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Abstract

The Harris hawks optimization (HHO) algorithm is a new swarm-based natural heuristic

algorithm that has previously shown excellent performance. However, HHO still has some

shortcomings, which are premature convergence and falling into local optima due to an

imbalance of the exploration and exploitation capabilities. To overcome these shortcomings,

a new HHO variant algorithm based on a chaotic sequence and an opposite elite learning

mechanism (HHO-CS-OELM) is proposed in this paper. The chaotic sequence can improve

the global search ability of the HHO algorithm due to enhancing the diversity of the popula-

tion, and the opposite elite learning can enhance the local search ability of the HHO algo-

rithm by maintaining the optimal individual. Meanwhile, it also overcomes the shortcoming

that the exploration cannot be carried out at the late iteration in the HHO algorithm and bal-

ances the exploration and exploitation capabilities of the HHO algorithm. The performance

of the HHO-CS-OELM algorithm is verified by comparison with 14 optimization algorithms

on 23 benchmark functions and an engineering problem. Experimental results show that the

HHO-CS-OELM algorithm performs better than the state-of-the-art swarm intelligence opti-

mization algorithms.

1. Introduction

The optimization issues in real-world problems have received increasing attention from

researchers in the fields of artificial intelligence [1], computer vision [2], compressed sensing

[3, 4], decision-making [5] and engineering for practical applications [6]. Traditional algo-

rithms are based on derivative methods due to their mathematical complexity, which can

only be used to deal with small-scale problems that must be continuous and derivable [7].

Therefore, it is difficult to achieve global optimization for multimodal functions and dynami-

cally changing, strongly nonlinear problems using traditional algorithms. To solve complex

and large-scale problems, many swarm intelligence (SI) optimization algorithms that imitate
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swarm behaviour in natural phenomena, including Cuckoo Search (CS) [8], Grey Wolf Opti-

mizer (GWO) [9], Particle Swarm Optimization (PSO) [10], Artificial Bee Colony (ABC) [11],

Suffled Frog Leaping Algorithm (SFLA) [12], Whale Optimization algorithm (WOA) [13],

Gravitational Search algorithm (GSA) [14], Jaya [15] and Harris Hawk Optimization (HHO)

[16] have been proposed. All SI algorithms have two search phases: global exploration, which

searches the whole space for a promising area, and local exploitation, which searches a chosen

area that is promising to contain the best solution. However, a single SI algorithm can not deal

with all optimization problems. Still, the algorithms proposed recently or those that are not yet

discovered have a wide range of application prospects.

HHO is a new swarm intelligence optimization algorithm proposed by Heidari et al. [16] in

2019 that mimics the way Harris eagles find and chase prey in nature, including global explora-

tion, local besiege and pounce behaviour. HHO has been widely applied to address the optimi-

zation of functions and engineering applications due to its gradient-free and powerful nature

with high performance. Heidari et al. used HHO to optimize 29 benchmark functions and 6

engineering applications, and the results show that HHO has better competitiveness and appli-

cation prospects than other SI algorithms [16]. Houssein et al. [17] used the HHO in combina-

tion with the k-nearest neighbours and the support vector machines for chemical compound

activities and descriptor selection, respectively. To denoise the satellite images, Golilarz et al.

[18] determined optimal wavelet coefficients by using the HHO. HHO was applied to optimize

the water network distribution of Homashahr city in Iran in [19]. Abbasi et al. [20] utilized

HHO to microchannel heat sinks to minimize entropy generation. Jiao et al. [21] and Liu et al.

[22] used HHO to find the optimal parameters of photovoltaic models. However, similar to

the other SI algorithms, the HHO still has some limitations, such as the multiplicity of solu-

tions generated by a randomized policy that is finite in the initialization phase. Moreover,

because global exploration is only performed in the first half of the iteration, it is difficult to

balance the global exploration and local exploitation capacities by using the escaping energy of

prey, so the algorithm may converge slowly, has low solution accuracy and prematurely falls

into a local optimal solution.

To conquer the limitations of HHO, many HHO variant algorithms have been proposed.

For example, Ali et al. [23] used the best solution to deal with the boundary condition instead

of the boundary of the search space in HHO. Hu et al. [24] also proposed an improved HHO

algorithm, which embedded the velocity into the exploration phase and updated the solutions

by using the crossover operator of the artificial tree algorithm in the exploitation phase. A

boosted HHO (BHHO) technique was proposed by Houssein et al. [25]. BHHO used the

mutation of the DE algorithm and the flower pollination process of flowering plants instead of

the hard and soft siege with progressive rapid dives, respectively. Afterward, Houssein et al.

[26] proposed a hybrid HHO algorithm (HHHO), which used a chaos map to update the

escaping energy function to balance the exploration and exploitation phases. In addition, a

cuckoo search algorithm was used to update the optimal and random solutions to improve the

global search capability. Mohamed et al. [27] proposed an improved HHO algorithm, which

employed the salp swarm algorithm to balance the exploitation and exploration capabilities.

Qu et al. [28] also put forward an HHO variant algorithm, which was based on the information

exchange between Harris’s hawks, while chaos disturbance was used to update the escaping

energy function to balance the local and global search capabilities. Shi et al. [29] applied the

grey wolf optimizer and the salp swarm algorithm to improve the search capability of HHO.

Aneesh et al. [30] introduced mutation interval to update the escaping energy function and

used the average fitness to determine the updating strategies of Harris hawks in the exploration

phase. Chen et al. [31] came up with a new framework of HHO, which combined the chaos

map, multi population and differential evolution mechanism to improve the performance of
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HHO. Ahmed et al. [32] proposed a chaotic Harris’s hawk optimization (CHHO) algorithm in

which the chaotic sequences that are generated by the ten chaotic equations are used instead

of the random parameter q in the exploration phase. Singh [33] also used chaotic sequences

instead of random parameters, which are r1 and r2 in the exploration phase and vector S in the

exploitation phase (CSHHO). Chen et al. [34] proposed a diversification-enriched Harris

hawk optimization (DEHHO), which embedded the chaotic sequence to search the neighbour-

hood of the current optimal solution and introduced the OBL mechanism to enlarge the search

area in the whole space.

Although the improvement strategies mentioned above have enhanced the capability of the

standard HHO algorithm to a certain extent, it can still be improved by other strategies.

Inspired by [32–34], an improved HHO variant algorithm is proposed in this paper. The con-

tributions of this paper are as follows: (i) a chaotic sequence chaotic sequence recombination

mechanism (CSRM) strategy is proposed, which enhances the distribution of the initialized

solutions in the search space, and accelerates the convergence rate of HHO;(ii) the generalized

opposition-based learning recombination mechanism (OBLRM) is proposed, which can have

the opportunity to carry out global search in the later period of iteration to jump out of the

local optimum and improve the accuracy of the solution. The rest of the paper is organized as

follows. Section 2 gives a detailed overview of the HHO algorithm. The proposed method is

introduced in detail in Section 3. In Section 4, the experimental results are analysed. Finally,

the conclusions are presented in Section 5.

2. Background studies

HHO is a new swarm intelligence optimization algorithm proposed by Heidari et al. [16] in

2019 that mimics the way Harris eagles find and chase prey in nature, which has strong global

search capability and adjusts few parameters. The whole foraging process mainly consists of

three phases: the exploration phase, transition from the exploration phase to the exploitation

phase and the exploitation phase. All phases of HHO are shown in (Fig 1), and each phase is

presented in detail as follows.

2.1 Exploration phase

During the exploration phase, Harris hawks primarily search for prey, which may be a rabbit.

When Harris hawks detect and track a rabbit with their keen eyes, two strategies are used to

update their locations, which can be formulated as:

Xiðt þ 1Þ ¼
XrandðtÞ � r1jXrandðtÞ � 2r2XiðtÞj; q � 0:5

ðXrabbitðtÞ � XmðtÞÞ � r3ðLBþ r4ðUB � LBÞÞ; q < 0:5

(

ð1Þ

where Xi (t) and Xrabbit (t) are the positions of the ith hawk and the rabbit, respectively, at the

current iteration, t.Xrand (t) is the position of the randomly selected hawk, Xi (t + 1) is the posi-

tion of the ith hawk at the next (t + 1)th iteration, r1, r2, r3 and r4 are four random numbers

between [0, 1], q is a random number between [0,1] that is applied to switch the strategy, and

Xm (t) is the mean position of the current population as follows:

XmðtÞ ¼
1

Np

XNp

i¼1

XiðtÞ ð2Þ

where Np is the size of the population, and [LB, UB] denotes the search space.
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2.2 Transition from exploration to exploitation

The transition from the global search (exploration) to local search (exploitation) of Harris

hawks mainly depends on the escaping energy E of the prey (rabbit), where E can be calculated

as follows.

E ¼ 2E0ð1 �
t
T
Þ ð3Þ

where E0 is the random between (-1,1) in each iteration and T denotes the maximum number

Fig 1. Different phases of HHO (Heidari et al.[16]).

https://doi.org/10.1371/journal.pone.0281636.g001
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of iterations. Thus, the escaping energy E is within the interval (-2, 2). When |E|�1, it indicates

that the rabbit is capable of escaping, so the Harris hawks perform a global search (explora-

tion). When |E|<1, it indicates that the rabbit is weak, and the Harris hawks perform a local

search (exploitation).

2.3 Exploitation phase

When a rabbit is spotted, Harris hawks will besiege to the rabbit and wait for the chance to

pounce. However, the rabbit may escape the encirclement during besieging, so Harris hawks

should constantly adjust their flight strategies according to the behaviour of the rabbit. Four

strategies, which will be switched by the escaping energy E and a random r, will be used in the

exploitation phase to mimic the hunting behaviour of a Harris hawk. Each strategy is intro-

duced in detail as follows.

2.3.1. Soft besiege. When |E|�0.5 and r�0.5, the rabbit has enough energy to try to escape

the siege by jumping at will, but is ultimately unable to escape, so Harris hawks can capture the

rabbit by surrounding the rabbit and performing a surprise pounce. This strategy can be for-

mulated as follows:

Xðt þ 1Þ ¼ DXðtÞ � E j JXrabbitðtÞ � XðtÞj ð4Þ

DXðtÞ ¼ XrabbitðtÞ � XðtÞ ð5Þ

J ¼ 2ð1 � r5Þ ð6Þ

where ΔX(t) represents the difference between the optimal individual and the current individ-

ual, J is the random jump strength of the rabbit and r5 is a random number between (0,1).

2.3.2. Hard besiege. When |E|<0.5 and r�0.5, the rabbit is exhausted and has neither

the energy nor the opportunity to escape, so the Harris hawks can capture the rabbit by sur-

rounding the rabbit and performing a surprise pounce. This strategy can be formulated as

follows:

Xðt þ 1Þ ¼ XrabbitðtÞ � E jDXðtÞj ð7Þ

2.3.3. Soft besiege with progressive rapid dives. When |E|�0.5 and r<0.5, the rabbit has

enough energy to successfully escape from its encirclement, so the Harris hawks need a more

intelligent encirclement to surround the rabbit before performing a surprise pounce. Harris

hawks surround the rabbit by performing the following two strategies; when the first strategy

fails, the second strategy is performed.

The first strategy is Y ¼ XrabbitðtÞ � E j JXrabbitðtÞ � XðtÞj ð8Þ

The second strategy is Z ¼ Y þ S� LFðDÞ ð9Þ

where S is a random vector with 1×D dimensions, D denotes the dimension of the search

space, and LF (�) is the Levy flight function as follows:

LFðxÞ ¼ 0:01�
m� s

jnj
1
b

; s ¼
Gð1þ bÞ � sinðpb

2
Þ

Gð1þb
2
Þ � b� 2ð

b� 1
2
Þ

 !1
b

ð10Þ

where β is a constant to be set to 1.5, and μ and ν are random numbers between (0, 1). Thus,
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the updating strategy for this phase can ultimately be modelled as follows:

Xðt þ 1Þ ¼
Y; FðYÞ < FðXðtÞÞ

Z; FðZÞ < FðXðtÞÞ

(

ð11Þ

2.3.4. Hard besiege with progressive rapid dives. When |E|<0.5 and r<0.5, the rabbit

may make a successful escape; however, its escape energy is insufficient, so the Harris hawks

form a hard encirclement to surround the rabbit before performing a surprise pounce. They

still perform two strategies to update their positions in this phase.

The first strategy is Y ¼ XrabbitðtÞ � E j JXrabbitðtÞ � XmðtÞj ð12Þ

The second strategy is Z ¼ Y þ S� LFðDÞ ð13Þ

Thus, the updating strategy for this phase can ultimately be formulated as follows:

Xðt þ 1Þ ¼
Y; FðYÞ < FðXðtÞÞ

Z; FðZÞ < FðXðtÞÞ

(

ð14Þ

In summary, (Fig 2) shows the optimization process of the basic HHO algorithm.

3. Proposed scheme

To improve the diversity of initial population and enhance the ability to jump out of local opti-

mal solution of HHO algorithm, the specific implementation of the proposed algorithm is

described in detail in this section. Two recombination mechanisms, the chaotic sequence

recombination mechanism (CSRM) and generalized opposition-based learning recombination

mechanism (OBLRM), are introduced to enhance the performance of the HHO algorithm.

The improved HHO algorithm does not change the structure of the HHO. (Fig 3) shows the

optimization process of the proposed algorithm.

3.1 Chaotic sequence recombination mechanism

Since the chaotic system can vary randomly, if the running time is unlimited, every state will

be realised. This means that the chaotic maps can be applied to build the search basis of opti-

mization methods, or introduced into some raw optimization algorithms to improve their

exploration competence [35, 36]. Due to sensitivities of the initial condition, randomness and

ergodicity of a chaotic sequence, it is often used in optimization algorithms to decrease the

chance of premature maturation [37, 38]. So a chaotic sequence can significantly enhance the

capability of the HHO algorithm by replacing the random values, as confirmed in the literature

[26, 32–34]. Therefore, the chaotic sequence generated by logistic mapping is applied to gener-

ate the initial solutions in HHO. The logistic mapping can be modelled as follows:

uiþ1 ¼ c � uið1 � uiÞ; i ¼ 1; 2; . . . :k; ui 2 ð0; 1Þ;

ui 6¼ 0:25; 0:5 and 0:75
ð15Þ

where ui represents the chaotic variable in the ith iteration, k represents the iteration number,

and c is the control parameter, which is set to 4. At the initial phase of HHO, the chaotic search

around the initial candidate solutions can enhance the diversity of the population and then

improve the exploration capability of the algorithm. The initial population P is generated
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according to the following equation:

xi ¼ LBþ randðÞ � ðUB � LBÞ; i ¼ 1; 2; . . . :Np ð16Þ

where xi denotes the ith candidate solution and rand() is a function that generates a random

number between [0, 1]. Then, an updated population Pc is obtained by combining P with the

chaotic sequence ui.

Pc ¼ P þ ui � P ð17Þ

The recombination mechanism is performed by recombining Pc and P; then, a new popula-

tion will be generated by selecting the solutions corresponding to the first NP fitness values.

These steps need to be executed k times, and finally a new initial population is obtained. Apart

from the random distribution used by the standard HHO, the CSRM strategy enhances the

distribution of the initialized solutions in the search space, thus speeding up the convergence

of the HHO algorithm.

Fig 2. Optimization process of basic HHO.

https://doi.org/10.1371/journal.pone.0281636.g002
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3.2 Opposite elite learning recombination mechanism

The opposition-based learning (OBL) technique, which was first proposed in 2005 by Tiz-

hoosh, is a machine intelligence strategy that aims to improve the capabilities of SI algorithms.

Its core idea is to find a better solution between the current individual and the corresponding

opposite solution, according to their fitness values. It has been verified that the OBL strategy

can have more chances to approach the global optimal solution of the objective function

[39]. Therefore, the OBL strategy has been widely applied by researchers to enhance the capa-

bilities of SI algorithms, such as the WOA [40], GOA [41], PSO [42], SSA [43] and CS [44]

algorithms.

Fig 3. Flow chart of the proposed HHO.

https://doi.org/10.1371/journal.pone.0281636.g003
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Suppose that xi is the current individual; then the corresponding generalized opposite solu-

tion �xi can be calculated as follows:

�xi¼randðÞ � ðUBþ LBÞ � xi; i ¼ 1; 2; . . .Np ð18Þ

Then, a population P composed of xi(i = 1,2,. . .NP) is the parent generation, while a popula-

tion Po composed of �xiði ¼ 1; 2; . . .NpÞ is the offspring. Finally, the recombination mechanism

is performed by recombining Po and P; therefore, a new population will be obtained by select-

ing the solutions corresponding to the first NP fitness values.

It is well known that in the HHO algorithm, even if the selected region is not globally opti-

mal, the global search is no longer carried out in the later periods of iteration, so the HHO

tends to converge to the local optimum prematurely. However, when the above generalized

opposition-based recombination mechanism is embedded in the HHO algorithm, the

improved algorithm can have the opportunity to carry out global search in the later period of

iteration to jump out of the local optimum and improve the accuracy of the solution.

4. Experimental results and analysis

To evaluate the performance of the HHO-CS-OELM algorithm, two experiments are imple-

mented in this section. In the first experiment, the proposed HHO-CS-OELM algorithm was

compared with 14 SI algorithms, such as PSO, SFLA, ABC, WOA, CS, GSA, GWO, Jaya,

BHHO, HHHO, CHHO, CSHHO, DEHHO and HHO, that were applied to optimize the 23

benchmark functions [13]. Second, the HHO-CS-OELM algorithm was applied to optimize

the thresholds and weights of the back propagation (BP) neural network for UWB indoor posi-

tioning. All experiments are carried out on a Windows 10 operating system with MATLAB

R2019a on a PC with Inter(R) core i7-10750H and 16 GB RAM memory.

4.1 Benchmark functions experiment

The HHO-CS-OELM algorithm and the other 14 SI algorithms are applied to optimize the 23

benchmark functions, which are categorised as unimodal, multimodal and fixed dimension

multimodal. F1-F7 are unimodal functions for which there is only one global optimal solution.

These functions can be utilized to evaluate the convergence speed and exploitation capability

of the proposed algorithm. On the other hand, F8-F13 and F14-F23 are multimodal and fixed

dimension multimodal functions, respectively, which have one global optimal solution and

several local optimal solutions. These functions can be applied to evaluate the local optimal

avoidance and exploration capabilities of the proposed algorithm. The details of these bench-

mark functions are provided in the literature [13]. Typical two-dimensional diagrams of some

of these functions are shown in (Fig 4), from which, the prominent characteristics of these

functions can be observed, Fig 4(a) and 4(b) are unimodal functions which have only one min-

imum value, however, from Fig 4(c) to 4(f) are multimodal functions which have a lot of local

minimum values.

For all experiments, we set the population size to 30, the maximum number of iterations to

500, and the parameters of each algorithm are taken from the literature. Each algorithm is exe-

cuted independently for 51 times for each function. The average and standard deviation results

of these benchmark functions are recorded in Table 1, and the convergence curves of F1-F7,

F8-F13 and F14-F23 are shown in Figs 5–7, respectively.

4.1.1. Evaluation of exploitation capability (F1-F7). The unimodal functions can be uti-

lized to evaluate the exploitation capabilities of the SI algorithms because they only have one

global optimal solution. The results in Table 1 show that the HHO-CS-OELM algorithm is

highly competitive compared to other HHO variants and SI algorithms. For all unimodal
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functions excluding F6, the HHO-CS-OELM algorithm acquires the best optimal average val-

ues and standard deviations, which indicates that the accuracy and stability of the HHO-C-

S-OELM algorithm are the best among all algorithms. On the other hand, the results in Fig 5

show that the convergence of the HHO-CS-OELM algorithm is the fastest. In summary, the

exploitation capability of the HHO-CS-OELM algorithm is more competitive than that of

other SI optimization algorithms.

Fig 4. Typical 2D representations of benchmark mathematical functions: (a), (b) unimodal functions, (c), (d) multimodal functions, and (e), (f)

fixed-dimension multimodal functions.

https://doi.org/10.1371/journal.pone.0281636.g004

PLOS ONE An improved harris hawks optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0281636 February 22, 2023 10 / 23

https://doi.org/10.1371/journal.pone.0281636.g004
https://doi.org/10.1371/journal.pone.0281636


Table 1. Optimization results of 23 benchmark functions.

F GSA [14] GWO [9] Jaya [15] PSO [10] SFLA [12]

ave std ave std ave std ave std ave std

F1 2.41E-16 1.62E-16 5.71E-28 4.37E-28 0.0140947 0.0071817 1.848079 0.961603 5.74E-20 8.45E-20

F2 0.0404513 0.0646169 7.38E-17 5.95E-17 1.0211176 0.4472688 0.293606 0.144564 1.58E-11 8.93E-12

F3 739.13499 232.35362 2.02E-06 2.73E-06 40372.169 5855.3266 9590.704 687.5929 0.90268272 1.0032263

F4 6.2525518 1.9013357 7.34E-07 3.73E-07 69.965142 6.9024873 20.81261 3.473756 0.03860862 0.0333454

F5 71.111986 54.204282 27.06274 0.5907819 127.29214 100.5347 1253.756 938.8401 20.7200987 0.8355175

F6 4.78E-16 5.12E-16 0.843911 0.701659 6.6326246 2.4593122 2.560659 2.148027 4.75E-19 4.89E-19

F7 0.0632492 0.0214553 0.001221 0.0010094 7.8703457 2.2132186 0.127265 0.035116 0.00766484 0.0037064

F8 -2701.578 204.01577 -5778.11 1589.8457 -6260.097 394.13716 -10601.6 340.3485 -7853.7928 1146.5375

F9 128.5475 55.882554 2.432101 2.1247137 377.81028 76.583244 221.9685 36.91306 72.2338468 14.717256

F10 1.12E-08 2.33E-09 1.02E-13 1.52E-14 16.035105 1.5023415 1.960284 0.41207 0.2310297 0.5165981

F11 25.101091 7.0435253 0.006549 0.0146435 0.3032846 0.1496428 1.029943 0.015273 0.0068969 0.0068333

F12 1.9981369 0.9194609 0.03531 0.0070515 5.1036967 1.495743 5.789422 2.106513 2.4712E-15 8.89E-15

F13 7.7274859 6.141158 0.6514 0.2613722 1.55E-32 4.41E-33 25.76373 4.462665 1.61E-19 1.12E-19

F14 8.9614498 5.5141912 1.791644 1.086737 0.9980038 2.58E-09 0.998004 0 0.99800384 0

F15 0.0047645 0.0019368 0.011581 0.0251343 0.0016676 0.0003386 0.008589 0.010989 0.00051041 0.0004537

F16 -1.031628 1.11E-16 -1.03163 4.11E-08 -1.031628 2.39E-07 -1.03163 1.57E-16 -1.031628 0

F17 0.3978874 0 0.397891 4.26E-06 0.3979032 2.11E-05 0.397887 0 0.39786736 0

F18 3 5.56E-15 3.000031 2.65E-05 3.0001094 0.0001504 3 1.20E-15 3 5.87E-16

F19 -3.862782 3.85E-16 -3.8627 7.94E-05 -3.862782 0 -3.86278 0 -3.8627821 0

F20 -3.321995 3.14E-16 -3.21049 0.0678094 -3.249945 0.0641553 -3.27444 0.06512 -3.2506593 0.0651204

F21 -6.459084 3.7502678 -8.13032 2.7674398 -7.131524 4.1089097 -5.10491 3.071476 -6.1545785 3.7813392

F22 -10.40294 1.78E-15 -10.4012 0.0010495 -9.159937 2.3024201 -8.87553 3.41539 -10.402941 1.54E-15

F23 -9.417568 2.501806 -10.5342 0.0008565 -9.362327 2.4840699 -7.29165 2.962045 -8.1240606 3.3370575

F WOA [13] ABC [11] CS [8] BHHO [25] HHHO [26]

ave std ave std ave std ave std ave std

F1 5.03E-73 6.93E-73 116.90328 99.446207 8.938738 4.0552844 4.30E-99 8.75E-99 4.06E-10 5.70E-10

F2 1.70E-51 2.57E-51 66.274234 18.107702 14.18175 5.6171115 2.62E-51 4.01E-51 4.03E-07 7.27E-07

F3 42368.289 11292.92 70874.315 13876.575 1933.585 396.47193 2.24E-67 5.00E-67 1.44E-06 3.22E-06

F4 55.840991 31.524364 62.962487 2.9479726 10.72391 2.2298824 3.66E-49 8.00E-49 5.38E-06 1.18E-05

F5 27.941996 0.4754027 3054695.1 1092768.8 728.4834 763.84808 0.3854 0.124802 0.0219886 0.035827

F6 0.4217644 0.1741637 79.436661 49.36349 10.77344 2.87247 0.0004 0.0005828 0.0023816 0.0042346

F7 0.0018998 0.00198 1.2834273 0.3349566 0.099935 0.0313949 0.0001634 0.0001834 0.0009076 0.0009345

F8 -10337.23 1840.1341 -4.58E+30 4.47E-30 -7862.46 127.91114 -12569.22 0.2997935 -12568.58 1.8962802

F9 0 0 430.15851 37.094244 286.506 57.40423 0 0 6.09E-08 1.36E-07

F10 5.15E-15 2.97E-15 7.7570486 0.6390946 7.398407 3.4135373 8.88E-16 0 3.39E-06 6.71E-06

F11 0.0349904 0.078241 1.9955217 0.6577877 1.06669 0.0253085 0 0 8.31E-10 1.69E-09

F12 0.0191564 0.0055755 4594127.6 2431688.7 3.403843 0.7371567 9.99E-06 1.25E-05 2.69E-05 2.43E-05

F13 0.4532223 0.1770201 16044917 7095440.6 7.367658 2.6789956 9.94E-05 0.0001138 0.0001264 0.0001767

F14 3.3478595 4.233386 0.9980218 3.01E-05 0.998004 1.11E-16 1.1968093 0.4445424 0.9980039 4.54E-08

f15 0.0005188 0.0001956 0.0010764 0.0001658 0.000424 0.0001288 0.0003011 3.18E-06 0.0008582 0.0008098

F16 -1.031628 7.49E-09 -1.031628 9.98E-08 -1.03163 1.11E-16 -1.031628 2.79E-10 -1.031623 7.80E-06

F17 0.3978949 6.48E-06 0.3979008 1.41E-05 0.397887 4.40E-14 0.3978879 8.23E-07 0.3987115 0.0011985

F18 3.0000377 6.56E-05 3.0000047 4.13E-06 3 1.37E-15 3.000001 1.53E-06 3.0000053 9.98E-06

F19 -3.854978 0.0076613 -3.852782 2.66E-10 -3.85278 6.28E-16 -3.852755 2.42E-05 -3.832871 0.0653854

F20 -3.211818 0.1029667 -3.321931 0.0001428 -3.322 3.45E-08 -3.291531 0.0675993 -3.182015 0.1164403

F21 -9.125273 2.2754774 -10.15320 8.85E-08 -10.0532 9.13E-08 -5.05512 6.57E-05 -10.05253 0.0953224

(Continued)
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4.1.2. Evaluation of exploration capability (F8-F23). The multimodal functions F8-F23

contain a large number of local optimal values, which increase exponentially with increasing

dimension. Therefore, these functions are suitable for evaluating the exploration capability

and the ability to avoid local optima. It can be seen from Table 1 and Figs 5–7 that the

HHO-CS-OELM algorithm outperforms the other algorithms in most of the multimodal func-

tions F8-F13. For F8, the HHO-CS-OELM algorithm is inferior only to the ABC algorithm,

but superior to all other algorithms. For F9-F11, although most algorithms can obtain the opti-

mal solutions, the convergence speed of the HHO-CS-OELM algorithm is the fastest. For F12,

the HHO-CS-OELM algorithm is inferior only to SFLA algorithm, but superior to all other

algorithms. For F13, the HHO-CS-OELM algorithm is inferior only to the SFLA, DEHHO and

CHHO algorithms, but superior to all other algorithms. However, when compared to the stan-

dard HHO algorithm alone, the HHO-CS-OELM algorithm is a winner in all conditions,

which indicates that HHO-CS-OELM is completely superior to the HHO algorithm.

For F14, the HHO-CS-OELM algorithm is superior to all other algorithms, and the conver-

gence speed is also the fastest. For F15, the HHO-CS-OELM algorithm is inferior to only the

BHHO algorithm. For F16, the HHO-CS-OELM algorithm is inferior to only the SFLA, ABC

and DEHHO algorithms, but superior to all other algorithms. For F17, however, the HHO-C-

S-OELM algorithm is superior to only the HHO and HHHO algorithms, but inferior to all

Table 1. (Continued)

F22 -6.148296 2.3727622 -10.40284 6.13E-08 -10.3029 7.97E-07 -4.623228 1.0383363 -10.37496 0.0328237

F23 -6.730835 3.6252916 -10.53631 1.11E-07 -10.5364 3.35E-06 -7.291204 2.9614583 -10.47212 0.1028446

F CHHO [32] CSHHO [33] DEHHO [34] HHO [16] Proposed

ave std ave std ave std ave std ave std

F1 7.57E-101 1.30E-100 2.71E-176 0 4.60E-95 1.03E-94 3.80E-97 4.66E-97 0 0

F2 8.48E-53 1.75E-52 3.12E-90 6.92E-90 8.43E-53 1.88E-52 1.02E-52 2.14E-52 1.63E-177 0

F3 9.74E-81 1.37E-80 6.34E-142 1.42E-141 2.74E-86 6.12E-86 3.89E-86 8.67E-86 2.73E-198 0

F4 1.04E-49 2.23E-49 1.71E-89 3.69E-89 2.64E-50 5.72E-50 9.48E-51 1.55E-50 1.50E-188 0

F5 0.01221134 0.015032 1.624055 1.523146 0.012310 0.013932 0.018180 0.022361 0.0034244 0.01505

F6 0.0001033 0.000105 0.018239 0.023785 7.76E-05 7.82E-05 0.000213 0.000138 0.000198 0.00031

F7 0.00011856 7.99E-05 0.000142 0.000184 0.000154 6.13E-05 5.52E-05 6.33E-05 8.36E-07 4.60E-07

F8 -12568.823 1.0914916 -11258.41 1137.674 -12568.6 0.442414 -12568.62 0.699447 -12930.83 0.88076

F9 0 0 0 0 0 0 0 0 0 0

F10 8.88E-16 0 8.88E-16 0 8.88E-16 0 8.88E-16 0 8.88E-16 0

F11 0 0 0 0 0 0 0 0 0 0

F12 6.97E-06 5.69E-06 0.0004790 0.000367 7.69E-06 6.19E-06 5.71E-06 6.59E-06 8.46E-06 1.29E-05

F13 6.66E-05 7.86E-05 0.0108518 0.010619 2.31E-05 1.89E-05 5.42E-05 5.10E-05 3.30E-05 2.44E-05

F14 1.1968092 0.4445424 0.9980058 4.56E-06 0.998003 7.47E-11 2.1829775 2.137783 0.99901 0.444542

f15 0.0003103 3.28E-06 0.0004604 0.000170 0.000311 2.99E-06 0.0003194 2.76E-06 0.0003059 1.00E-05

F16 -1.031628 3.19E-10 -1.031628 2.87E-10 -1.031628 6.99E-10 -1.031628 1.04E-08 -1.031628 1.60E-10

F17 0.39788795 1.19E-06 0.397978 0.000142 0.397887 1.33E-07 0.3978874 1.14E-07 0.3978881 1.55E-06

F18 13.800001 14.788511 3.000018 2.41E-05 8.400003 12.07477 8.400002 12.07476 3.000002 2.93E-06

F19 -3.8527389 4.77E-05 -3.762825 0.112669 -3.86278 3.36E-07 -3.862606 0.000367 -3.859995 0.006209

F20 -3.2701541 0.071042 -3.31470 0.005088 -3.27404 0.065469 -3.296126 0.057369 -3.248782 0.066768

F21 -6.0744263 2.279263 -6.056752 2.266704 -5.05517 1.96E-05 -5.055163 2.79E-05 -10.15312 8.86E-05

F22 -5.0876202 3.99E-05 -5.079582 0.009285 -5.08761 4.06E-05 -5.087622 3.21E-05 -10.40272 0.000171

F23 -5.1284078 9.20E-05 -6.201579 2.422959 -5.12844 2.67E-05 -3.896684 1.707097 -10.53621 0.000113

https://doi.org/10.1371/journal.pone.0281636.t001
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other algorithms. For F18, the HHO-CS-OELM algorithm is inferior to only the SFLA algo-

rithm, but superior to all other algorithms. For F19, the HHO-CS-OELM algorithm is superior

to only the HHO and BHHO algorithms, but inferior to all other algorithms. For F20, the

HHO-CS-OELM algorithm is inferior to only the WOA and CS algorithms, but superior to

all other algorithms. For F21-F23, the HHO-CS-OELM algorithm is inferior to only the ABC

Fig 5. Convergence curves of F1-F7.

https://doi.org/10.1371/journal.pone.0281636.g005
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algorithm and superior to all other algorithms. For F14-F23, the HHO-CS-OELM algorithm

performs barely satisfactory with respect to all other algorithms; however, it still completely

outperforms the standard HHO algorithm. In summary, these results show that HHO-C-

S-OELM can provide superior exploration capability.

In addition, the proposed algorithm can obtain optimal values for 11 functions out of 23

functions; while it outperforms the standard HHO algorithm on all of the 23 functions. There-

fore, the above results reveal that the chaotic sequence and opposite elite learning mechanism

can effectively balance the exploitation and exploration capabilities and improve the perfor-

mance of the HHO algorithm.

Fig 6. Convergence curves of F8-F13.

https://doi.org/10.1371/journal.pone.0281636.g006
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4.2 Engineering application

In this section, an engineering problem on indoor positioning based on the improved BP

neural network, is performed to verify the performance of the proposed method. A BP neural

Fig 7. Convergence curves of F14-F23.

https://doi.org/10.1371/journal.pone.0281636.g007
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network is a multilayer feedforward neural network equipped with error back propagation.

The BP neural network is one of the most widely used artificial neural network models at pres-

ent. It is composed of input layer, hidden layer and output layers, for which, the number of

neurons in each layer can be set randomly according to requirements, while the performance

of the network varies with the number of different structures. However, the initial thresholds

and weights of the network generated randomly can easily steer the network into a local

extrema. Therefore, to alleviate this shortcoming, many intelligent optimization algorithms

are used to optimize the initial thresholds and weights [45–48].

Thus, in this section, HHO, BHHO, HHHO, CHHO, CSHHO, DEHHO and the proposed

improved HHO algorithms are applied to optimize the initial thresholds and weights, and

then the improved BP neural network is applied to improve the accuracy of the ultrawide band

(UWB) positioning system.

The indoor positioning system-based UWB is configured with four UWB base stations

deployed at four corners of a 5.6 m x 4.8 m room, which is shown in (Fig 8). The red rectangle

is the base station, and the blue rectangle is the location tag. In the offline training stage of the

BP neural network, 64 sample points are sampled, with (1.0 m, 1.0 m) as the starting point, at

intervals of 40 cm, to be used as the training dataset. As shown in (Fig 9), in the online test

stage of BP neural network, 49 sample points are sampled with (1.2 m, 1.2 m) as the starting

point, at intervals of 40 cm, to be used as the test dataset; where the red circle indicates the

measured position and the blue asterisk denotes the real position.

According to the experimental configuration, the structure of the BP network consists of 2

input and 2 output neurons, and 7 neurons in hidden layer. The activation function is set as a

Fig 8. The positioning scenario of UWB.

https://doi.org/10.1371/journal.pone.0281636.g008
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Sigmoid function in hidden layer, transfer function is set as a Purelin function in the output

layer, gradient descending method is used as the training method, mean square error function

is used as the performance index, and the maximum training time is 2000, the learning rate is

0.01, and the initial weights and thresholds are generated by a random generation method

and the swarm intelligent optimization algorithms, respectively. (Figs 10 to 13) show the

experimental results.

(Fig 10) shows that the proposed HHO-CS-OELM algorithm has the fastest convergence

speed. In (Fig 11), the black pillar indicates the average positioning error of the BP neural net-

work, when random weights and thresholds were 7.76 cm, which demonstrates the worst per-

formance. On the other hand, the red pillar indicates that the resulting average error of the

improved BP neural network optimized by the HHO-CS-OELM algorithm is 3.81 cm, which

is the best performance. These results reveal that the improved BP neural network can improve

the performance of the BP neural network.

In (Fig 12), the red line represents the positioning error of the improved BP neural network

optimized by the HHO-CS-OELM algorithm, while the black line denotes the measuring

error. In Fig 13, the green point, the red circle, and the blue asterisk indicate the predicted

Fig 9. Measured positions and real positions.

https://doi.org/10.1371/journal.pone.0281636.g009
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positions obtained by the BP neural network and the HHO-CS-OELM algorithm along with

the measured positions and real positions, respectively. Figs 12 and 13 show that the position-

ing errors of approximately 67.35% (33/49) of the test points are significantly improved by the

modified BP neural network. These results reveal that the HHO-CS-OELM can significantly

improve the performance of the BP neural network and further verify that the two strategies

can effectively enhance the performance of the HHO algorithm in this paper.

5 Conclusions and future works

In this paper, we propose a new HHO variant algorithm based on chaotic mapping and an

opposite elite learning mechanisms. The chaotic sequence recombination mechanism is

applied at the initial population stage to improve the diversity of the population and enhance

the exploration ability of the HHO algorithm. The opposite elite learning recombination

mechanism is used at the last stage of each iteration, to effectively maintain the optimal indi-

vidual and enhance the exploitation ability. On the other hand, this method can overcome the

shortcoming at the late iteration in the HHO algorithm: inability to perform global search. In

addition, the exploitation and exploration capabilities of the HHO algorithm are balanced. The

performance of the HHO-CS-OELM algorithm is verified by comparison with 14 optimization

algorithms on 23 benchmark functions and an engineering problem which aims to optimize

Fig 10. Convergence curves of different algorithms.

https://doi.org/10.1371/journal.pone.0281636.g010
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Fig 11. Average positioning errors of the test dataset.

https://doi.org/10.1371/journal.pone.0281636.g011

Fig 12. Measuring and predicting errors of the test dataset.

https://doi.org/10.1371/journal.pone.0281636.g012
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the weights and thresholds of the BP neural network for indoor positioning. Experimental

analyses revealed that the proposed algorithm can obtain optimal values for 11 functions out of

23 functions compared to other state-of-the-art SI algorithms, while it outperforms the stan-

dard HHO algorithm on all of the 23 functions, so the HHO-CS-OELM algorithm offers

competitive results compared to other state-of-the-art SI algorithms, and verified that the

HHO-CS-OELM algorithm has better performance than others. The improved BP neural net-

work optimized by the HHO-CS-OELM algorithm reduced the indoor average positioning

error from 7.76 cm to 3.81 cm which is obtained by BP neural network, it also revealed that the

indoor positioning accuracy obtained by using the BP neural network with the proposed algo-

rithm is significantly improved, which further verifies the superiority of the HHO-CS-OELM

algorithm.

To further improve the performance of the HHO-CS-OELM algorithm, outcomes of

other benchmark functions still need to be enhanced, and the exploitation and exploration

capabilities of the HHO-CS-OELM algorithm need to be investigated further. Moreover, the

HHO-CS-OELM algorithm should be used to solve the system optimal parameters, optimal

parameters of neural network model, and so on.
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