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Abstract

Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE) are the two highly

prevalent debilitating and sometimes life-threatening systemic inflammatory autoimmune

diseases. The etiology and pathogenesis of RA and SLE are interconnected in several

ways, with limited knowledge about the underlying molecular mechanisms. With the motiva-

tion to better understand shared biological mechanisms and determine novel therapeutic

targets, we explored common molecular disease signatures by performing a meta-analysis

of publicly available microarray gene expression datasets of RA and SLE. We performed an

integrated, multi-cohort analysis of 1088 transcriptomic profiles from 14 independent studies

to identify common gene signatures. We identified sixty-two genes common among RA and

SLE, out of which fifty-nine genes (21 upregulated and 38 downregulated) had similar

expression profiles in the diseases. However, antagonistic expression profiles were

observed for ACVR2A, FAM135A, and MAPRE1 genes. Thirty genes common between RA

and SLE were proposed as robust gene signatures, with persistent expression in all the

studies and cell types. These gene signatures were found to be involved in innate as well as

adaptive immune responses, bone development and growth. In conclusion, our analysis of

multicohort and multiple microarray datasets would provide the basis for understanding the

common mechanisms of pathogenesis and exploring these gene signatures for their diag-

nostic and therapeutic potential.

Introduction

Autoimmune diseases are a family of more than 80 chronic, often debilitating, and sometimes

life-threatening illnesses; some of which are well characterized such as Rheumatoid Arthritis

(RA), Systemic Lupus Erythematosus (SLE), type 1 diabetes, multiple sclerosis, and psoriatic

arthritis while some are rare and difficult to diagnose [1]. Epidemiological data provide evi-

dence of a steady increase in autoimmune diseases globally, from an estimated prevalence of
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3.2% between 1965 and 1995 to 19.1 ± 43.1 reported in 2018 [2, 3]. In a recent study, the risk

of COVID-19 in patients with autoimmune diseases was reported to be significantly higher

than in control patients [4].

RA is a multisystem chronic inflammatory disease characterized by erosive synovitis, auto-

antibody production (rheumatoid factor, RF), polyarticular inflammation of small joints of the

hands, wrist, and feet, and associated stiffness and organ damage, leading to severe complica-

tions and poor quality life [5]. SLE is another chronic autoimmune disease with various clinical

manifestations that affect multiple organs and tissues and involves a complex interaction

between various immunological, environmental, hormonal, and genetic factors [6, 7]. Prior

clinical and epidemiological studies provided evidence that both RA and SLE have overlapping

clinical symptoms and shared genetic architecture [8]. They share certain clinical and patho-

genic features, including activation of B and T cells, immune cell (macrophages and neutro-

phils) migration and infiltration of organs, production of a variety of pathogenic

autoantibodies/inflammatory cytokines, and several susceptibility loci [9, 10]. The treatments

are very similar for autoimmune disorders, except for cases involving organ damage or where

the features of one disease dominate over the other. Thus, elucidating these shared genetic

determinants would eventually contribute to identifying biomarkers [11, 12] and developing

novel therapeutic strategies for combined diagnosis and prognosis of RA and SLE. The gene

expression patterns analysis can provide valuable details for better understanding of molecular

mechanisms in the diseases. To gain more rational and decisive results related to different

autoimmune diseases, several studies have previously focused on analyzing integrated data

from various studies for a single disease [6, 13–17]. Additionally, meta-analysis techniques

offer tremendous opportunities to integrate data from different diseases to reveal novel com-

mon gene signatures, which may be missed in single disease meta-analysis studies. In the con-

text of RA and SLE, Tuller et al. [18] analyzed the publicly available data from the PBMC

samples of six different autoimmune diseases (SLE, multiple sclerosis, RA, juvenile RA, type 1

diabetes, Crohn’s disease and ulcerative colitis). The study aimed to understand the intra-regu-

latory mechanism in PBMC, which can be common to all autoimmune diseases or specific to

any few of them. They found certain chemokines and interleukin genes were differentially

expressed in the analyzed autoimmune diseases. Silva et al. [19] integrated the SLE and RA

expression datasets and profiling modules for specifically induced or repressed and comodu-

lated genes to uncover the coexpression patterns. Higgs et al. [20] conducted a study to analyze

common signatures related to type 1 IFN by integrating data from SLE, myositis, RA and

scleroderma. Toro-Domı́nguez et al. [21] uncovered the common signatures from SLE, RA

and SjS (Sjogren’s Syndrome) PBMC patients. They conducted the gene expression meta-anal-

ysis using the publicly available gene expression datasets. Wang et al. [22] identified eight dif-

ferentially expressed genes associated with many rheumatic diseases, including RA, SLE,

ankylosing spondylitis, and osteoarthritis. Luan et al. [23] conducted a study integrating

microRNA, methylation, and expression datasets to study the shared and specific mechanisms

of four autoimmune diseases. In this study, they discovered shared and disease-specific path-

ways. A recent study by Wang et al. [24] identified the dysregulation of megakaryocyte expan-

sion contributing to the pathogenesis of many autoimmune diseases, including RA and SLE.

However, no study to date has focused on systematically identifying the common factors and

their role in the underlying mechanism of the two most common systemic autoimmune dis-

eases, RA and SLE. Therefore, the aim of this study is to reveal the commonly dysregulated

genes and the significant gene networks associated with the two frequent chronic rheumatic

autoimmune diseases.

In this study, we analyzed 1088 publicly available microarray samples of the two diseases

belonging to different cell types, ages, sexes, platforms, and genetic backgrounds. To identify
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the common or specific gene expression signatures in these two diseases, we analyzed the

large-scale multi-cohort gene expression microarray datasets of Peripheral Blood Mononu-

clear Cells (PBMCs), Whole Blood (WB), and other cell type samples obtained from SLE and

RA patients. To our knowledge, this is the first large-scale study to report the meta-analysis of

gene expression microarray datasets considering the biological and technical heterogeneity

observed in the real-world patient population for the two systemic inflammatory diseases. We

analyzed the common gene expression patterns, hub genes, commonly regulated important

pathways, and regulatory biomarkers involved in the disease mechanism of RA and SLE.

Methods

Data collection

The microarray gene expression data was downloaded from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The search terms used for the data

retrieval include “rheumatoid arthritis” or “RA” and “systemic lupus erythematosus” or “SLE”,

each with the filters: organism (Homo sapiens), study type (expression profiling by array) and

entry type (dataset/series). As a result of the search, 538 datasets were retrieved. The retrieved

datasets were filtered based on the presence of drug-treated samples, missing healthy controls,

tissue type, unrelated/duplicated datasets, and summary Area Under the Receiver Operating

Characteristic (AUROC) score to obtain a large and independent cohort of 1088 samples of

RA and SLE patients. The dataset inclusion/exclusion criteria and detailed workflow of the

study are shown in Fig 1. The selected datasets were downloaded from the GEO database

using the GEOquery R package [25].

Data preprocessing and meta-analysis

For meta-analysis, downloaded gene expression datasets from various studies were prepro-

cessed using the quantile normalization method and imported into MetaIntegrator framework

[26]. The MetaIntegrator-aided meta-analysis combines significance (P) values, Z-scores,

ranks, or Effect Size (ES) across different studies and generates formal overall P values for each

studied effect. It computes the Hedges g effect size for each gene in each dataset and pools

these effect sizes across datasets from different studies.

Hedges g effectsize gð Þ ¼ J
�X1 � �X0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS2

1
þðn0 � 1ÞS2

0

n1þn0� 2

q

Where:

J is the Hedges g correction factor; �X1 and �X0 are the mean expression values; S1 and S0 are

the standard deviations; and n1 and n0 are the numbers of samples for case and control, respec-

tively. The summary effect size gs was calculated using a random effect model using the equa-

tion given below.

Pooled effect size gs
� �
¼

Pn
i WigiPn
i Wi

n is the no. of studies, gi is the hedges’ g of the gene within dataset i, Wi is the weight calculated

by 1/(Vi + T2), Vi is the variance of the gene within a given dataset i, and T2 is the inter-dataset

variation estimated by DerSimonian-laired method. MetaIntegrator computes the effect size

for each data set independently, thus grabbing heterogeneity and avoiding the limitations of

batch effect corrections. The random effect model employed in the above equation would
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provide more conservative results by extracting fewer Differentially Expressed Genes (DEGs)

with more confidence. MetaIntegrator calculates Cochrane’s Q value and a combined p-value

using Fisher’s method to account for the heterogeneity of ES estimates between the studies. In

the second stage of filtering, we added/removed datasets one-by-one to optimize the AUROC

score to generate a model of the pooled datasets with high summary/pooled AUROC scores

while keeping in mind to balance the samples and datasets from different tissues. Detailed

exclusion criteria followed in this study are given in S1 Table. In the process of data integra-

tion, patient samples from different sources were not segregated to reveal the common gene

signature in these two autoimmune diseases. After the meta-analysis, a subset of the common

DEGs was selected for downstream analysis using the filtering criteria: FDR <0.05, ES>0.40,

and observed in at least four studies.

Hub genes and network analysis

To generate the Protein-Protein Interaction (PPI) networks, NetworkAnalyst was used. The

networks for the common gene signatures and the RA and SLE-specific top DEGs were gener-

ated using the reference innateDB interactome database [27]. The identified common gene sig-

natures and top 50 DEGs from the independent meta-analyses of RA and SLE were used to

construct their respective networks for identifying hub genes.

Gene ontology and integrative pathway analysis

To identify over-represented biological terms and enriched pathways, we used the Enrichr R

package [28]. The DEGs obtained from the independent meta-analyses of RA and SLE and the

Fig 1. Meta-analysis workflow of the study: (a) Details of datasets collection. (b) Data preprocessing and meta-analysis.

https://doi.org/10.1371/journal.pone.0281637.g001
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common gene signatures revealed in our study were used as input for Enrichr. Default settings

were used for the functional annotation and the p-value was calculated using Fisher’s exact

test. A significance threshold criterion of p-value <0.05 was used to identify significant gene

ontology terms and biological pathways.

Results

Data preprocessing

The gene expression datasets, downloaded from the GEO, were manually checked to exclude

duplicate and irrelevant studies. Out of the 538 studies, we selected the studies that reported

gene expression in WB, PBMC, or blood cell components. We excluded studies. In the initial

filtering step, total 83 studies were filtered out as the studies represented the effect of drug

treatment in samples. From the remaining datasets, 29 studies were excluded as they lacked

healthy controls. Further, we also removed studies involving other tissues, such as synovial

fluid, chondrocytes or lung tissues. Finally, we were left with 38 datasets, representing 14 RA

and 24 SLE studies. In the second filtering stage, the datasets that led to a decrease in summary

AUROC were also excluded. After filtering, we were left with 14 definitive studies which

included seven SLE datasets (GSE11909, GSE50772, GSE22098, GSE4588, GSE61635,

GSE17755 and GSE24060) and seven RA datasets (GSE93272, GSE15573, GSE4588,

GSE17755, GSE1402, GSE56649, and GSE68689). The resulting 14 datasets were biologically,

clinically, and technically heterogeneous, representing five different countries, patients of dif-

ferent ages, different sample types (whole blood and PBMCs), and distinct technologies for

gene expression profiling. A total of 1088 samples were used for identifying commonly dysre-

gulated genes ideal for understanding the molecular pathogenesis of RA and SLE.

Meta-analysis and identification of common gene signatures in RA and SLE

We identified and downloaded the publicly available GEO gene expression datasets to achieve

an extensive, unbiased study of the common signatures between RA and SLE. From the ini-

tially available public datasets, we selected 14 studies that passed the inclusion criteria (see

methods). The chosen studies consisted of seven datasets for RA (4 PBMC; 2 WB; 1 CD4 T

and B cells) and 7 for SLE (4 PBMC; 2 WB; and 1 CD4 T and B cells), which included 580 sam-

ples for RA (415 RA patients and 165 controls) and 508 for SLE (317 SLE patients and 191 con-

trols) as shown in Fig 1. A detailed summary of the included datasets and samples is given in

Table 1. From the meta-analysis, we identified 377 significant DEGs for RA (135 upregulated,

242 downregulated) and 1175 for SLE (566 upregulated, 609 downregulated) with the filtering

criteria set to ES>0.4, FDR<0.05, number of studies (nstudies> = 4) and AUROC scores. The

final selected dataset involving 14 studies given in Table 1, had more discriminatory power, as

evidenced by high summary AUROC and was eventually used for predicting the DEGs

involved in shared molecular mechanisms of the two diseases. The meta-scores distinguish

patient samples from the healthy controls with an AUROC of 0.887 (95% confidence interval

(CI): 0.70–1) and 0.927 (95% CI: 0.73–1) for RA and SLE, respectively (Fig 2A and 2B). Preci-

sion curves for the RA and SLE datasets are shown in S1 Fig.

We identified 62 genes common to both RA and SLE (see S2 Table). Fifty-nine genes (21

upregulated and 38 downregulated) out of the common had similar expression profiles in both

the diseases. However, antagonistic expression profiles were observed for the remaining three

genes (ACVR2A, FAM135A, and MAPRE1). List of 50 most significant up or downregulated

genes for RA and SLE are provided in S3 Table. Of the common genes, 30 were defined as

gene signatures for both RA and SLE, as their expression was reported across all the studies.

The Venn diagram highlights the unique and common genes of RA and SLE (Fig 3). A
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heatmap of the 62 common genes between RA and SLE is shown in Fig 4. Heatmaps for highly

differentially expressed RA and SLE genes are shown in S2 Fig. The complete description of

the common gene signatures persistent across all datasets is given in Table 2.

Hub genes network analysis

We have generated three interaction networks as described in the methods section. The inter-

action network for common genes comprises 53 seeds with 907 connecting nodes and 1143

Table 1. Summary of the included RA and SLE datasets and their samples.

SLE datasets

S.

No.

GSE_ids Source Case Control Used

Samples

Total

Samples

PMID Organization/Centre/City

1 GSE11909 PBMC 63 12 75 175 18631455 Baylor University, Texas, USA

2 GSE50772 PBMC 61 20 81 81 25861459 ITGR Diagnostics Discovery, South San Francisco, USA

3 GSE22098 Whole blood 40 43 83 274 20725040 Baylor University, Texas, USA

4 GSE4588 CD4 T and B cells 26 15 41 49 NA Université catholique de Louvain, Institut de Recherches

Expérimentales et Cliniques, Brussels, Belgium

5 GSE61635 Whole blood 99 30 129 129 NA Eli Lilly and Company, USA

6 GSE17755 PBMC 22 53 75 244 21496236 Wakayama Medical University, Ibaraki, Japan

7 GSE24060 PBMC 6 18 24 80 21521520 The National Institute of Environmental Health Sciences,

Durham, USA

RA datasets

S.

No.

GSE_ids Source Case Control Used

Samples

Total

Samples

PMID Organization/Centre/City

1 GSE15573 PBMC 18 15 33 33 19710928 CEA IG, Gene Expression Platform, Evry, France

2 GSE4588 CD4 B and T cells 15 19 34 49 NA Université catholique de Louvain, Institut de Recherches

Expérimentales et Cliniques, Brussels, Belgium

3 GSE17755 PBMC 112 53 165 244 21496236 Wakayama Medical University, Ibaraki, Japan

4 GSE1402 PBMC 15 15 30 57 15150433 Cincinnati Childrens Hospital Medical Center, Cincinnati, USA

5 GSE56649 Peripheral blood

CD4+ T cells

13 9 22 22 25880754 Peking University, People’s Hospital, Beijing, China

6 GSE93272 Whole blood 232 43 275 275 30013029 Takeda Pharmaceutical Company Limited, Fujisawa, Japan

7 GSE68689 Whole blood 10 11 21 21 NA Selventa, Cambridge, USA

https://doi.org/10.1371/journal.pone.0281637.t001

Fig 2. Receiver operating characteristic curves of RA and SLE. (a) RA datasets and (b) SLE datasets. A perfect classifier must have an AUROC of 1, while a

random classifier has an AUC of 0.5. Here, the summary curve is a composite of the individual studies from PBMC, WB, and CD4 T and B Cells samples with

AUROC scores of 0.887 and 0.927 for RA and SLE respectively.

https://doi.org/10.1371/journal.pone.0281637.g002
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edges representing the interaction between these proteins. This analysis identified key hub

genes among the common genes and the top DEGs specific to both RA and SLE.

The PPI network for the common gene signatures is shown in Fig 5. We analyzed the inter-

action network for the common gene signatures and found many hub genes based on the high

degree of centrality and betweenness. Among these, the main hub genes were CDK1 (degree:

146, betweenness: 112412.8), RPS28 (degree: 94, betweenness: 66300.6), CCNA2 (degree: 77,

betweenness: 46749.4), RBL2 (degree: 69, betweenness: 45832.2), EIF4B (degree: 54, between-

ness: 44979.1) and MAPRE1 (degree: 42, betweenness: 34895.5).

From the interaction network of top 50 DEGs for RA, the hub genes with the highest cen-

trality degree and betweenness were SMURF2 (degree: 88, betweenness: 48783.5), CCNA2

(degree: 77, betweenness: 41466), and B2M (degree: 75, betweenness: 46273) for the upregu-

lated genes and EWSR1 (degree: 212, betweenness: 178696.9), MAPK3 (degree: 127, between-

ness: 107148.4) and G3BP1 (degree: 93, betweenness: 68231.1) for downregulated genes.

For the SLE interaction network, among the top 50 DEGs the notable hub genes included

STAT1 (degree: 223, betweenness: 163468.8), ISG15 (degree: 188, betweenness: 156960.3), and

PLSCR1 (degree: 84, betweenness: 61314.9) for the upregulated genes and CBL (degree: 216,

betweenness: 214523.2), STUB1 (degree: 169, betweenness: 171140.1), MAPK8 (degree: 140,

betweenness: 152176.3) for the downregulated genes.

A detailed description of the hub genes for the common gene signatures and disease-spe-

cific genes (RA and SLE) is provided in S4 Table. The PPI networks of RA and SLE for the top

50 DEGs are shown in S3 and S4 Figs. Forest plots were created for a few common genes (Fig

6) to represent the consistency of gene expression in both diseases across all datasets.

Fig 3. Venn diagram of DEGs. Comparison of DEGs (both upregulated and downregulated) obtained from

individual meta-analyses of RA and SLE. The intersection showed the genes common to both diseases.

https://doi.org/10.1371/journal.pone.0281637.g003
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Identification of over-represented biological pathways and gene ontology

terms

The common gene signatures between RA and SLE were enriched with pathways related to

TGF-beta signaling, viral carcinogenesis, citrate cycle, and cellular senescence. In RA, the

NF-Kappa B signaling pathway, cytokine-cytokine receptor interaction, the IL-17 signaling

pathway, and the rheumatoid arthritis pathways were observed for upregulated genes. In con-

trast, pathways such as the mTOR signaling pathway, the PI3K-Akt signaling pathway, and

HIF-1 signaling pathways were observed for downregulated genes. In SLE, upregulated genes

were enriched with pathways such as NOD-like receptor signaling, necroptosis, RIG-I-like

receptor signaling, toll-like receptor signaling and many viral infections-related signaling path-

ways. In contrast, the downregulated genes were observed to show enrichment of pathways

such as adipocytokine signaling, inflammatory mediator regulation of TRP channels, insulin-

resistance and ubiquitin-mediated proteolysis. The top 10 Gene Ontology (GO) terms for each

category viz. Molecular Function (MF), Cellular Component (CC), and Biological Process

(BP) and enriched pathways for common genes are shown in Fig 7. Detailed information

about significant GO terms, enriched pathways and genes involved for each category is pro-

vided in S5 Table.

In enrichment analysis for common genes, BP terms such as tricarboxylic acid metabolic

process, regulation of translational initiation, innate immune response in mucosa, mitotic

chromosome condensation mucosal immune response, and neutrophil degranulation were

observed (see Fig 7(A)).

Fig 4. Heatmap represent the effect size of the common differentially expressed gene across all datasets for RA and SLE. Each column is a dataset and each

row represents the expression level of the particular gene in all datasets. The colour scale represents the pooled effect size of that particular gene ranging from

yellow (low expression) to red (high expression).

https://doi.org/10.1371/journal.pone.0281637.g004
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Table 2. Detailed description of the common gene signatures persistent across both diseases, and cell types.

Gene Gene name (detail) Gene description RA combined

effect size

SLE combined

effect size

ACO1 aconitase 1 (ACO1) The protein encoded by this gene is a bifunctional, cytosolic protein that

functions as an essential enzyme in the TCA cycle and interacts with

mRNA to control the levels of iron inside cells. The encoded protein has

been identified as a moonlighting protein based on its ability to perform

mechanistically distinct functions.

-0.590595045 -0.50551105

ACVR2A activin A receptor type 2A (ACVR2A) This gene encodes a receptor that mediates the functions of activins,

which are members of the transforming growth factor-beta (TGF-beta)

superfamily involved in diverse biological processes. The encoded

protein is a transmembrane serine-threonine kinase receptor which

mediates signaling by forming heterodimeric complexes with various

combinations of type I and type II receptors and ligands in a cell-

specific manner.

0.709280042 -0.435212793

ALDOC aldolase, fructose-bisphosphate C

(ALDOC)

This gene encodes a member of the class I fructose-biphosphate aldolase

gene family. Expressed specifically in the hippocampus and Purkinje

cells of the brain, the encoded protein is a glycolytic enzyme that

catalyzes the reversible aldol cleavage of fructose-1,6-biphosphate and

fructose 1-phosphate to dihydroxyacetone phosphate and either

glyceraldehyde-3-phosphate or glyceraldehyde, respectively.

-0.546658025 -0.597643286

ANXA3 annexin A3 (ANXA3) This gene encodes a member of the annexin family. Members of this

calcium-dependent phospholipid-binding protein family play a role in

the regulation of cellular growth and in signal transduction pathways.

This protein functions in the inhibition of phospholipase A2 and

cleavage of inositol 1,2-cyclic phosphate to form inositol 1-phosphate.

This protein may also play a role in anti-coagulation.

0.822525971 1.202492528

B4GALT5 beta-1,4-galactosyltransferase 5

(B4GALT5)

This gene is one of seven beta-1,4-galactosyltransferase (beta4GalT)

genes. They encode type II membrane-bound glycoproteins that appear

to have exclusive specificity for the donor substrate UDP-galactose; all

transfer galactose in a beta1,4 linkage to similar acceptor sugars:

GlcNAc, Glc, and Xyl. Each beta4GalT has a distinct function in the

biosynthesis of different glycoconjugates and saccharide structures.

0.418552469 0.829685649

CAMP cathelicidin antimicrobial peptide

(CAMP)

This gene encodes a member of an antimicrobial peptide family,

characterized by a highly conserved N-terminal signal peptide

containing a cathelin domain and a structurally variable cationic

antimicrobial peptide, which is produced by extracellular proteolysis

from the C-terminus. The protein plays an important role in innate

immunity defense against viruses. In addition to its antibacterial,

antifungal, and antiviral activities, the encoded protein functions in cell

chemotaxis, immune mediator induction, and inflammatory response

regulation.

0.772005697 0.912300975

CBX7 chromobox 7 (CBX7) This gene encodes a protein that contains the CHROMO (CHRomatin

Organization MOdifier) domain. The encoded protein is a component

of the Polycomb repressive complex 1 (PRC1), and is thought to control

the lifespan of several normal human cells.

-0.408857983 -0.672227052

CCNA2 cyclin A2 (CCNA2) The protein encoded by this gene belongs to the highly conserved cyclin

family, whose members function as regulators of the cell cycle. This

protein binds and activates cyclin-dependent kinase 2 and thus

promotes transition through G1/S and G2/M.

0.455750226 0.866349784

DEFA4 defensin alpha 4 (DEFA4) Defensins are a family of antimicrobial and cytotoxic peptides thought

to be involved in host defense. They are abundant in the granules of

neutrophils and also found in the epithelia of mucosal surfaces such as

those of the intestine, respiratory tract, urinary tract, and vagina. The

protein encoded by this gene, defensin, alpha 4, is found in the

neutrophils; it exhibits corticostatic activity and inhibits corticotropin

stimulated corticosterone production.

0.540173033 0.767698011

EIF4B eukaryotic translation initiation factor

4B (EIF4B)

Enables RNA binding activity. Predicted to be involved in eukaryotic

translation initiation factor 4F complex assembly and formation of

translation preinitiation complex. Located in cytosol. Biomarker of

autism spectrum disorder and major depressive disorder.

-0.53424793 -1.122590172

(Continued)
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Table 2. (Continued)

Gene Gene name (detail) Gene description RA combined

effect size

SLE combined

effect size

GPS2 G protein pathway suppressor 2 (GPS2) This gene encodes a protein involved in G protein-mitogen-activated

protein kinase (MAPK) signaling cascades. When overexpressed in

mammalian cells, this gene could potently suppress a RAS- and MAPK-

mediated signal and interfere with JNK activity, suggesting that the

function of this gene may be signal repression.

-0.728550581 -0.504034151

HIVEP2 HIVEP zinc finger 2 (HIVEP2) This gene encodes a member of a family of closely related, large, zinc

finger-containing transcription factors. The encoded protein regulates

transcription by binding to regulatory regions of various cellular and

viral genes that maybe involved in growth, development and metastasis.

-0.553931641 -0.408378921

ID3 inhibitor of DNA binding 3, HLH

protein (ID3)

The protein encoded by this gene is a helix-loop-helix (HLH) protein

that can form heterodimers with other HLH proteins. However, the

encoded protein lacks a basic DNA-binding domain and therefore

inhibits the DNA binding of any HLH protein with which it interacts.

-0.675277845 -0.745779182

IDH3B isocitrate dehydrogenase (NAD (+)) 3

non-catalytic subunit beta (IDH3B)

The protein encoded by this gene is the beta subunit of one isozyme of

NAD (+)-dependent isocitrate dehydrogenase.

-0.634854843 -0.423003627

IMPDH2 inosine monophosphate dehydrogenase

2 (IMPDH2)

This gene encodes the rate-limiting enzyme in the de novo guanine

nucleotide biosynthesis. It is thus involved in maintaining cellular

guanine deoxy- and ribonucleotide pools needed for DNA and RNA

synthesis.

-0.930897806 -0.680928042

KLHL25 kelch like family member 25 (KLHL25) Involved in protein ubiquitination; regulation of translational initiation;

and ubiquitin-dependent protein catabolic process.

-0.547159894 -0.553192794

LDOC1 LDOC1 regulator of NFKB signaling

(LDOC1)

The gene has been proposed as a tumor suppressor gene whose protein

product may have an important role in the development and/or

progression of some cancers.

-0.459418035 -0.561365132

LHFPL2 LHFPL tetraspan subfamily member 2

(LHFPL2)

This gene is a member of the lipoma HMGIC fusion partner (LHFP)

gene family, which is a subset of the superfamily of tetraspan

transmembrane protein encoding genes.

0.545276617 0.830655827

MAPRE1 microtubule associated protein RP/EB

family member 1 (MAPRE1)

The protein associates with components of the dynactin complex and

the intermediate chain of cytoplasmic dynein. Because of these

associations, it is thought that this protein is involved in the regulation

of microtubule structures and chromosome stability. This gene is a

member of the RP/EB family.

-0.476053704 0.40891743

NFIL3 nuclear factor, interleukin 3 regulated

(NFIL3)

The protein encoded by this gene is a transcriptional regulator that

binds as a homodimer to activating transcription factor (ATF) sites in

many cellular and viral promoters. The encoded protein represses PER1

and PER2 expression and therefore plays a role in the regulation of

circadian rhythm.

0.523637677 1.073913485

NMT2 N-myristoyltransferase 2 (NMT2) This gene encodes one of two N-myristoyltransferase proteins. N-

terminal myristoylation is a lipid modification that is involved in

regulating the function and localization of signaling proteins. The

encoded protein catalyzes the addition of a myristoyl group to the N-

terminal glycine residue of many signaling proteins, including the

human immunodeficiency virus type 1 (HIV-1) proteins, Gag and Nef.

-0.627008356 -0.772803087

OASL 2’-5’-oligoadenylate synthetase like

(OASL)

Enables DNA binding activity and double-stranded RNA binding

activity. Involved in several processes, including interleukin-

27-mediated signaling pathway; negative regulation of viral genome

replication; and positive regulation of RIG-I signaling pathway.

0.405973339 1.889199094

POLG2 DNA polymerase gamma 2, accessory

subunit (POLG2)

This protein enhances DNA binding and promotes processive DNA

synthesis. Mutations in this gene result in autosomal dominant

progressive external ophthalmoplegia with mitochondrial DNA

deletions.

-0.462825481 -0.632403304

RBL2 RB transcriptional corepressor like 2

(RBL2)

Enables promoter-specific chromatin binding activity. Involved in

regulation of lipid kinase activity. Acts upstream of or within negative

regulation of gene expression.

-0.820817384 -0.664047724

(Continued)
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Table 2. (Continued)

Gene Gene name (detail) Gene description RA combined

effect size

SLE combined

effect size

SERTAD2 SERTA domain containing 2

(SERTAD2)

Predicted to enable transcription coactivator activity. Acts upstream of

or within negative regulation of cell growth. Located in cytosol and

nucleoplasm.

-0.626126151 -0.608594971

SLC22A4 solute carrier family 22 member 4

(SLC22A4)

The encoded protein is an organic cation transporter and plasma

integral membrane protein containing eleven putative transmembrane

domains as well as a nucleotide-binding site motif. Transport by this

protein is at least partially ATP-dependent.

0.601572511 0.829446154

SRGN serglycin (SRGN) This gene encodes a protein best known as a hematopoietic cell granule

proteoglycan. This encoded protein was found to be associated with the

macromolecular complex of granzymes and perforin, which may serve

as a mediator of granule-mediated apoptosis.

0.589594132 0.90767445

TNFAIP6 TNF alpha induced protein 6 (TNFAIP6) This gene can be induced by proinflammatory cytokines such as tumor

necrosis factor alpha and interleukin-1. Enhanced levels of this protein

are found in the synovial fluid of patients with osteoarthritis and

rheumatoid arthritis.

0.723657312 1.336283459

USP13 ubiquitin specific peptidase 13 (USP13) Enables several functions, including BAT3 complex binding activity;

chaperone binding activity; and cysteine-type peptidase activity.

Involved in several processes, including maintenance of unfolded

protein involved in ERAD pathway; regulation of cellular catabolic

process; and regulation of transcription, DNA-templated. Acts upstream

of or within protein deubiquitination and protein stabilization.

-0.408076457 -0.726185249

VEGFB vascular endothelial growth factor B

(VEGFB)

This gene encodes a member of the PDGF (platelet-derived growth

factor)/VEGF (vascular endothelial growth factor) family. Studies in

mice showed that this gene was co-expressed with nuclear-encoded

mitochondrial genes and the encoded protein specifically controlled

endothelial uptake of fatty acids.

-0.436833473 -0.517527546

https://doi.org/10.1371/journal.pone.0281637.t002

Fig 5. Protein-Protein Interaction network of gene signatures common between RA and SLE. The most highly ranked nodes were CDK1 (degree: 146,

betweenness: 112412.8), RPS28 (degree: 94, betweenness: 66300.6), and CCNA2 (degree: 77, betweenness: 46749.4). The size and the colour of the nodes were

layout by the degree and betweenness values.

https://doi.org/10.1371/journal.pone.0281637.g005
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Discussion

The etiology and pathogenesis of RA and SLE involve different types of cells such as macro-

phages, T and B cells, fibroblasts, and dendritic cells, in addition to various signaling pathways

and immune modulators, which make it challenging to understand the underlying mechanism

Fig 6. Forest plots of genes with persistent expression in all studies of RA (a) and SLE (b). The x-axis shows the standardized mean difference (log2

scale) computed as Hedges’ g between disease and control samples for genes in multiple studies. The size of the blue box is inversely proportional to

the standardized mean difference of the gene in each study. Whiskers represent 95% confidence intervals. The yellow diamond represents the

combined mean difference for each gene and its width denotes the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0281637.g006

Fig 7. Enriched GO terms and biological pathways related to common genes (P-value<0.05). (a) The top 10 GO terms for each category

(Molecular Function (MF), Cellular Component (CC), and Biological Processes (BP)) are shown. The X-axis represents the enriched GO

categories and the Y-axis shows the gene counts. (b) The top enriched KEGG pathways. The X-axis represents the enriched KEGG pathways

and the Y-axis shows the no. of genes present in the respective pathway.

https://doi.org/10.1371/journal.pone.0281637.g007
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for the two diseases. The present study aimed to elucidate robust common, RA and SLE-spe-

cific gene signatures by integrating gene expression data from multiple heterogeneous sources

leveraging the biological (samples from different cell types) and technical heterogeneity (data

generated using diverse microarray platforms). To minimize the impact caused by differences

in study design and platform usage among different datasets, MetaIntegrator calculated the

combined effect size by applying a random effect model. It achieves more consistent and accu-

rate results by considering the direction and magnitude of gene expression changes.

MetaIntegrator has been successfully applied to study various diseases, from cancer to

many autoimmune diseases and a few of these study outcomes have been validated in clinical

settings [29–36]. Using MetaIntegrator, we analyzed 14 datasets consisting of 1,088 samples

that were collected from 5 countries, 9 research centres and represented different cell types

such as WB, PBMCs, and CD4 T and B immune cells to identify gene signatures which are

robust and consistently differentially expressed across all studies.

This is the first study to perform a combined analysis of RA and SLE in large heterogeneous

data, revealing common gene signatures systemically expressed across different cell types. Our

study would find potential applications in understanding the underlying disease mechanism

and exploring new biological pathways and possible drug targets for further study, which will

eventually improve the understanding and management of these diseases.

The role of neutrophils in the pathogenesis of the systemic autoimmune diseases appeared

as an important regulator in innate and adaptive immune responses. Neutrophils act as phago-

cytic cells and their role has been intensively explored in defining the pathogenesis of RA and

SLE [37–43]. We identified genes viz. TNFAIP6 (Tumor necrosis factor-inducible gene 6 pro-

tein), ANXA3 (Annexin A3), DEFA4 (Defensin Alpha 4), and CAMP (Cathelicidin Antimi-

crobial Peptide) as upregulated and IMPDH2 (Inosine Monophosphate Dehydrogenase 2),

ALDOC (Aldolase, Fructose-Bisphosphate C) as downregulated which are related to neutro-

phil-mediated immunity, activation, and degranulation. TNFAIP6, which plays a critical role

in osteogenesis and bone remodeling, has previously been explored to be up-regulated in the

synovial fluid of patients with rheumatoid arthritis [44]. The Defensin Alpha4 gene (DEFA4)

is a member of the alpha-defensin family, a part of antimicrobial peptides in the innate

immune system. Variations in DEFA4 gene expression have been reported in different disor-

ders such as diseases related to inflammation and immunity dysfunction, brain-related disor-

ders, and various cancers [45].

Cytokines are the main modulators of immunity. We observed YTHDF2 (YTH N6-Methy-

ladenosine RNA Binding Protein 2) and GPS2 (G Protein Pathway Suppressor 2) in our com-

mon gene signatures negatively regulate cytokine-mediated signaling pathway, which in turn

regulates the expression of Polymorphonuclear neutrophils (PMNs) and plays an important

role in host defense response and inflammation. Natural Killer (NK) cells are important cells

of innate immunity and their role has already been explored in the pathogenesis and etiology

of various autoimmune diseases [46]. We observed that NFIL3 (Nuclear Factor, Interleukin 3

Regulated), a key immunological transcription factor that is an essential component in devel-

oping precursor NK cells, was upregulated in our study for both diseases. Interferons are a cat-

egory of functionally related cytokines implicated in the pathogenesis of several rheumatic

diseases. Type 1 interferon pathway has been reported to be associated with increased inflam-

matory response in various rheumatic conditions in response to increased expression of type 1

Interferon Stimulated Genes (ISGs) [47]. In SLE, we found many interferon related genes such

as IFI27 (Interferon alpha-inducible protein 27), IFI16 (Gamma-interferon-inducible protein

16), IFI27L1 (Interferon Alpha Inducible Protein 27 like 1), IFNAR1 (Interferon alpha/beta

receptor 1), IFI6 (Interferon Alpha Inducible Protein 6), IFI44 (Interferon Induced Protein

44), IFIT1-3, 5 (Interferon Induced Protein with Tetratricopeptide Repeats) which were all
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upregulated. Additionally, Interferon Response Factors (IRF) such as IRF7 and IRF9 which

coordinate type 1 interferon and ISGs expression were upregulated in SLE. However, in RA

we observed normal expression levels for genes related to interferon. Reduced relative expres-

sion of ISGs in the circulation of RA patients as compared to SLE has already been reported

[20, 48]. Even in SLE, Niewold et al. reported a wide range of serum interferon activity with

40–50% of SLE patients showing normal levels of serum interferons [49]. Therefore, status of

Type 1 interferon signature as a predictive biomarker in various autoimmune conditions is

debatable as it remains relatively stable in blood. The Type 1 interferon signature could play an

important role in disease initiation rather than in predicting disease flares where other non-

Type 1 interferon genes are reported to strongly correlate with disease activity [50].

Cell division in multicellular organisms is critical to developing and maintaining tissue

homeostasis. Deregulation of cell functions leads to loss of tolerance and the development of

autoimmunity [51]. Many cell cycle regulators, including cyclin-dependent kinase (CDK) and

cyclins, are known for their crucial role in cell division [52]. In the common gene signatures,

we identified CDK1 (Cyclin Dependent Kinase 1), CCNA2 (Cyclin A2) and MAPRE1(Micro-

tubule Associated Protein RP/EB Family Member 1) genes that have an important role in cell

division.

Bone mineralization is essential for the hardness and strength of the bone. Bone is the target

tissue in inflammatory diseases, including rheumatic diseases such as RA, SLE, psoriatic arthri-

tis and ankylosing spondylitis [53]. As bone loss has been found in both diseases, the regula-

tion process of bone mineralization is important [54]. We found SRGN (Serglycin), known for

negative regulation of bone mineralization, to be upregulated in both RA and SLE.

Ubiquitination is a key regulatory process that controls innate and adaptive immune

responses. It is involved in the development, activation and differentiation of T-cells and B-

cells, thus maintaining the efficient adaptive immune responses to pathogens and immunolog-

ical tolerance to the self-tissues [55, 56]. In our study, we observed a negative regulator of pro-

tein polyubiquitination, GPS2, which could disrupt many aspects of immune functions and

different intracellular signaling pathways.

The most striking observation was the antagonistic gene expression profiles for three genes,

i.e. MAPRE1, ACVR2A (Activin a Receptor Type 2A), and FAM135A (Family with Sequence

Similarity 135 Member A) in RA and SLE. MAPRE1 is an important gene believed to be

involved in regulating microtubule structure and chromosome stability. Microtubules are

important as they play an important role in maintaining cell structure [57] along with their

recently identified roles in the innate and adaptive immune systems [58]. The PPI network for

the common genes identified MAPRE1 as the hub gene. Hub genes produce proteins that can

interact with many other proteins [59]. Hub genes play an important role in the pathogenesis

and progression of many diseases; therefore, they can be targeted as diagnostic markers and

candidate drug targets.

MAPRE1 was found to be upregulated in SLE whereas downregulated in RA. ACVR2A,

involved in the TGF-beta signaling pathway, was also predicted to be the hub gene. TGF-beta

signaling pathway plays a crucial role in immune regulation, tissue regeneration and many

components of the immune system [60–63]. Malfunctioning of the TGF-beta signaling path-

way can lead to immune dysregulation and other congenital effects. ACVR2A expression was

elevated in RA, while it was repressed in SLE, and FAM135A followed a similar trend.

Contrary to our findings, ACVR2A expression was reported to be elevated in rheumatic

diseases; however, conclusions were drawn from a small sample size of 60 patients [64]. This

warrants further research into the role of these genes in the pathophysiology of autoimmune

diseases. These discrepancies further emphasize the significance of using a rigorous integrated

multi-cohort analysis approach. We created forest plots for ACVR2A, DEFA4, MAPRE1,
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TNFAIP6, and NFIL3 genes to represent the persistent gene expression patterns across all

datasets of RA and SLE. However, it is apparent that some minor deviations existed for some

of the datasets, which can be further validated via inclusion of more datasets.

This study has some limitations, as it relies on publicly available datasets, thus incorporating

the inherent limitations of the experimental procedures and computational methods used for

data analysis. For some cell types, the sample sizes were limited, making it hard to balance the

samples. The gene signature set includes too many genes to be included in a simple diagnostic

test. An accurate signature based on a small set of genes would be cost-effective and more tech-

nically feasible for diagnostic purposes. The performance of the identified gene signatures in a

large, prospective cohort remains unknown and requires validation on larger sample datasets

further to ensure the applicability of our findings in clinical settings.

Conclusions

With limited knowledge available about the etiology of RA and SLE, it becomes imperative to

understand the precise molecular mechanisms underlying the pathophysiology of these auto-

immune diseases. Many common DEGs such as TNFAIP6, DEFA4, YTHDF2, NFIL3, and

SRGN predicted in our meta-analysis study have already been validated to potentially partici-

pate in the development and progression of both the diseases, which further strengthens the

credibility of our results. Our study explored the novel common molecular mechanisms

underlying the disease pathogenesis, and the predicted genes have the potential to be utilized

as diagnostic and therapeutic targets when validated in a large prospective cohort.
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frequency of positive examples ranging from 0.5 (for balanced data) to 1.0 (perfect model).

Here, the precision-recall curves represent individual studies from PBMC, WB, and CD4 T

and B cell samples.

(TIF)

S2 Fig. Heatmaps represent the effect size of differentially expressed gene signatures across all

datasets (a) top RA DEGs and (b) top SLE DEGs. (Filtering criteria: Effect size > = 0.4 and

FDR< = 0.05). Each column is a dataset and each row represents the expression level of the

particular gene in all datasets. The colour scale represents the pooled effect size of that
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particular gene ranging from yellow (low expression) to red (high expression).

(TIF)

S3 Fig. Protein-Protein Interaction networks of DEGs for RA. (a) Upregulated RA genes,

(b) Downregulated RA genes. The size and the colour of the nodes are layout by the degree

and betweenness values.

(TIF)

S4 Fig. Protein-protein interaction networks of DEGs for SLE. (a) Upregulated SLE genes,

and (b) Downregulated SLE genes. The size and the colour of the nodes are layout by the

degree and betweenness values.

(TIF)
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