is no difference in the relative effect between the two popula-

tions. This is equivalent to not distinguishing between adult and paediatric data and carrying

out a simple meta-analysis using all the data.

The proportional effects model, assumes that the relative risk estimated in children is pro-

portional to the relative risk estimated in the adult population, so that there is an additive rela-

tionship on the log relative risk scale:

d2;1;2 ¼ d1;1;2 þ l

A vague prior distribution is specified for the relative treatment effect in adults on the log rela-

tive risk scale d1,1,2* (Normal(0,1002)) and the change (in the log-RR scale in children) is

measured by a parameter lambda (λ), which is also given a vague prior distribution λ~ (Nor-

mal(0,1002)) (although an informative prior could be used for λ if appropriate). In this model,

information sharing takes place from adult to children but also vice-versa. An alternative way

of implementing this model is through modifying the BUGS code to include of a ‘cut’ function

[4] (see S1 File).

Meta-regression. An alternative model is where the two populations are indicated by a

binary study-level covariate and a regression parameter i.e., the difference in treatment effect

between the two populations, is estimated. Here the linear predicator (Eq 1) is modified as fol-

lows [10]:

yi;k ¼ μi þ di;k þ b1k∗Xi

Where β1k is the covariate effect of the indirect or (or adult) population Xi on the treatment

effect. This model allows for a test of interaction between the relative treatment effect and the

binary study level covariate that identifies the adult population. This will assess whether the

relative treatment effect is dependent on data arising from the adult or children’s population.

In this model, information sharing only occurs in random effects models where the heteroge-

neity is assumed equal across populations. In a fixed effect model this is equivalent to a sub-

group analysis.

Implementation. All analyses were carried out in OpenBUGS version 3.2.2 [11] and code

to implement all models can be found in the S1 File. Whilst we include only one treatment

comparison in our analyses (equivalent to a pairwise meta-analysis) and only two arm trials,

the code provided in the S1 File will accommodate multiple treatment comparisons and stud-

ies with three or more arms whilst adequately accounting for multiple random effects that are

correlated (see [4]).
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Separate MA models were conducted for adults and for children, followed by the four

ISMs. For all models, vague prior distributions were used for all trial baselines and for relative

treatment effects (Normal(0,1002)). For random effects models, a minimally informative prior

distribution (Uniform(0,2)) was used for the between-study heterogeneity parameter. Results

are based on 50,000 interactions on three chains after a burn-in of 10,000. Convergence was

assessed visually by checking the mixing of chains. Model fit statistics including the deviance

information criteria, and total residual deviance from each ISM model, along with treatment

effect estimates and associated heterogeneity (and 95% credible intervals) were compared to

those from the separately applied NMAs for adults and for children.

Ethical approval. This research involves uses an exemplar dataset consisting of aggregate

data extracted from clinical trials publications, to compare methods of Bayesian information

sharing. As such ethical approval is not required. This has been confirmed by the Health Sci-

ence Research Governance Committee at the University of York, United Kingdom.

Results

Table 1 presents treatment effect estimates and model fit statistics from the four Bayesian

information sharing methods (the ‘lumping’ model, the ‘splitting’ model, the ‘proportional

Table 1. Results from MA and ISM models comparing aprepitant or fosaprepitant to control regimen for the treatment of chemotherapy induced nausea and

vomiting.

Model Number of data

points

Fixed effect model Random effect model

RR (95%CrI) DIC totresdev* RR (95%CrI) Between-study heterogeneity

(SD)

DIC totresdev*

Adults’ data only 24 0.672 (0.626 to

0.720)

165.7 23.72 0.672 (0.614 to

0.731)

0.064 (0.005 to 0.189) 167.2 22.88

Children’s data only 8 0.768 (0.689 to

0.849)

48.6 11.32 0.754 (0.468 to 1.1) 0.287 (0.01 to 1.140) 48.1 8.54

INFORMATION-SHARING MODELS

Lumping model 32 0.698 (0.656 to

0.740)

215.7 37.55 0.695 (0.638 to

0.751)

0.079(0.008 to 0.198) 215.7 32.76

Splitting model**
Adults 32 0.672 (0.626 to

0.720)

214.3 35.04 0.673 (0.616 to

0.733)

0.052(0.003 to 0.181) 215.3 33.02

Children 0.767 (0.687 to

0.849)

0.762 (0.656 to

0.862)

Proportional effects model

Adults 32 0.671 (0.626 to

0.720)

214.3 35.05 0.673 (0.614 to

0.733)

0.066 (0.005 to 0.184) 215.4 32.9

Children 0.766 (0.687 to

0.848)

0.758 (0.652 to

0.861)

Lambda (relative risk

scale)

1.143 (1.004 to 1.291 1.129 (0.948 to 1.315)

Meta-regression**
Adults 32 0.672 (0626 to

0.720)

214.2 35.02 0.671 (0.618 to

0.731)

0.066 (0.003 to 0.183) 215.3 32.82

Children 0.766 (0.685 to

0.847)

0.761 (0.655 to

0.862)

Beta (relative risk scale) 1.139 (1.000–1.290) 1.125 (0.950–1.028)

* compare to the number of data points,

**Fixed effect model does not share information.

https://doi.org/10.1371/journal.pone.0281791.t001
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effects model and the meta-regression model) used to synthesise data from adults and chil-

dren’s populations. For comparison, treatment effect estimates and model fit statistics from

meta-analyses analysing children’s and adults’ data separately, are also reported. For all analy-

ses, results from both fixed and random effects models are reported.

The ‘lumping’ model, which assume relative effects in both populations are the same, pro-

duced treatment effect estimates closer to those of the MA using adult only data and had a

larger between study heterogeneity compared to the other information sharing models, sug-

gesting heterogeneity might be explained by assuming a less restrictive relationship for the rel-

ative effects across the populations, i.e., models that relaxed the assumptions of generalisability

of adults data to children.

The ‘splitting’ model (with shared heterogeneity when random effects are considered), the

proportional effects and the meta-regression model, produced estimates for adults and chil-

dren comparable to the MAs conducted separately for the populations, and the precision of

the treatment effect estimate for children produced using the random effects model was

improved for all ISMs compared to the MA that analysed children data alone (Table 1).

Although for the fixed effect models, there was little change in precision of children’s estimates

between all ISMs, and the MA that analysed children’s data separately. The model fit was

slightly improved (i.e., the residual deviances were closer to the number of data points) in the

‘splitting’ model, ‘proportional effects model and meta-regression model compared to the

lumping model (Table 1).

Across all information sharing models, fixed effects and random effects models produced

comparable DICs. Whilst the total residual deviance was marginally lower for the random

effects models (Table 1), differences were small, meaning that in general the simplest of the

two models (i.e., the fixed effect model with no additional parameters—‘lumping model’)

would be selected for inference.

Lamba and beta estimates, indicating the difference between the treatment effect estimates

in children and adults are comparable, with both models estimating a 14% and 13% increase

in the relative risk for children compared to adults, for the fixed and random effects models

respectively, although the 95% CrI for the latter includes the possibility of no difference in

effects across the populations for both models (Table 1).

Discussion

In situations where the disease manifestation and progression, along with the exposure

response relationship of a treatment is understood in children, ISMs could help to overcome

the scarcity of clinical effectiveness evidence in this population, by including adult data into

analyses [5]. As ISMs may improve the precision or certainty of the relative treatment effect

estimates in children, the analyses could maximise the usefulness of an existing evidence base

in children to inform decisions about which treatment to prescribe for paediatric diseases and

or illnesses. Whilst previous work has classified ISMs (10), in this paper we apply four of these

models to an example dataset and through comparison of the effect of their modelling assump-

tions on the relative treatment effects and associated heterogeneity, provide preliminary evi-

dence to discuss the appropriateness of using these methods when incorporating adult efficacy

data into analyses of children’s data. We found that when treatment effect estimates for chil-

dren produced by the model that does not distinguish between populations (‘lumping model’)

were compared to those produced by the MAs conducted separately for children, the estimates

were closer to those from the adults MA. This is because there are more studies in the adult

population and therefore the results are dominated by the adult information. In the random

effect model the between study-heterogeneity was greater than that of the other information
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sharing models (Table 1). This is due to the assumption that the relative treatment effect and

heterogeneity are equal for both populations and therefore the model needs to account for the

additional heterogeneity resulting from pooling adult and paediatric data. Thus, we consider

the ‘lumping model’ is likely not an appropriate choice, particularly when there is potential for

differences in relative treatment effect between adults and children, as pooled estimates pro-

duced for children may not reflect the true effectiveness of the treatment in this population.

The ‘splitting’ model produced very similar treatment effect estimates to the MAs con-

ducted using only children’s data. For the fixed effect model, this is expected as the model does

not share information between the populations. While perhaps safest, in terms of not mistak-

enly assuming similarity in clinical efficacy, this maintains the status-quo of evidence sparsity

for children. The random effect model shares information on the between study heterogeneity

and therefore estimated this parameter in children more precisely than when the MA is con-

ducted separately for children (Table 1), as it is able to borrow information from the adult data

to better estimate the parameter. We note that the plausibility of this assumption (in our exam-

ple, that the spread of effects in antiemetic trials in children would be the same as seen in

adults), would need to be considered by paediatrics oncology experts. If considered appropri-

ate, this model may be useful for reducing the uncertainty around treatment effect estimates

when there are very few RCTs in children and a random effects model is considered

appropriate.

The proportional effects model, which estimates the difference (λ) between the treatment

effects across the two populations, produced comparable relative effects estimates to the MAs

containing only children’s data (Table 1). This model is particularly advantageous, as it is able

to include the adult data to support the sample size in the paediatric population, without

assuming that the relative effectiveness is identical. This may be the ‘safer’ option when extrap-

olating from adult clinical trial data, as the efficacy of medications may vary from that of chil-

dren due to differences in the way that medicines are absorbed, distributed, metabolised, and

excreted in the body [2, 12].

However, in the proportional effects model, information sharing takes place from adult to

children but also vice-versa, which may not be desirable. When the model was modified to pre-

vent the data from the children affecting the estimate of the adult population, results were

comparable to the MAs containing only data from children (see S2 Table). This modification

may be helpful when adult data are particularly abundant and it is, therefore, not necessary, or

desirable for the children’s data to influence adult relative effect estimates or decisions already

made for adults.

Finally, the meta-regression model that estimates the effect of a binary covariate (adult/

child) on the treatment outcome, again produced comparable results to the MAs containing

only children’s data and produced very similar estimates to the proportional effects model.

This is expected as both models are estimating conceptually similar parameters in different

ways, the proportional effects model estimates λ as an unknown parameter from the treatment

effect estimates, whilst the meta-regression model includes the adult/children as a binary

study-level covariate in the linear predictor, then estimates the difference in treatment effect

between adults and children. The meta-regression model may be particularly useful to explore

further differences in treatment effect between adults and children. The model can be extended

to include baseline risk or other covariate in the model, to understand whether differences are

attributable to differences in underlying risk or other population differences. The code to

implement this model can be found in the S1 File.

Of the methods discussed, we would advocate the use of the proportional effects or meta-

regression models to incorporate adult data into analyses that estimate the relative effective-

ness of treatments in children, as these methods can account for the scenario where children’s
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responses to medical intervention differs from adults, and this difference can be quantified by

parameters estimated from the data. Although not explored in this paper, there are alternative

ISMs available that can impose constraints on the relationship between the adult and child

population e.g., assuming the relative effectiveness of one population is assumed to be larger

or smaller than another or is expected to follow a particular mathematical function, however

for these to be considered appropriate in the context of ‘borrowing strength’ from adult data, a

substantial amount of previous knowledge and clinical advice would be required to make such

assumptions with confidence.

We have shown ISM methods can improve the certainty of clinical effectiveness estimates

in the paediatric population. However, we note that that the performance of the methods can

differ under different conditions e.g., when used with datasets with different features and dif-

ferent network structures [10]. Ultimately, improving the certainty of estimates in children

may help to reduce the need for additional RCTs in children, and aid clinicians and patients in

making treatment decisions, from the existing evidence base. The models may also be used to

facilitate prediction of the effect of new treatments in children (through estimation of a predic-

tion interval) for example, if models such as the ‘proportional effects model’ or ‘meta-regres-

sion model’ showed treatment effect estimates of current treatments options were consistent

between adults and children, (either consistently similar or had similar differences across com-

parisons). These predictions could then lead to smaller trials being required to confirm the rel-

ative effects of new drugs in children, which could improve the evidence-base in this

population and lead to faster approval and uptake of effective treatments.

Limitations

Here we have focused on simple approaches to information sharing in pairwise meta-analysis,

however, other methods have been proposed, namely using the external data as prior informa-

tion [13] or model averaging approaches [14] to combine the different evidence sources,

which we have not evaluated in this paper.

Our work uses an example dataset. Future research could include simulation studies to pro-

vide a more comprehensive understanding of how these ISM models perform under different

conditions, for example, in scenarios where the relative effects of adults and children differ to a

greater or lesser degree. However, this was out of the scope of this project.

Further to this, the example dataset we use contains only trials making the same treatment

comparison. Future work aims to produce clinically useful outcomes and will collect data to

form a full network of treatments where direct and indirect evidence is available (within popu-

lations). This could result in stronger evidence and the potential for more information sharing.

This network will also allow for testing further assumptions e.g., whether relative treatment

effects are similar for adults/children across multiple treatments or within a class of treatments

but not another.

Supporting information

S1 Table. Study characteristics and event data for the outcome, no episode of vomiting in

from the point of chemotherapy administration to five days afterward.

(DOCX)

S2 Table. Results from MA and the proportional effects ‘cut function’ model comparing

aprepitant or fosaprepitant to control regimen for the treatment of chemotherapy induced

nausea and vomiting.

(DOCX)

PLOS ONE A comparision of Bayesian methods for extrapolating clincial trial data from adults to children

PLOS ONE | https://doi.org/10.1371/journal.pone.0281791 June 15, 2023 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281791.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281791.s002
https://doi.org/10.1371/journal.pone.0281791


S1 File. Code for implementing the information sharing models described in this paper.

(DOCX)

Author Contributions

Conceptualization: Ruth Walker, Bob Phillips, Sofia Dias.

Data curation: Ruth Walker.

Formal analysis: Ruth Walker, Sofia Dias.

Funding acquisition: Ruth Walker, Bob Phillips, Sofia Dias.

Investigation: Ruth Walker, Bob Phillips.

Methodology: Ruth Walker, Sofia Dias.

Project administration: Ruth Walker.

Resources: Ruth Walker, Bob Phillips, Sofia Dias.

Software: Ruth Walker, Sofia Dias.

Supervision: Bob Phillips, Sofia Dias.

Visualization: Ruth Walker.

Writing – original draft: Ruth Walker.

Writing – review & editing: Ruth Walker, Bob Phillips, Sofia Dias.

References
1. Hein IM TP, de Vries MC, Knibbe CA, van Goudoever JB, Lindauer RJ. Why do children decide not to

participate in clinical research: a quantitative and qualitative study. Pediatric Research. 2015; 78.

2. Gamalo-Siebers M SJ, Basu C, Zhao X, Gopalakrishnan M, Gao A, et al. Statistical modeling for Bayes-

ian extrapolation of adult clinical trial information in pediatric drug evaluation. Pharmaceutical Statistics

2017;. 2017; 16:232–49. https://doi.org/10.1002/pst.1807 PMID: 28448684

3. Deeks JJ, Higgins, J.P., Altman, D.G. Analysing data and undertaking meta-analyses. In Cochrane

Handbook for Systematic Reviews of Interventions (J.P. Higgins JT, J. Chandler, M. Cumpston, T. Li,

M.J. Page and V.A. Welch, editor2019.

4. Dias S WN, Jansen JP, Sutton A. Network Meta-analysis for Decision Making: Wiley & Sons ltd; 2018.

5. Ollivier C, Thomson A, Manolis E, et al. Commentary on the EMA Reflection Paper on the use of extrap-

olation in the development of medicines for paediatrics. Br J Clin Pharmacol. 2019; 85:659–68. https://

doi.org/10.1111/bcp.13883 PMID: 30707770

6. Spiegelhalter DJ MJ, Jones DR, Abrams KR. Methods in health service research. An introduction to

bayesian methods in health technology assessment. BMJ. 1999; 21((7208)):508–12. https://doi.org/10.

1136/bmj.319.7208.508 PMID: 10454409

7. Nikolaidis GF wB, Palmer S, Soares M. Classifying information-sharing methods. BMC

Medical Research Methodology 2021(21). https://doi.org/10.1186/s12874-021-01292-z PMID:

34022810

8. Patel P, Robinson PD, Thackray J, Flank J, Holdsworth MT, Gibson P, et al. Guideline for the prevention

of acute chemotherapy-induced nausea and vomiting in pediatric cancer patients: A focused update.

Pediatric Blood & Cancer. 2017; 64. https://doi.org/10.1002/pbc.26542 PMID: 28453189

9. Roila F MA, Herrstedt J, Aapro M, Gralla RJ, Bruera E, et al. MASCC and ESMO guideline update for

the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting and of nausea and

vomiting in advanced cancer patients. Annals of Oncology 2016. 2016; 27:119–33.

10. Nikolaidis G. Borrowing strength from ‘indirect’ evidence: methods and policy implications for health

technology assessment.: University of York.; 2020.

11. Lunn D. S, D., Thomas A. and Best N. The BUGS project: Evolution, critique and future directions. Stat-

ist Med,. 2009; 28:: 3049–67.

PLOS ONE A comparision of Bayesian methods for extrapolating clincial trial data from adults to children

PLOS ONE | https://doi.org/10.1371/journal.pone.0281791 June 15, 2023 10 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281791.s003
https://doi.org/10.1002/pst.1807
http://www.ncbi.nlm.nih.gov/pubmed/28448684
https://doi.org/10.1111/bcp.13883
https://doi.org/10.1111/bcp.13883
http://www.ncbi.nlm.nih.gov/pubmed/30707770
https://doi.org/10.1136/bmj.319.7208.508
https://doi.org/10.1136/bmj.319.7208.508
http://www.ncbi.nlm.nih.gov/pubmed/10454409
https://doi.org/10.1186/s12874-021-01292-z
http://www.ncbi.nlm.nih.gov/pubmed/34022810
https://doi.org/10.1002/pbc.26542
http://www.ncbi.nlm.nih.gov/pubmed/28453189
https://doi.org/10.1371/journal.pone.0281791


12. O’Hara K. Paediatric pharmacokinetics and drug doses. Aust Prescr. 2016; 39:208–10. https://doi.org/

10.18773/austprescr.2016.071 PMID: 27990048

13. Best N PR, Pouliquen IJ, Keene ON. Assessing efficacy in important subgroups in confirmatory trials:

An example using Bayesian dynamic borrowing. Pharm Stat. 2021 May;. 2021; 20:551–62. https://doi.

org/10.1002/pst.2093 PMID: 33475231
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