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Abstract

Testing remains a key tool for managing health care and making health policy during the

coronavirus pandemic, and it will probably be important in future pandemics. Because of

false negative and false positive tests, the observed fraction of positive tests—the surface

positivity—is generally different from the fraction of infected individuals (the incidence rate

of the disease). In this paper a previous method for translating surface positivity to a point

estimate for incidence rate, then to an appropriate range of values for the incidence rate con-

sistent with the model and data (the test range), and finally to the risk (the probability of

including one infected individual) associated with groups of different sizes is illustrated. The

method is then extended to include asymptomatic infections. To do so, the process of test-

ing is modeled using both analysis and Monte Carlo simulation. Doing so shows that it is

possible to determine point estimates for the fraction of infected and symptomatic individu-

als, the fraction of uninfected and symptomatic individuals, and the ratio of infected asymp-

tomatic individuals to infected symptomatic individuals. Inclusion of symptom status

generalizes the test range from an interval to a region in the plane determined by the inci-

dence rate and the ratio of asymptomatic to symptomatic infections; likelihood methods can

be used to determine the contour of the rest region. Points on this contour can be used to

compute the risk (defined as the probability of including one asymptomatic infected individ-

ual) in groups of different sizes. These results have operational implications that include:

positivity rate is not incidence rate; symptom status at testing can provide valuable informa-

tion about asymptomatic infections; collecting information on time since putative virus expo-

sure at testing is valuable for determining point estimates and test ranges; risk is a graded

(rather than binary) function of group size; and because the information provided by testing

becomes more accurate with more tests but at a decreasing rate, it is possible to over-test

fixed spatial regions. The paper concludes with limitations of the method and directions for

future work.
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Introduction

Entering the third year of the 2019 coronavirus disease (henceforth COVID-19) pandemic, it

is clear that the world was woefully underprepared, in many different ways, for dealing with it.

ItThe current pandemic is an illustration of the natural evolutionary play [1] so that one

should expect future pandemics and lose no time in preparing for them while dealing with the

present one.

Some authors have suggested that it is appropriate to prepare for the next pandemic as one

prepares for war [2–5]. Operational analysis grew out of the scientific approach to operational

questions in World War II [6–9]. One of the key tenets of operational analysis is to model the

process as well as the data [7, 10]. Among the advantages, when the process is modeled, one

knows the true state of world, which allows assessment of the quality of the analyses by com-

parison of analytical outcomes with a known situation. This gives confidence that the methods

will work when the true state of the world is unknown.

Models for dynamics and control of the disease, prioritizing hospital care, and setting policy

[11–18] require information about the health status of the population. This is determined by

testing for infection, which thus emerged as a crucial component of managing health policy

during the current pandemic and will probably be key in future pandemics [19]. For example,

the Global Influenza Surveillance and Response Network (the “flu network” [20, 21]) estab-

lished in 1952 played a key role in the early responses to the COVID-19 pandemic. The time is

now to prepare for future testing.

Testing is complicated an individual is in an early stage of the infection may give a false neg-

ative test, infected individuals may be asymptomatic and thus not tested, and symptomatic but

uninfected individuals may give false positive test results. Thus, test errors involve both false

negative tests, and false positive tests, in which an uninfected individual tests positive [22–27].

These are called the false negative probability [28], denoted here by pFN, and false positive

probability, denoted here pFP. It may one day be possible to drive the false positive probability

to zero with improved specificity of tests, but the ontogeny of the disease within an individual

means that there will always be false negative tests [25, 26].

A starting point for the interpretation of testing results is to envision that a population is

divided into infected (antigen positive) and uninfected (antigen negative) individuals, with the

goal of estimating the fraction of infected individuals (the incidence rate) from the number of

positive results P when T tests are given. Because of both kinds of test errors, the surface posi-

tivity rate P/T (which is observed; henceforth simply called positivity rate) will generally differ

from the incidence rate (which is not observed). It is natural and intuitive to ask for the unob-

served incidence rate that is most likely given the test results; this is called the Maximum Like-

lihood Estimate (MLE) of the incidence rate.

Brown and Mangel [29] and Mangel and Brown [30] (also see [31, 32] where similar meth-

ods are used) show that the Maximum Likelihood Estimtate for the incidence rate, denoted by

f̂ is

f̂ ¼
P=T � pFP

1 � pFN � pFP
; ð1Þ

which is to be interpreted as f̂ ¼ 0 if the right side of Eq 1 is negative. As will be explained

below application of Bayesian methods allows determination of a probability distribution for

the incidence rate when the right side of Eq 1 is negative.

In addition to a point estimate for the incidence rate, it is valuable to have a range of inci-

dence rates that are consistent with the model and the data since then one can bound the inci-

dence rate and its associated risk of further infection (Eqs 3 and 4 below). That is, forecasting
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for a pandemic can be improved by using a predictive distribution, rather than the point esti-

mates in Eq 1, (cf. [33]).

In [29, 30], we show that an appropriate test range, denoted by Rangeðf̂ Þ is

Rangeðf̂ Þ ¼ 3:92

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþðf̂ Þð1 � pþðf̂ ÞÞ
Tð1 � pFN � pFPÞ

2

s

; ð2Þ

where pþðf̂ Þ ¼ f̂ ð1 � pFNÞ þ ð1 � f̂ ÞpFP.

McElreath [34, p. 54] describes and equation such as Eq 2 as the 95% compatibility interval,

avoiding the undesired implications of words such as “confidence” or “credible” [35].

Rangeðf̂ Þ is symmetrically distributed around the true range with very small mean error

between the two [30], so that lower and upper limits for the estimated incidence rate are

f̂ lower ¼ f̂ � 0:5 � Rangeðf̂ Þ and f̂ upper ¼ f̂ þ 0:5 � Rangeðf̂ Þ.
Mangel and Brown [30] also show how likelihood methods can be used to obtain a test

range when positivity is 0 (so that f̂ ¼ 0). In this paper, we will show how to determine the test

range when 0< P/T< pFP However, for the remainder of this section, we assume that P/T>
pFP so that the estimate of incidence rate is strictly positive.

Eqs 1 and 2 lead to the operational recommendation that one should stratify testing data

according to test errors. When this is not possible, one should stratify tests according to the

estimated time since exposure, assign best estimates to the test errors, and conduct sensitivity

analyses of the results.

Test results can play an important role in policymaking because they can be used to deter-

mine the risk of spreading infection associated with groups of different sizes. Doing so requires

a definition of risk. We define the risk to be including at least one infected individual in a

group of specified size. The risk Rðh; f̂ Þ associated with a group of size h when the estimate for

incidence rate is f̂ is [29, 30]

Rðh; f̂ Þ ¼ 1 � ð1 � f̂ Þh: ð3Þ

Eq 3 allows us to explore the risk ramifications of groups of different sizes. Were the true

incidence rate known, we replace f̂ by ft (Fig 1). Fig 1 can be used to determine the risk associ-

ated with groups of different sizes by choosing a group size on the x-axis, drawing a vertical

line to intersect the curve, drawing a horizontal line that intersects the y-axis, and reading off

the level of risk. When the true value of the incidence rate is unknown, we create upper and

lower bounds for risk by generating curves similar to Fig 1 using the lower and upper bounds

f̂ lower ¼ f̂ � 0:5 � Rangeðf̂ Þ and f̂ upper ¼ f̂ þ 0:5 � Rangeðf̂ Þ, as in Brown and Mangel [[29, Fig

2].

We can invert Eq 3 by specifying a level of acceptable risk Racc and then solve fof the group

size haccðRacc; f̂ Þ consistent with the specified acceptable risk and the estimate of incidence rate

is f̂ :

haccðRacc; f̂ Þ ¼
logð1 � RaccÞ

logð1 � f̂ Þ
: ð4Þ

Replacing the estimate of incidence rate by its maximum and minimum values

fmax ¼ f̂ þ 0:5 � Rangeðf̂ ) and fmin ¼ f̂ � 0:5 � Rangeðf̂ Þ in Eq 4 allows us to bound the accept-

able group size consistent with the level of acceptable risk.
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In Fig 2, I show 16 realizations of acceptable group size using the simulation methods

described in [30]. The dotted line shows the group size consistent with the level of acceptable

risk when the incidence rate is ft, the solid black line is the group size using the estimate in Eq

4, and the red and blue lines are the group sizes using the maximum and minimum estimates

for incidence rate, fupper ¼ f̂ þ 0:5 � Rangeðf̂ ) and flower ¼ f̂ � 0:5 � Rangeðf̂ Þ, respectively. One

key observation is that the group size determined if the incidence rate were known (dotted

line) falls between those determined from the upper and lower limits of incidence rate deter-

mined by the test range.

It is also now well established that asymptomatic infected individuals can readily transmit

infection [36–47]. Birx [2] emphasizes the role of untested asymptomatic individuals in the

spread of the disease. Because of asymptomatic cases, policies that exclude symptomatic indi-

viduals from groups may still have considerable risk of including infected individuals who can

transmit the disease.

The first purpose of this paper is to show how to obtain the test range when there is no

information on symptoms and positivity is less than the probability of a false positive test. The

second purpose of this paper is to generalize Eqs 1–4 and develop the analogue of Fig 1 when

asymptomatic and symptomatic individuals are identified at the time of testing.

When there is information on symptoms (Fig 3), a fraction ft of the population is infected

and symptomatic; a fraction ρtft is infected and asymptomatic; a fraction gt is uninfected but

symptomatic; and the remaining fraction, 1 − ft(1 + ρt) − gt, is neither infected nor symptom-

atic. Infected individuals have probabilities of a false negative test, denoted by pSFN and pAFN
where the subscript S and A correspond to symptomatic and asymptomatic individuals,

respectively. Uninfected individuals have probabilities of a false positive test denoted by pSFP
and pAFP, respectively. Using testing information, we seek point estimates and the analogue of

test ranges for the unknown incidence rates and ratio of asymptomatic to symptomatic cases.

Fig 1. The risk of groups of different sizes (Eq 3) when the true fraction of infected individuals is ft = 0.05 (i.e., we set f̂ ¼ 0:05 in Eq 3). This figure

can be used to determine the risk associated with groups of different sizes (ranging from 2 to 100) by choosing a group size on the x-axis, drawing a

vertical line to intersect the curve, drawing a horizontal line that intersects the y-axis, and reading off the level of risk.

https://doi.org/10.1371/journal.pone.0281710.g001
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Materials and methods

Determining test range with no information on symptoms and positivity

less than the probability of a false positive test

In this case, as with Eqs 1–4, there is a single unknown incidence rate, which we continue to

denote by ft. The methods used are generalized when there is information on symptoms, so

this section is a warm-up to the harder problem.

The probability of obtaining a positive test when the incidence rate is f is

pþðf Þ ¼ f ð1 � pFNÞ þ ð1 � f ÞpFPÞ: ð5Þ

The first term on the right hand side of Eq 5 corresponds to individuals who are infected

and have a true positive test; the second term corresponds to individuals who are not infected

and have a false positive test.

Fig 2. Sixteen realizations of the group size as a function of acceptable risk using the simulation methods described in [30]. In all panels, the

number of tests is T = 2500, the true incidence rate is ft = 0.05, and the probabilities of false negative and false positives tests are 0.25 and 0.05. The

dotted line shows the group size consistent with the level of acceptable risk when the incidence rate is ft, the solid black line is the group size using the

estimate in Eq 1 determined using the positivity rate from the individual realization of the simulation, and the red and blue lines are the group sizes

using the maximum and minimum estimates for incidence rate, fupper ¼ f̂ þ 0:5 � Rangeðf̂ ) and flower ¼ f̂ � 0:5 � Rangeðf̂ Þ, respectively. One key

observation is that the group size determined if the incidence rate were known (dotted line) falls between those determined from the upper and lower

limits of incidence rate determined by the test range.

https://doi.org/10.1371/journal.pone.0281710.g002
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When T tests are given, the number of positive tests P is binomially distributed with param-

eters T and p+(f) [30–32], which we write as P ¼ Bð�;T; pþðftÞÞ, where

BðP;T; pþðf ÞÞ ¼ T
P

� �
pþðf Þ

P
ð1 � pþðf ÞÞ

T� P
. The likelihood of an incidence rate f given the test

data P and T has the same form [30–32], but is a function of the incidence rate f conditioned

on the values of the test data

Lðpþðf ÞjP; TÞ ¼
T
P

� �

pþðf Þ
P
ð1 � pþðf ÞÞ

T� P
: ð6Þ

In S1 Section in S1 File, we show that the maximum likelihood estimate for the fraction of

the population infected f̂ satisfies

p0
þ
ðf̂ Þ

pþðf̂ Þð1 � pþðf̂ ÞÞ
½P � Tpþðf̂ Þ� ¼ 0 ð7Þ

where p0
þ
ðf̂ Þ ¼ 1 � pFN � pFP.

Since pþðf̂ Þ ¼ f̂ ð1 � pFNÞ þ ð1 � f̂ ÞpFP, we conclude that if there is an internal maximum

of the likelihood (i.e. f̂ > 0), it must occur when P ¼ Tpþðf̂ Þ ¼ T½f̂ ð1 � pFNÞ þ ð1 � f̂ ÞpFP�.
Solving this equation for f̂ gives Eq 1. When P� Tp+(f), we set f̂ = 0 and arrive at the nettle-

some case of this subsection.

In Fig 4, I show the logarithm of the likelihood (the log-likelihood function) as a function of

incidence rate f for four values of positivity. In Fig 4(A), P/T = 0.075 and the peak of the likeli-

hood is clearly away from the boundary f = 0. As positivity declines but stays larger than pFP, as

in Fig 4(B) and Fig 4(C), there is still an internal peak of the likelihood function. However,

Fig 3. The population divided into four classes according to infection and symptom status. A fraction ft of the

population is symptomatic and infected (antigen positive); such individuals have a probability of a false negative test

pSFN. A fraction gt of the population is symptomatic but not infected; such individuals have a probability of a false

positive test pSFP. A fraction ρtft of the population is infected but not symptomatic; such individuals have a probability

of a false negative test pAFN. Finally, fraction 1 − ft − gt − ρtft = 1 − ft(1 + ρt) − gt of the population is neither infected nor

symptomatic; such individuals have a probability of a false positive test pAFP. The subscript t indicates that these three

parameters characterize the true state of the world, however none of them are observable.

https://doi.org/10.1371/journal.pone.0281710.g003
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when positivity falls below pFP, as in Fig 4(D), the maximum of the log-likelihood function

occurs on the boundary.

We convert from a likelihood to a probability distribution by assuming a uniform prior on f
and use Bayes’s theorem to write the probability density for f given the test data (also see S2

Section in S1 File):

φðf jP;TÞ ¼
Lðf jP;TÞ

R 1

f 0¼0
Lðf 0jP; TÞdf 0

: ð8Þ

Although the denominator in Eq 8 can be written in terms of the classical beta function

[48], it is most simply viewed as a constant obtained by using a very fine discretization of the

interval [0, 1].

When the maximum of the likelihood occurs at the boundary f = 0, the probability φ(f) will

also have its maximum at the boundary. In this case, the test range is no longer symmetrical

but is an interval [0, f0.95], where f0.95 is the value of incidence rate such that
R f0:95

f 0¼0
�ðf 0jP;TÞdf 0 ¼ 0:95 (or the equivalent when a summation instead of an integral is used

in Eq 8).

Fig 4. Behavior of the log-likelihood function. Shown is the log-likelihood function (the logarithm of the right side of Eq 6) as the positivity rate

declines when pFN = 0.25, pFP = 0.05 and T = 100 tests are administered for positivity (A) 0.075, (B) 0.06, (C) 0.0525, and (D) 0.04.

https://doi.org/10.1371/journal.pone.0281710.g004
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Analysis when there is information on symptoms

The operational situation with information on symptoms. We assume that T tests are

administered to a population in which some individuals are symptomatic and others are not

(recorded at the time of testing) and each individual tested has either a positive or negative test

for coronavirus. As described in Fig 3, there are now four classes of individuals:

• A fraction ft of the population is symptomatic and infected (antigen positive); these individu-

als have a probability of a false negative test pSFN.

• A fraction gt of the population is symptomatic but not infected; these individuals have a

probability of a false positive test pSFP.

• A fraction ρtft of the population is infected but not symptomatic; these individuals have a

probability of a false negative test pAFN.

• The remaining fraction of the population, 1 − ft − gt − ρtft = 1 − ft(1 + ρt) − gt, is neither

infected nor symptomatic; these individuals have a probability of a false positive test pAFP.

When this situation holds, three kinds of test data are generated:

• The number P of positive tests.

• The number TS of symptomatic individuals.

• The number PS of symptomatic individuals who tested positive.

Point estimates for the fractions of infected and uninfected symptomatic individuals

and the ratio of asymptomatic to symptomatic infected individuals. The following causal

chain characterizes the operation of testing:

• The total number of tests, T, leads to number of symptomatic individuals in the sample, TS.

• TS leads to the number of positive tests of symptomatic individuals, PS.

• T, TS, and PS combined lead to the remaining positive results, P − PS of T − TS tests from

asymptomatic individuals.

As above, we let Bð�jN; pÞ denote a binomial distribution with number of samples N and

probability of a positive event p, where the dot can run from 0 (no positive event) to N (only

positive events). If pS denotes the probability of sampling a symptomatic individual, pS+ the

probability of obtaining a positive test from a symptomatic individual, and pA+ the probability

of obtaining a positive test from an asymptomatic individual, the test results have distributions

TS � Bð�jT; pSÞ; ð9Þ

PS � Bð�jT;TS; pSþÞ; and ð10Þ

P � PS � Bð�jT;TS; PS; pAþÞ: ð11Þ

The probabilities on the right sides of Eqs 9–11 are constructed from the assumptions sum-

marized in Fig 3. The fraction of individuals who are symptomatic is ft + gt so that

pS ¼ ft þ gt: ð12Þ
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Since pS+ is the probability that an individual tests positive given that the individual is

symptomatic, from the definition of conditional probability

pSþ ¼
Pr½symptomatic and test positive�

Pr½symptomatic�
¼
ftð1 � pSFNÞ þ gtpSFP

ft þ gt
: ð13Þ

The probability that an individual tests positive given that the individual is asymptomatic is

computed similarly:

pAþ ¼
ftrtð1 � pAFNÞ þ ð1 � gt � ftð1þ rtÞÞpAFP

1 � ft � gt
: ð14Þ

We let f̂ ; ĝ and r̂ denote the maximum likelihood estimates (MLEs) for the fraction of the

population that is infected and symptomatic or not infected and symptomatic respectively,

and for the ratio of the fraction that is infected and asymptomatic to that which is infected and

symptomatic.

When a random variable has the binomial distribution Bð�jN; pÞ, given K positive events,

the MLE for p is p̂ ¼ K=N (see S1 Section in S1 File) so that the MLEs for the probabilities in

Eqs 9–11 are TS/T, PS/TS, and (P − PS)/(T − TS) from which we conclude

f̂ þ ĝ ¼
TS
T
; ð15Þ

f̂ ð1 � pSFNÞ þ ĝpSFP
f̂ þ ĝ

¼
PS
TS
; and ð16Þ

f̂ r̂ð1 � pAFNÞ þ ð1 � f̂ ð1þ r̂Þ � ĝÞpAFP ¼ ð1 � f̂ � ĝÞ
P � PS
T � TS

: ð17Þ

Eqs 15 and 16 are independent of r̂ and can be rewritten as

f̂ ¼ ĝ
ðPS=TSÞ � pSFP

1 � pSFN � ðPS=TSÞ
; ð18Þ

which we write as f̂ ¼ c1ðPS;TSÞĝ , where c1(PS, TS) is the combination of terms multiplying ĝ
on the right side of Eq 18 and the test errors are suppressed. With this notation, we substitute

into Eq 15 and solve to obtain

ĝ ¼
TS

ð1þ c1ðPS;TSÞÞT
: ð19Þ

Thus, both f̂ and ĝ are known; they are random variables because PS and TS are random

variables.

We now rewrite Eq 17 as

f̂ r̂ð1 � pAFN � pAFPÞ ¼ ð1 � f̂ � ĝÞ
P � PS
T � TS

� pAFPð1 � f̂ � ĝÞ; ð20Þ
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let c2 = 1 − pAFN − pAFP, and solve for r̂ to obtain

r̂ ¼
ð1 � f̂ � ĝÞ

c2 f̂
P � PS
T � TS

� pAFP

� �

: ð21Þ

Since the right side of Eq 21 depends on the test data TS, PS, and P, r̂ is also a random

variable.

Eqs 18, 19 and 21 generalize Eq 2 to the case in which symptomatic and asymptomatic indi-

viduals are identified at the time of testing. We have already thus generalized the method in

[29, 30] to obtain point estimates of the fractions of the population of infected and symptom-

atic, uninfected and symptomatic, and infected and asymptomatic individuals. We next

explore the properties of these point estimates and then generalize the notion of test range and

compute and the risk of groups of different sizes including asymptomatic infected individuals.

The means of the estimates. We compute the means of the estimates, continuing to use

ft, gt, and ρt to denote their true values, with two goals. We explore 1) whether the estimates in

Eqs 18, 19 and 21 are unbiased, in the sense that their expectations (over the stochastic sam-

pling process) are the underlying true values generating the data, and 2) if there is a bias how

to characterize it.

The mean of ĝ . We begin by rewriting Eq 19 as

ĝ ¼
TS
T
�

1

1þ cðPS;TSÞ
: ð22Þ

In S2 Section in S1 File, I show that 1þ cðPS;TSÞ ¼
1� pSFN � pSFP

1� pSFN � ðPS=TSÞ
so that we can rewrite Eq

22 as

ĝ ¼
TS
T
�

1 � pSFN � ðPS=TSÞ
1 � pSFN � pSFP

� �

¼
1

T
�
TSð1 � pSFNÞ � PS

1 � pSFN � pSFP

� �

: ð23Þ

Since the denominator in Eq 23 is a constant, the expectation of ĝ is

EðĝÞ ¼
1

T
�

1

1 � pSFN � pSFP
� EðTSÞð1 � pSFNÞ � EðPSÞ½ �: ð24Þ

In the S2 Section in S1 File, I show that EðTSÞ ¼ Tðft þ gtÞ and

EðPSÞ ¼ T½ftð1 � pSFNÞ þ gtpSFP�, from which it follows that EðĝÞ ¼ gt; the expected value of ĝ
is the true value that underlies the testing process.

The mean of f̂ . We begin by multiplying the top and bottom of the right side of Eq 18 by

TS to obtain

f̂ ¼ ĝ
PS � pSFPTS

TSð1 � pSFNÞ � PS
ð25Þ

and now use the version of ĝ on the far right side of Eq 23 to obtain

f̂ ¼
1

T
�
TSð1 � pSFNÞ � PS

1 � pSFN � pSFP

� �

�
PS � pSFPTS

TSð1 � pSFNÞ � PS

� �

¼
1

T
PS � pSFPTS

1 � pSFN � pSFP

� �

: ð26Þ
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Taking expectations on the far right side of Eq 26, we obtain

Eðf̂ Þ ¼
1

T
�

1

1 � pSFN � pSFP
� T ftð1 � pSFNÞ þ gtpSFPð Þ � Tðft þ gtÞpSFP½ �

¼
1

T
�

1

1 � pSFN � pSFP
� Tftð1 � pSFN � pSFPÞ

¼ ft;

ð27Þ

so that the expected value of f̂ is the true value that underlies the testing process.

The mean of r̂. We begin with Eq 21, rewritten as

r̂ ¼
ð1 � f̂ � ĝÞ

ð1 � pAFN � pAFPÞf̂
P � PS � pAFPðT � TSÞ

T � TS

� �

: ð28Þ

Eq 28 is a nonlinear function of f̂ and ĝ and involves the quotients of the random variables.

We can approximate the expectation of r̂ using the delta-method [30, 49], which involves Tay-

lor expansion of the right hand side of Eq 28 to second order and then taking expectations.

(Details are in the S2 Section in S1 File). The result is

Eðr̂Þ ¼ rt þ
1

2

2rt
f 2
t

Varðf̂ Þ �
2

Tc2f 2
t

Covðf̂ ; P � PSÞ þ
2pAFP
Tc2f 2

t

Covðf̂ ;T � TSÞ
� �

: ð29Þ

where Var(X) and Cov(X, Y) denote the variance and covariance of random variables X and Y,

which arise from the second order Taylor expansion.

The right side of Eq 29 shows that the leading term in the expected value of r̂ is the true

value generating the data and that this is corrected by variances and covariances that account

for the nonlinearity in Eq 24.

Joint properties of f̂ and r̂ via likelihood analysis

Eq 2 for the test range can be obtained by direct manipulation of the relevant random variables

[30]. When we separate symptomatic and asymptomatic infections, the compatibility interval

for the incidence rate is replaced by a compatibility region (CR) for the incidence rate of symp-

tomatic infected individuals and the ratio of asymptomatic to symptomatic individuals.

Because Eqs 18 and 19 are nonlinear in the test results (which are random variables) and Eq 21

is also nonlinear in f̂ , the analytical approach used in Mangel and Brown [30] is less feasible

now.

We develop the analogue of Eq 2 for test range by using likelihood analysis [50–52], exploit-

ing the general property that for a smooth and well-behaved likelihood (which those that fol-

low are), a 95% CR can be approximated by finding the range of variables for which the log-

likelihood is below the peak log-likelihood by 1.96 times the number of free parameters. This

is essentially a generalization of the Gaussian approximation to the binomial distribution [53]

that leads to Eq 2 [30].

We denote the test results by ~TS;
~PS, and ~P. For any values of f, g, and ρ, the rules of condi-

tional probability imply (suppressing the dependence on T which is known)

PðTS; PS; Pjf ; g; rÞ ¼ Pr½~TS ¼ TS; ~PS ¼ PS; ~P ¼ Pjf ; g; r�

¼ Pr½~TS ¼ TSjf ; g� � Pr½~PS ¼ PSjTS; f ; g� � Pr½~P ¼ PjPS;TS; f ; g; r�:
ð30Þ
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Each term on the right side of Eq 30 is a binomial distribution. In particular, for any values

of f, g, and ρ,

Pr½~TS ¼ TSjf ; g; r� ¼ BðTS;T; f þ gÞ; ð31Þ

Pr½~PS ¼ PSjTS; f ; g; r� ¼ B PS;TS;
f ð1 � pSFNÞ þ gpSFP

f þ g

� �

; and ð32Þ

Pr½~P ¼ PjPS;TS; f ; g; r� ¼ BðP � PS;T � TS;
frð1 � pAFNÞ þ ð1 � g � f ð1þ rÞÞpAFP

1 � f � g
; ð33Þ

the probabilities on the right side of Eqs 31–33 are, respectively, pS, pS+, and pA+ in Eqs 12–14

for any values of f, g and ρ, rather than their true but unknown values.

When data TS, PS, and P are obtained, the likelihoods, given the data, that the state of the

environment is f, g, and ρ are

LTS
ðf ; gjTS;TÞ ¼ BðTS;T; pSðf ; gÞÞ; ð34Þ

LPS
ðf ; gjPS;TS;TÞ ¼ BðPS;TS; pSþðf ; gÞÞ; and ð35Þ

LPðf ; g; rjP; PS;TS;TÞ ¼ BðP � PS;T � TS; pAþðf ; g; rÞÞ: ð36Þ

The likelihood of the data {TS, PS} from symptomatic individuals only depends on the val-

ues of f and g and is

LSðf ; gjPS;TS;TÞ ¼ LPS
ðf ; gjPS;TS;TÞ � LTS

ðf ; gjTS;TÞ: ð37Þ

and the total likelihood of all the data {TS, PS, P} is

Lðf ; g; rjP; PS;TS;TÞ ¼ LPðf ; g; rjP; PS;TS;TÞ � LSðf ; gjPS;TS;TÞ: ð38Þ

The likelihoods in Eqs 37 and 38 are products of binomial distributions that are well

approximated, for sufficient numbers of tests, by the appropriate Gaussian distribution [30,

53]. In the results, we will explore log-likelihoods for both the binomial distributions and their

Gaussian approximations.

Simplifying the likelihoods. Keeping our eyes on the prize of computing the risk of

including infected but asymptomatic individuals in groups of different sizes, we focus on f and

ρ when constructing the CR. Exploring the likelihood is more convenient if one can eliminate

having to deal with g explicitly. Two methods are the profile likelihood and the marginal likeli-

hood [49]; both reduce the number of parameters from 3 to 2.

For the profile likelihood, we replace g in Eqs 37 and 38 by the MLE ĝ , so that

LS;profileðf jPS;TS;TÞ ¼ LPS
ðf ; ĝ jPS;TS;TÞ � LTS

ðf ; ĝ jTS;TÞ and ð39Þ

Lprofileðf ; rjP; PS;TS;TÞ ¼ LPðf ; ĝ ; rjP; PS;TS;TÞ � LSðf ; ĝ jPS;TS;TÞ: ð40Þ
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For the marginal likelihood, we integrate Eqs 37 and 38 over g, so that

LS;marginalðf jPS;TS;TÞ ¼
Z 1

0

LPS
ðf ; gjPS;TS;TÞ � LTS

ðf ; gjTS;TÞdg and ð41Þ

Lmarginalðf ; rjP; PS;TS;TÞ ¼
Z 1

0

LPðf ; g; rjP; PS;TS;TÞ � LSðf ; gjPS;TS;TÞdg: ð42Þ

By numerical exploration, I found that for the operational questions modeled here, the two

methods give virtually the same results for the answers. Were we interested in the tails of the

likelihood, this might not be the case. Since the profile likelihood is computationally much

speedier, I report results using it. The third Rscript in S4 Section in S1 File allows one to

explore the differences between marginal and profile likelihoods for the symptomatic data.

The compatibility regions from the profile likelihood. I computed the approximate 95%

CR from the total profile likelihood using a generalization of the method of Hudson [51] by

first finding the maximum value of the profile log-likehood and then determining the region

in f, g, or f, ρ-space in which the log-likelihood was 2 � 1.96 = 3.92 below its maximum value.

I did computations using R Studio 1.0.143 with underlying R 3.6.1 GUI 1.70 El Capitan

build (7684) on an iMac running Mac OS 12.1.

Results

Test range with no information on symptoms and positivity less than the

probability of a false positive test

When positivity is less than the probability of false positive test, φ(f|P, T) has, similar to the

likelihood, its maximum at f = 0 and monotonically declines. The peak value of φ(f|P, T) and

the rate of decline depend on the positivity and the number of tests (Fig 5).

These normalized likelihoods In Fig 5 have a test range that depends on the number of tests

(Fig 6). As with the situation in which positivity exceeds the probability of a false positive test,

the test range declines with test numbers but at a decreasing rate.

Point estimates, compatibility regions, and risk when there is information

on symptoms

In the base case for Monte Carlo simulations, I set N = 1000 replicates of T = 1500 tests. Since

simulation and test errors scale as the reciprocal of their values, these choices have inherent

errors of the order of 3%, which are sufficient to understand the qualitative patterns and most

of the quantitative patterns. I chose the parameters for the true state of the world and the test

errors from those reported in [22–27]: ft = 0.05, gt = 0.04, and ρt = 1.5 and the test errors are

pSFN = 0.25, pSFP = 0.03, pAFN = 0.5, and pAFP = 0.003. S3 Section in S1 File contains results for

other choices of the true but unknown state of the world.

For the likelihood calculations and the associated risk computations, I first assume that the

test results are the expected values TS, PS, and P, which is a reasonable assumption when T is

large enough, after which I allow the test results to vary more widely. For the base case parame-

ters, the mean values are �TS ¼ 135; �PS ¼ 58:05, and �P ¼ 118:0575. Since actual test data can

only produce integer values, I rounded the �PS and �P to 58 and 118, respectively. Doing so gives

the point estimates f̂ ¼ 0:04995; ĝ ¼ 0:04005, and r̂ ¼ 1:50119 (significant digits included to

illustrate how little accuracy is lost by the rounding process; since the true values are ft = 0.05,

gt = 0.04, and ρt = 1.5).
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Illustrative simulated data. The nth replicate of the simulation of the testing process

yields estimates f̂ n; ĝ n, and r̂n. In Fig 7, I show the first 100 values of the simulation replicates.

Each circle represents the value of f̂ n; ĝ n, or r̂n on the nth replicate of the simulation. The thick

red lines represent the averages over the entire 1000 simulations. There are also black lines at

the true values of the three parameters.

The means of f̂ n and ĝ n essentially sit on top of the true values, as we would expect from the

analysis in Eqs 22–27 showing that Eðf̂ Þ ¼ ft and EðĝÞ ¼ gt. To quantify this agreement, I

computed the mean relative error (ME) for the three estimates. For example, for f̂ , it is

MEðf̂ nÞ ¼

1

N

XN

n¼1
f̂ n � ft

ft
:

ð43Þ

For the simulation illustrated in Fig 7,MEðf̂ nÞ ¼ 0:0039 and MEðĝ nÞ ¼ 0:0036 (i.e., both a

fraction of a percent).

The lower right panel of Fig 7 has an expanded y-axis to show that the mean of the r̂n
exceeds ρt. For this run of the simulation, MEðr̂nÞ ¼ 0:0141. While this is less than 2.0%, it is

almost four times larger than the mean errors of f̂ n and ĝ n.
In Fig 7, the thin dotted lines show the means of the estimates ±1.96 times their standard

deviations. These are a naive 95% compatibility interval under a Gaussian approximation

Fig 5. The normalized likelihoods for incidence rate. Shown are normalized likelihoods (i.e., posteriors with a uniform prior) when pFN = 0.25, pFP =

0.05, and positivity is (A) 0.025, (B) 0.0125, or (C) 0.00625. The colored curves correspond to different numbers of tests shown in the legend inset; since

positivity is specified, higher numbers of tests are associated with lower levels of positivity.

https://doi.org/10.1371/journal.pone.0281710.g005
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because they ignore the other two parameters. Even so, for the full set of 1000 replicates of the

simulation, the fractions of points outside this naive interval are 0.045, 0.055, and 0.05, respec-

tively, for f̂ n, ĝ n, and r̂n.

We conclude that the formulas for the MLEs accurately capture their true values. The spe-

cific results, of course, depend on the simulation results and the number of tests given (both

addressed in the next section). For example, in a different run of 1000 simulations of the test-

ing process, the mean relative errors were -0.0073, -0.0006, and -0.033 for f̂ n, ĝ n, and r̂n respec-

tively, and the fractions of points outside of the naive 95% CR were 0.054, 0.035, and 0.045 for

f̂ n, ĝ n, and r̂n, respectively.

Likelihood, compatibility regions, and the risk of groups of different sizes. In order to

focus on a single value of “test data” we continue using the expected values of TS, PS, and P.

After exploring the situation when test data are the mean value, we will vary the test data.

The likelihood of the symptomatic data. On the way to the goal of estimating the frac-

tion of asymptomatic infections, it is worthwhile to briefly stop and explore the likelihood of

the symptomatic data, which are independent of ρ (Eq 37). In Fig 8, I show the likelihood

when the means of TS and PS are the test results. In this figure, the white dot denotes the true

values of parameters and sits at the peak of the heat map.

When the incidence rate is f and the fraction of symptomatic individuals who are unin-

fected is g, the mean value of TS = T(f + g) so that we expect a negative correlation between val-

ues of f and g, which is evidenced in the figure by the orientation of the contours of likelihood.

Fig 6. The test range for incidence rate. Shown are the test ranges for posteriors with a uniform prior when pFN = 0.25, pFP = 0.05, and positivity is (A)

0.025, (B) 0.0125, or (C) 0.00625.

https://doi.org/10.1371/journal.pone.0281710.g006
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For the purposes of the risk calculation, the most important role of the likelihood function

of the symptomatic data is to provide the MLE value of g for construction of the profile likeli-

hood in Eq 40, to which we now turn.

The likelihood of all the data. In Fig 9, I show the profile likelihood (Eq 40) for f and ρ
when the test data are the mean values of of TS, PS, and P. The banana shape of the contours of

the 95% CR computed is a result of the nonlinearity in Eq 28. In this case, the likelihood is cen-

tered at the true values of the parameters (shown by the white dot), and when Eq 28 is con-

verted to a function ρ(f) by using the MLE ĝ and replacing f̂ by f and r̂ by ρ, the true values of

the parameters sit on the resulting curve, which runs through the middle of the 95% CR.

One property of the range formula in Eq 2 is that test range declines as 1=
ffiffiffiffi
T
p

. That is,

although the range declines as the number of tests increases, it does so at a decreasing rate [30,

Figures 6-8 and p. 16ff]. This observation is more than an academic point, because it has the

operational implication that it is possible to over-sample by providing too many tests in a sin-

gle spatial region (also [30]).

In Fig 10, I explore the consequences of simultaneously increasing the number of tests and

relaxing the assumption that the test data are the mean values of TS, PS, and P so that the true

values (the white dots) no longer sit in the middle of the 95% CR or on the curve ρ(f) and the

contours move in space, as determined by the test results. As with Eq 2, contours shrink as the

number of tests increases, but at a decreasing rate.

Fig 7. Results of simulating the process of testing. Shown (for ease of presentation) are the first 100 values of the point estimates for ft (upper left

panel), gt (upper right panel), and ρt (lower left panel). The lower right panel is an expanded version of the point estimates for ρt. Each circle represents

the value of f̂ n; ĝ n, or r̂n on the nth replicate of the simulation. The thick red lines represent the averages over the entire 1000 simulations. There are also

black lines at the true values of the three parameters. In the lower right panel, the y-axis is expanded to show that the mean of the r̂n exceeds ρt; see the

text for an explanation. The means of f̂ n and ĝ n essentially sit on top of the true values; again see the text for an explanation. The thin dotted lines show

the means of the estimates ±1.96 times their standard deviations.

https://doi.org/10.1371/journal.pone.0281710.g007
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The prize: The risk of including asymptomatic infected individuals in groups of differ-

ent sizes. We are now able to compute the risk of including asymptomatic but infected indi-

viduals in groups of different sizes, to generate a curve analogous to Fig 1. For any values of f
and ρ, the fraction of asymptomatic infected individuals in the population is ρf. Hence, the

analogue of Eq 3 is

Rðh; f ; rÞ ¼ 1 � ð1 � rf Þh: ð44Þ

In Fig 11, I show the risk computed using the mean test data, profile likelihood and

rf ¼ r̂ f̂ , the minimum of ρf on the 95% CR contour, or the maximum of ρf on the 95% CR

contour in Eq 44. Clearly, one can invert Eq 44 in analogy to Eq 4 and compute analogues of

the results shown in Fig 2.

Discussion

It is important to recognize that the analysis presented in this paper is a procedure that allows

one to go from test information to the risk of including infected individuals in groups of vari-

ous sizes when there is no information on symptoms at the time of testing or to the risk of

including asymptomatic individuals in groups of different sizes when there is information on

testing. Rather than being binary (risky or not), this risk is graded and the specific details of

Fig 8. The likelihood (Eq 37) of the fractions of individuals who are infected and symptomatic, f, and uninfected and

symptomatic g, when the test data are the means of TS and PS. The white dot denotes the true values of the parameters.

https://doi.org/10.1371/journal.pone.0281710.g008
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the relationship between group size and risk depends upon the operational details of testing

such as test numbers and errors. Once these are specified, the procedures can be employed.

Let us now consider three limitations of the methods developed here. First note that Eq 26

has the same problem as Eq 1 when the positivity is very small. To see this, we factor out TS on

the far right side of Eq 26 to obtain

f̂ ¼
TS
T

PS=TS � pSFP
1 � pSFN � pSFP

� �

;

so that if the positivity rate among symptomatic individuals falls below the probability of a

false positive test among symptomatic individuals, f̂ is less than zero. As in the situation with

no information on symptoms, the operational interpretation is that we then set f̂ to 0. Alterna-

tively, we may generalize the analysis for the simpler case by putting a prior on the parameters

and determining the CR in that manner.

Second, an objection may be made that the binomial distribution underlying the analysis

relies on the strong assumption that tests are independent events but that often groups of peo-

ple will test together so that modeling the testing process requires an aggregated distribution.

Fig 9. The profile log-likelihood (Eq 40) for the fraction of individuals who are infected and symptomatic f and the

ratio of of the fraction of individuals who are infected and asymptomatic to those who are infected and symptomatic

ρ when the test data are the means of TS, PS, and P. The white dot denotes the true values of the parameters. The 95% CR

contour is shown in white for the exact binomial likelihoods and in gray for the Gaussian approximation to those

likelihoods. The white dotted line is obtained by replacing ĝ in Eq 28 by its MLE value, replacing f̂ by an arbitrary value f,
and then viewing the right side as an equation for the ratio ρ(f) of asymptomatic to symptomatic infected individuals.

https://doi.org/10.1371/journal.pone.0281710.g009
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Fig 10. The consequences of varying test numbers and letting test data vary from the mean values of TS, PS and P. In each panel the white dot

represents ft and ρt, and the dotted curve is the function ρ(f) described in the caption to the previous figure and which now depends on the test results.

The upper left panel reproduces Fig 9, in which T = 1500 and the test data are the mean values of TS, PS, and P. In the other panels, the test data are a

random realization of the simulation of the testing process and going clockwise from the upper left panel, T = 2000, 3000, 3500, 4000, and 4500.

https://doi.org/10.1371/journal.pone.0281710.g010

Fig 11. The risk of including asymptomatic individuals in groups of different sizes. The solid line corresponds to

using the MLEs for f̂ ; ĝ , and r̂ in the risk formula (Eq 44), and the two dotted lines correspond to using the minimum

and maximum values of ρf on the 95% CR contour.

https://doi.org/10.1371/journal.pone.0281710.g011
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This is a fair objection, however: 1) the binomial distribution is the appropriate starting point,

and if the sample is large and diverse enough (e.g., from many different testing sites), the inde-

pendence assumption should be at least approximately valid; and 2) a negative binomial distri-

bution of the form used in ecology to model aggregated counts [48, pp. 103–111] is a natural

starting point for extending the work here.

Third, an objection may be made that we have assumed the values for test errors rather

than estimating them. DiCiccio et al. [54] show that estimating test errors at the same time as

incidence rate is a much more complex problem, and is likely one whose solution is not easily

transferred to recommendations for practice. An alternative is to stratify test results by both

symptomatic or not and time since putative exposure, have approximate values for the test

errors for each time since exposure, and conduct sensitivity analysis by varying the values of

the test errors. Furthermore, Mangel and Brown [30, pp. 25–27] show how to generalize Eq 1

for the case of a distribution of test errors using the delta-method. A similar extension of Eqs

18, 19 and 21 is a potential next step in this work.

In some locations, individuals are already asked whether they are symptomatic or not at the

time of testing. For example, Nomi Health in Utah requires a self-reporting form for obtaining

a coronavirus test, and the form includes yes or no questions such as: “Do you have a fever, a

cough, new or increased shortness of breath, decreased smell or taste, a sore throat, muscle

aches or pains, a headache, congestion or a runny nose, nauseas or vomiting, diarrhea, fatigue?”

During the 2020–2022 academic years, natural experiments in testing were occurring on

college campuses [55]. The results of those tests will provide a trove of information to explore

with the methods developed here.

Conclusions

In conclusion, the approach of modeling and simulating the process of testing before analyzing

testing data leads to a range of insights and at least the following operational

recommendations:

• At the time of testing, collect information on whether and individual is symptomatic or not.

• At the time of testing, collect information on putative time since exposure to infection.

• Conduct experiments to obtain information on means and variances of test errors.

There is much to be done and no time to lose before the next pandemic.

Supporting information

S1 File. Including a brief review of the binomial distribution and likelihood, a mathemati-

cal appendix with details of calculations in the main text, sensitivity analysis when there is

information on symptoms, and codes that generate the results in the main text and sensi-

tivity analysis.

(PDF)
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