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Abstract

Recent progress in Single-Cell Genomics has produced different library protocols and tech-

niques for molecular profiling. We formulate a unifying, data-driven, integrative, and predic-

tive methodology for different libraries, samples, and paired-unpaired data modalities. Our

design of scAEGAN includes an autoencoder (AE) network integrated with adversarial

learning by a cycleGAN (cGAN) network. The AE learns a low-dimensional embedding of

each condition, whereas the cGAN learns a non-linear mapping between the AE representa-

tions. We evaluate scAEGAN using simulated data and real scRNA-seq datasets, different

library preparations (Fluidigm C1, CelSeq, CelSeq2, SmartSeq), and several data modali-

ties as paired scRNA-seq and scATAC-seq. The scAEGAN outperforms Seurat3 in library

integration, is more robust against data sparsity, and beats Seurat 4 in integrating paired

data from the same cell. Furthermore, in predicting one data modality from another, scAE-

GAN outperforms Babel. We conclude that scAEGAN surpasses current state-of-the-art

methods and unifies integration and prediction challenges.

Introduction

The maturation of the single-cell genomics field has produced methods to profile multiple

data modalities, such as single-cell RNA sequencing (scRNA-seq) and chromatin profiles

(scATAC-seq), even on the same cells at the same time. This development has provided rich

opportunities for a deep understanding cell states and transitions while presenting severe

computational challenges [1]. One of the most notable challenges is the integration of different
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single-cell datasets. Integrating different experiments has proved daunting even when using

the same library protocol and omics type. For example, distinct scRNA-seq datasets may differ

in the number of sampled cells and sequencing depth allocated to each cell, even by several

orders of magnitude. The next challenge is combining scRNA-seq data from different library

protocols or species [2]. A third challenging task is integrating other data modalities from the

same experiment but originating from separate cells, a case known as unpaired multi-omics

integration. Finally, recent technological advances produce paired multi-omics data collected

from the same cell. These challenges have thus far been addressed one by one. For example,

Seurat3 [3] and MOFA+ [4] integrate unpaired data, whereas Seurat4 [5], and MultIVI [6]

integrate paired data, and Babel [7] predicts one modality from another. Methods such as scA-

lign [8], Harmony [9], and Seurat3 target scRNA-seq datasets originating from different exper-

iments that used the same platform [10].

In contrast, Liger [11], iMAP [12], scMerge [13], and Seurat3 can integrate datasets pro-

duced using different library protocols. Most of these limitations of only being able to target a

single challenge directly derive from the internal operation of each method. Seurat3 is based

on the concept of “anchors”, which are cross-dataset pairs of cells with similar biological states.

This approach does not readily scale to large datasets and performs poorly when integrating

heterogeneous datasets [14]. Worse, only a fraction of cell types are usually shared across data-

sets, making identification increasingly challenging using anchors [15]. Babel, a machine

learning method, targets only gene prediction for paired data. Thus, by design, it lacks cluster-

ing capabilities and cannot tackle unpaired data or different library protocols.

Furthermore, these approaches implicitly assume that differences between datasets arise

entirely from technical variation, thus potentially masking the biological signal. For example,

the Mutual Nearest Neighbors (MNNs) method [16] effectively reduces differences between

datasets. An alternative strategy is exemplified by Seurat3, which forces all datasets into a

shared latent space. However, both dataset similarities and differences in many kinds of analy-

sis are biologically meaningful. Thus, it requires respecting each sample’s uniqueness, protocol,

and data type.

There is a need for scalable and robust integrative methods for omics data. Preferentially

general enough to encompass multiple integration tasks in one systematic framework. From

this standpoint, we can also expect the scale and the number of different data modalities to

increase further [17].

Here we present a novel integrative method that has been designed to take these require-

ments into account. The critical insight motivating our approach is that we do not force all

experimental samples into a single joint representation, regardless of their library protocol,

data modality, paired or unpaired design. Instead, we use an autoencoder (AE) to represent

and respect the distributional characteristics of each dataset and condition. The integration is

performed in the latent space by learning a mapping between the different latent space repre-

sentations. Inspired by recent progress in image-to-image translation, we use a cycleGAN

(cGAN) architecture for obtaining a translation between the latent spaces corresponding to

different datasets. Conceptually, our method reformulates the integration challenge from a

problem to be addressed in raw data space into a learning challenge between different data-

specific latent space representations. We denote our method scAEGAN, a coupled AE—cycle-

GAN architecture. Our results demonstrate that scAEGAN can target single-cell multi-omics

integration tasks with performances similar to or superior to other state-of-the-art tools. Fur-

thermore, we provide evidence that the mapping between different latent spaces is essential for

effective integration by contrasting scAEGAN against the simplified approach of directly

concatenating latent spaces, which forces the data into a shared latent space without learning a

mapping.
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Material and methods

Neural network architecture

scAEGAN is a unifying architecture combining AE [18] and cGAN [19]. AE, an unsupervised

deep neural network, learns essential latent features and ignores the non-essential sources of

variations, such as random noise [20]. Hence, the high dimensional ambient space is com-

pressed, capturing the underlying proper data manifold.

First, each given dataset is provided as input to an AE in a matrix X, where rows (m) repre-

sent the cells and columns (n) indicate genes/transcripts. The AE task involves learning the

encoding representation through an encoding function e(x) and then mapping back e(x) to the

original input space through a decoding function d. For faster convergence and better accu-

racy, Rectified Linear Unit (ReLU) has been used as an activation function, which is given as a

function f applied to the input x:

f xð Þ ¼ max x; 0ð Þ

The first hidden layer Hidden1 with l1 nodes following the input Xi (row vector) is formu-

lated as follows:

Hidden1 ¼ f w1X
T
i þ b1

� �

The weight matrix w1 is of l1 × n dimensions and the bias term b1 is l1 length vector. Each

subsequent middle layer k is formulated as:

Hiddenk ¼ f wkHiddenk� 1 þ bkð Þ

The composition of e and d, i.e., d(e(x)) = X0 is called the reconstruction function, and the

reconstruction loss function penalizes the error made, which is given as:

L X;X0ð Þ ¼k X � X0k2

The low-dimensional space representation from the AEs captures the underlying manifold

of the data. Secondly, we utilize a cGAN to learn relationships between the different domains/

datasets (A and B). Specifically, learning two generative mapping functions GAB: A-> B and

GBA: B-> A. In addition to these generative functions, two discriminators DA and DB were

used to regularise the generators to generate samples from a distribution close to the latent

representation of A or B. We used the Wasserstein GAN adversarial loss introduced in [21]. In

the Wasserstein GAN, the discriminator is replaced by a critic model. The function of the critic

is not directly to separate fake samples apart from the real ones. Instead, it is trained to learn a

K-Lipschitz continuous function, making the neural network gradient smaller than a threshold

value K, such that krfk � K. The primary rationale for applying this condition is that gradient

behaves better, making generator optimization easier [22]. As the loss function decreases in

training, the Wasserstein distance gets smaller, and the generator model’s output grows closer

to the actual data distribution. This loss ensures that the generator generates the samples from

a distribution close to the distribution of B denoted by b � p bð Þ
data. This Wasserstein GAN adver-

sarial loss is applied to both the mapping functions and the objective is expressed for GAB: A->

B:

LGAN GAB;DB;A;Bð Þ ¼ Eb�p bð Þ
data

fw bð Þ½ � � Ea�p að Þ
data

fw GAB að Þð Þ½ �

where function f is a K-Lipschitz continuous function, {fw}w2W, parameterized by w, a � p að Þ
data

represents the probability distribution of domain A and b � p bð Þ
data denotes the probability
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distribution of domain B. The cycle consistency loss ensures that the learned mappings are

cycle consistent, i.e., bringing back to the original domain. It acts as a regularization and

reduces the space of possible mapping functions. Which is given as:

Lcyc GAB;GBAð Þ ¼ Ea�p að Þ
data
½k GBA GAB að Þð Þ � ak1 þ Eb�p bð Þ

data
½k GAB GBA bð Þð Þ � bk1

To train the cGAN on the latent subspaces of the two domains, the entire objective function

is:

L GAB;GBA;DA;DBð Þ

¼ LGAN GAB;DB;A;Bð Þ þ LGAN GBA;DA;B;Að Þ þ l1Lcyc GAB;GBAð Þ þ l2Lident GAB;GBAð Þ

G�AB;G
�

BA ¼ argminGAB;GBA
maxDA;DB

L GAB;GBA;DA;DBð Þ

The scAEGAN architecture is provided with a scRNA-seq and a scATAC-seq data set

(domain A and B, respectively) as illustrated in Fig 1a. Each block on the left side and right

side in Fig 1a represents data from domain A and domain B, respectively (for instance, Sam-

ple S1 represents dataset1 from the same modality and same library protocol. Sample S2 rep-

resents dataset2 from the same modality same protocol; likewise, for Library L1, L2

represents data from the same modality but different library protocols. The different types

of lines in Fig 1a (bold and dashed) represent the input to the encoders and output from the

decoder from the respective domains A and B. For instance, a bold line from Sample S1

Fig 1. scAEGAN architecture for single cell data integration a) Coupled scAEGAN, allowing the translation of AE-obtained low-dimensional

embeddings via a cGAN, b) Outputs from the scAEGAN, where A2B and B2A are integration results of the A and B datasets mapped with latent space

of input datasets A and B (lower panel), c, d) shows the heatmaps of the cluster similarity, where x axis represents the input domain clusters and y axis

represents the translated domain clusters, scAEGAN preserved the transferred cell identity agreement with the original identity.

https://doi.org/10.1371/journal.pone.0281315.g001
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represents the input to the encoder, the same bold line from the decoder to Sample S1 repre-

sents the reconstructed output, and likewise for other domains with a different representa-

tion of dashed lines. The first step in the scAEGAN integration algorithm is training an AE

independently on both domains A and B to find a low-dimensional embedding that pre-

serves each domain’s key defining features. This step is necessary since direct translation

between scRNA-seq domains via cGAN, while possible, is hampered by increased technical

variation or dataset complexity. AE is particularly suitable due to its ability to reduce ran-

dom noise while still maintaining essential features. Moreover, it turns out that AE gener-

ates more biologically meaningful embeddings compared to variational autoencoders

(VAE) when learning across latent spaces, which is most likely due to a poor match

between the unimodal prior and the inherently multimodal scRNA-seq data [23]. A cGAN

is then trained on the low-dimensional representations to achieve the translation between

domains.

Hyperparameter tuning

We have performed a series of analyses to generate the best configuration for scAEGAN hyper-

parameters based on the nature of the single-cell data, that resulted in the optimal configura-

tion. The hyperparameters to be adjusted for scAEGAN are batch size, learning rate, the

embedding space dimensions, and set of weighted parameters used to control the cGAN loss,

i.e λ1, λ2 and training epochs.

AE hyperparameter and optimization. The AE model consists of three hidden layers

with the dimensions of Hidden1 (300), Hidden2 (50), Hidden3 (300). ReLU has been used as an

activation function for the hidden layers followed by a linear activation function in the bottle-

neck layer. The embeddings from this bottleneck layer are used as input to the cGAN. A drop-

out value of 0.2 has been used to prevent overfitting. We used Adam [24] as an optimizer with

different settings ranging from lr = 0.0001 to 0.0005 and found 0.0001 as the best setting for

our experiments to train the AE model. We trained the AE using a batch size of 16 for the

number of epochs ranging from 60 to 200 and observed that the model trained for 120 epochs

gives better performance, with 80% training and 20% validation data to analyze the conver-

gence of the model.

cGAN hyperparameter and optimization. The architecture of cGAN consists of two

generators and two discriminators. The generators consist of one residual block and one

dense layer of 50 dimensions each, and the discriminators consist of two dense layers. A

dropout value of (0.2) has been used for the residual block, followed by batch normalization,

which stabilizes the learning process. In addition to this, batch normalization has a slight reg-

ularization effect; for this reason, we have used a small value (0.2) for the dropout. LeakyR-

eLU [25] has been used as an activation function. To train the cGAN model, we have used

two different optimized settings of Adam optimizer for the real data and simulated data. For

the actual data, the cGAN is trained with Adam optimizer with parameters: lr = 0.0005 and
r = 0.0002, beta1 = 0.5, beta2 = 0.999, epsilon = 1e − 7, decay = 0. And for the simulated data,

the cGAN is trained with Adam optimizer with parameters: lr = 0.0002, beta1 = 0.5, beta2 =

0.999, epsilon = 1e − 6, decay = 0.0. We use the hyperparameters as weights for the cyclic loss

and identity loss in all our experiments, i.e., λ1 = 0.3 and λ2 = 0.3, which were chosen to

check a couple of combinations for verifying that our optimization process generates the

translated data similar to the starting ones. Also, to maintain the K-Lipschitz continuity of fw
we used the hyperparameter c = 0.1 during the training, which helps in resulting in compact

parameter space. In addition to these, the cGAN is trained with a batch size of 4 for 200 to

400 epochs.
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AE concatenated (AE-Concat)

The AE concatenated architecture is used for the comparison with scAEGAN. The AE-Concat

architecture consists of two encoders of one hidden layer, concatenated and projected down to

the bottleneck layer. The first encoder takes the input from the first domain, and the second

encoder takes input from the second domain. The first encoder and second encoder dimen-

sions are 30 each, summing up to 60 dimensions after concatenating, projected down to a low

dimensional space of 50 dimensions in the bottleneck layer. This layer contains the integrated

low-dimensional representation of the two domains. ReLU is used as an activation function

and a dropout value of (0.2). This concatenated network is trained with Adam optimizer with

a learning rate of lr = 0.0005 for 200 epochs using a batch size of 16. The concatenated AE uses

the mean square error as a loss function to minimize the input and output loss.

Overview of the evaluation metrics

Firstly, the overlap between datasets before and after integration was visually assessed in low-

dimensional representations using the UMAP R package v0.2.3.1. In the case of scAEGAN,

integration quality was measured by transferring labels between domains. A support vector

machine is first trained to classify cell types in one domain using the cluster assignments

obtained from Louvain clustering as implemented in Seurat3. This step is followed by the pre-

diction of cell type in the other domain and a comparison with the original clustering in this

domain. In the case of AE integration, direct label transfer between input space and low-

dimensional representation of the integrated dataset is not applicable. Accordingly, cell types

are again assigned to input and integrated datasets via clustering with the Louvain algorithm

and are then directly compared.

Furthermore, Seurat was used to transfer labels using its TransferData function. Cell type

assignments, i.e., clusterings, are compared using the Adjusted Rand Index (ARI) in R package

pdfCluster v1.0.3. and the Jaccard Index (JI) in R package clusteval v0. In addition to ARI and

JI, we used Preserved Pairwise Jaccard Index (PPJI), a non-symmetric distance metric between

two clusterings, for evaluating the clustering results.

Since Seurat is the most widely used tool, we compare our integration results with Seurat

version 3 and 4 for the different library protocols on paired/unpaired data.

Jaccard Index (JI). The JI calculates a 2 by 2 contingency table of agreements and dis-

agreements between the two finite subsets and evaluates the stability of clustering. Given two

subsets Ai and Bj, the JI is computed as:

JI Ai;Bj

� �
¼
jAi

T
Bjj

jAi

S
Bjj

Adjusted Rand Index (ARI). The ARI measures the similarity between the two partitions

of the same datasets by the proportion of the agreement between the two partitions. The metric

is adjusted for chance, such that the independent have an expected index of zero and identical

partitions have an ARI equal to 1. The ARI is computed as:

ARI ¼
Sij

nij
2

� �
� ½ Si

ai
2

� �
Sj

bj
2

� �
�= n

2

� �

1

2
½ Si

ai
2

� �
þ Sj

bj
2

� �
� � ½ Si

ai
2

� �
Sj

bj
2

� �
�= n

2

� � :

Where, nij refers to the number of common cells between two partitions and ai = ∑k (nik), bj =

∑k (njk) are the number of cells in estimated cluster i and in true cluster j, respectively.
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PredRNA. RNA prediction was carried out by training the cGAN on the scRNAseq/scA-

TACseq paired dataset and predicting on the held-out set.

Evaluation for the quality check was performed by computing Pearson correlation between

each pair of cells from predicted RNA and original RNA training input data. This computation

was performed using cor function from the stats package.

Clustering for integrated and independent omic modalities. The Seurat Louvain clustering

implementation was used for all of the clustering analysis [26]. Various inputs are considered

depending on the analysis:

Single-cell RNA-seq data: PCA components.

Single-cell ATAC-seq data: LSI components.

Cells were clustered based on shared components generated by the methods studied (scAE-

GAN, Seurat3, Seurat4).

For integrated subspaces, the Louvain resolution has been set to the default value of 0.6.

The number of nearest neighbors has been used as K = 20.

Data

For developing and testing this computational approach’s performance and quality, four dif-

ferent datasets (same/different modality, library preparation protocols) have been used. The

summary of the datasets used is given in Table 1.

Simulated datasets. Two datasets containing 600 cells from 5 populations and with 3000

genes each were simulated using SymSim [27] with the ‘Phyla5’ tree and the following parame-

ters: nevf 35, evf_type ‘continuous’, n_de_evf 5, sigma 0.5, gene_effect_prob 0.5, gene_ef-

fect_sd 0.2, alpha_mean 0.05, alpha_sd 0.02, depth_mean 5e4, depth_sd 3e3. For one of these

datasets, branch lengths of the ‘Phyla5’ tree was slightly modified.

Two more datasets were simulated for analysis to examine the sufficiency of scAEGAN

when there is a cell type unbalance in two datasets. For dataset A, we simulated multiple ver-

sions with all cells, 100, 50, and 10 cells for the largest cluster, and for dataset B, we opted to

remove the largest cluster, which had about 200 of the 600 genes in it.

Real datasets. The pre-processed mouse hematopoietic stem cell dataset of young and old

individuals presented by was downloaded from https://github.com/quon-titative-biology/

scalign [8]. Seurat’s NormalizeData and ScaleData functions were used to scale and center the

count matrix after normalizing it to TP10K.

Four human pancreatic islet cell datasets sequenced using different platforms were obtained

pre-processed as described in from https://github.com/immunogenomics/harmony2019 [9].

Raw read count matrices were scaled and normalized using Seurat v3 prior to integration.

scRNAseq/scATACseq paired dataset. We selected an existing paired scRNA-scATAC data-

set from the SNARE-seq protocol (a droplet-based single nucleus over mRNA expression and

Table 1. Dataset summary providing data modality, sequencing platform, and number of cells employed for inte-

gration after pre-processing.

Data set Platform Data Modality No of Cells

Pancreatic-Islet-Cells (Korsunsky et al., 2019) Fluidigm C1 scRNA-seq 638

CelSeq 946

CelSeq2 2238

SmartSeq 2355

Kowalczyk(Old/Young) (Johansen & Quon, 2019) SmartSeq scRNA-seq 524 / 498

SymSim (Zhang et al., 2019) scRNA-seq 600

Chen(scRNA-seq/scATAC-seq) (Chen et al., 2019) SNARE-seq scRNA-seq/scATAC-seq 6735

https://doi.org/10.1371/journal.pone.0281315.t001
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chromatin accessibility sequencing) [28]. The data was downloaded from GSE126074. The

preprocessing applied to this dataset is as follows:

Quality filter—low-quality features: removes low-quality features and cells from both

modalities. We excluded all cells with an overall abundance level of "number of features per

cell" and "number of counts per cell" less than quantile 0.1 and greater than quantile 0.9. For

mRNA (ATAC), minimum abundance filtering was used: genes (peaks) profiled in less than 4

cells (3 cells) and cells with fewer than 201 genes quantified were filtered. There was no require-

ment for a certain number of peaks per cell. Following quality and abundance filtering, we con-

sidered a total of 8,086 cells for scRNA and 8,214 cells for scATAC adult samples for analysis.

ATAC-derived gene activity. To compute ATAC-derived gene activity, the Seurat3 ’Create-

GeneActivityMatrix’ function with "upstream = 2000" bases was used. In addition, the

GRCh38 genome was used as a reference to later identify marker genes across the integrated

expression subspace.

Quality filter—mitochondrial: 5 percent mitochondrial filtering was used for the expression

matrices of scRNA and scATAC, with activity from peaks used in the ATAC case.

Component parameters. For scRNA reduction, 15 principal components (PCA) were cho-

sen, and 50 latent semantic indexing components (LSI) were chosen for scATAC.

The final number of cells: from the resulting pipeline, a total of 6,735 paired cell profiles

were considered for the downstream analysis.

Integration. On this dataset, Seurat 3 (unpaired) and Seurat 4 (paired) were used to generate

a reference integrated version for further processing and later integration. Using standard nor-

malization and integration guides for Seurat3 and Seurat4 Weighted Nearest Neighbor Analy-

sis vignettes (Hao et al., 2021). In Seurat 3, the FindTransferAnchors function was used to

generate anchorsets using RNA as the reference and ATAC as the query modalities, with CCA

as the reduction method. This was followed by the TransferData function, where the anchorset

generated was used to transfer the RNA derived information into the ATAC modality using

LSI dimensional reduction for the weighting anchors. Seurat 4 was used to identify multi-

modal neighbors using the FindMultimodalNeighbors function.

Results

A novel architectural design for single-cell multi-data set analysis

We propose an integrated AE and cGAN architecture (Fig 1a), allowing the integration of

scRNAseq data from different datasets. A particular experiment in a given data domain pro-

duces a cell count matrix, which is then fed into the encoder of the AE to condense it into a

lower-dimensional latent representation. The objective of the decoder is to reconstruct the

input from the latent representation. This defines a reconstruction loss function for the AE

(for details and hyperparameters, see Material and methods). This procedure results in two

datasets from the same system of interest, each with a lower-dimensional latent representation.

The cGAN’s task is to learn a non-linear mapping between latent space representations using a

cycle consistency loss (Material and methods). This procedure constitutes a robust, flexible,

and unifying neural network architecture supporting several integration scenarios, such as

between scRNA-seq datasets from replicates, library protocols, and data modalities.

scAEGAN preserves the cell identity and accurately identifies the cell

clusters

To evaluate this concept’s viability and performance, we first tested the scAEGAN by simulat-

ing scRNA-seq data using SymSim [27]. Cells were generated according to a cell population
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tree, defining several clusters with different distances. This procedure generated two datasets.

Each dataset in this simulation had five continuous clusters. In a continuous mode, the cells

are positioned along the edges of the tree with a small step size (which is determined by branch

lengths and the number of cells. Each dataset has 600 cells and 3000 genes simulated with 20

External Variability Factors (EVFs), 12 differential EVFs, and a sigma of 0.4 (Material and

methods, S1 Fig). The number of clusters is preserved in the AE-derived low-dimensional

embedding. Visual comparison with the translated version of the other domain reveals good

agreement (Fig 1b). We quantified the integration quality by measuring the transfer of labels

between the data domains. To this end, we used an SVM to classify cell types in one domain

using cluster assignments. Next, we measured the transferred cell identity agreement with the

original identity using the Jaccard Index (JI) and Adjusted Rand Index (ARI) (Material and

methods). The JI calculates 2 by 2 contingency table of agreements and disagreements of the

corresponding two vectors of comemberships. Comembership is defined as the pairs of obser-

vations that are clustered together. In contrast, ARI measures the similarity between the two

alternate partitions of the same datasets by the proportion of agreements between the two par-

titions. The higher the ARI value, the more accurate the clustering, and when the cluster is per-

fectly matched to the reference criteria, the ARI score equals 1. The scAEGAN preserved the

transferred cell identity agreement with the original identity (Fig 1c and 1d).

scAEGAN integrates datasets across different library protocols

We systematically assessed the ability of scAEGAN-derived feature representations to integrate

different library protocol datasets. To this end, we evaluate and compare scAEGAN with Seu-

rat3 as Seurat3 has demonstrated that it can integrate two datasets using different library pro-

tocols. It has performed better than Liger [11] and scMerge [13] when integrating datasets

across different single-cell RNA sequencing protocols [29]. We evaluated and compared scAE-

GAN with Seurat 3 using an easier translation task using ARI and JI as evaluation metrics. We

first analyzed the case where we have two versions of the same protocol (CelSeq to CelSeq2)

and contrasted this with the more challenging task of integrating two different protocols, e.g.,

fluidigm F1 with CelSeq. Seurat3 performed well on the easy task (0.62 ARI, 0.52 JI, Fig 2e).

Yet, scAEGAN outperformed Seurat 3 in this task (0.88 ARI, 0.82 JI, Fig 2a, 2b and 2e). Inter-

estingly, the concatenated architecture (0.38 ARI, 0.32 JI, Fig 2c–2e) was outperformed by Seu-

rat3. Notably, even the cGAN outperformed Seurat3 (Fig 2e). For the more challenging task

(fluidigm F1 with CelSeq), while the performance of scAEGAN dropped (0.66 ARI, 0.62 JI), it

still outperformed all other methods and architectures. Even with this challenging task, scAE-

GAN obtained finer granularity in terms of added value to clustering (Fig 2b). We noted that

the concatenated and cGAN outperformed Seurat3 in this task. Similar results were obtained

in integrating Celseq2 and SMARTseq (S3 Fig). scAEGAN outperformed (0.78 ARI, 0.69 JI) all

other methods and architectures. We also evaluated the scAEGAN’s robustness by reducing

the no of cells by randomly selecting a % of cells (20, 40, 60, and 80) and computing the ARI

for each case. We observed that reducing the number of cells diminishes the performance of

Seurat3 and AE-concatenated. Interestingly, when reducing the number of cells, scAEGAN

outperforms Seurat3 and AE-concatenated (S3 Fig) significantly, thus suggesting the better

robustness of scAEGAN compared to Seurat3 and AE-concatenated.

To assess the GAN cycle consistency loss contribution, we fused the two latent representa-

tions by concatenation instead of learning a mapping (Material and methods). This caused a

dramatic drop in performance (0.93 to 0.45 ARI, 0.89 to 0.40 JI, Fig 3d). Notably, this signifi-

cant drop occurred despite the simplified situation of well-separated simulated clusters where

the latent space’s dimensionality was the same for the two data domains. Furthermore, the
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analysis using simulated data was repeated for several cases; all results followed the above

observations (Material and methods, S1 Fig). Therefore, we concluded that the proposed archi-

tecture is sufficient to perform the integration. Furthermore, the analysis also demonstrated

the importance of learning a non-linear relationship between the two latent spaces.

Fig 2. Integration results of scAEGAN with across platforms data (CelSeq, CelSeq2, Fluidigm C1) a, b) scAEGAN results show better translation of the

domains, while maintaining the cluster granularity in the respective domains, while integrating the datasets from CelSeq, CelSeq2 and Fluidigm C1.

Integration results of AE-Concatenated with across platforms data (CelSeq, CelSeq2, Fluidigm C1) and its quantitative comparison with scAEGAN, c,

d) The results from the AE-Concatenated shows its bad performance while integrating the datasets from CelSeq, CelSeq2 and Fluidigm C1, e)

scAEGAN results shows its outperformance as compared to AE-Concatenated, iMAP, Seurat and cGAN for integrating data across different platforms.

https://doi.org/10.1371/journal.pone.0281315.g002
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Fig 3. scAEGAN shows robust performance, while integrating datasets from the same platforms, a) scaAEGAN

outperforms other methods for integrating a real scRNA-seq SMARTseq dataset from two mouse strains (Old and

Young). A2B and B2A are the integration results of the Old and Young mice datasets with the latent spaces of input

dataset from these two mouse strains, b) shows the heatmap of the cluster similarity of latent space of old mice dataset

(AE_Old) with the translated domain B2A and likewise for young mice dataset (AE_Young Vs A2B) and c) shows the

ARI and JI values for Old and Young mice dataset, depicting the outperformance of scAEGAN as compared to other

methods. d) ARI and JI values for both simulated datasets A and B, depicting the outperformance of scAEGAN with

AE-concatenated and Seurat, e) scAEGAN performs better, even the certain percentage of cells are removed from two
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Next, we asked whether we could learn to integrate the input datasets using a cycleGAN

without employing an Autoencoder first to project the data into a latent space. This would

conceptually correspond to a pixel-by-pixel translation between images. The cycleGAN per-

formed better on the simulated datasets (0.99 ARI, 0.92 JI). But when using a real scRNA-seq

SMARTseq dataset from two mouse strains [8], a reduced performance compared to scAE-

GAN (0.80 to 0.42 ARI, 0.76 to 0.39 JI, Fig 3a–3c). Both values represent the corresponding

ARI and JI values for dataset A and B, respectively.

Interestingly, the dataset contains several less-informative PCA components likely repre-

senting noise in the original data, making it challenging to learn a stable non-linear mapping

between the two domains (S2 Fig). The effect of AE training on the two mouse strain datasets

retains the most informative PCA components. It removes the components with noise, thus

facilitating a linear stable mapping between the two domains (S2 Fig). We also evaluated the

robustness of scAEGAN in a simulated setting when we had an imbalance of cell types in two

datasets. The imbalance setting ranges from having dataset B with no cluster 6_1 i.e., (cluster

6_1 present in dataset A but not in dataset B), to removing 10, 50, and 100% cells from that

cluster from dataset A. (100_A) represents that 100% of cells are removed from cluster 6_1

from dataset A, thus depicting that both dataset A and dataset B doesn’t have this cluster 6_1.

(50_A) represents, 50% of cells from cluster 6_1 is removed from dataset A and likewise

(10_A) represents that 10% of cells from cluster 6_1 is removed from dataset A respectively.

(No overlap with A) represents that, the there is no cluster 6_1 in dataset B, while this cluster is

in dataset A. Here scAEGAN performed well (0.62 ARI, 0.58 JI) compared to other methods

and architectures (Fig 3f). To further evaluate the robustness of the scAEGAN, we reduced the

number of cells by randomly selecting a fixed percentage of cells (20,40,60 and 80%) in the

simulated dataset. Here scAEGAN outperforms Seurat3 (Fig 3e), thus suggesting the robust-

ness of scAEGAN compared to Seurat3. Finally, we compared our analysis of the simulated

data and the mouse dataset with Seurat3. Overall, the scAEGAN was more successful than Seu-

rat 3 in transferring the labels correctly, whereas Seurat3 was better than the concatenated

architecture, thus further supporting the importance of cycleGAN learning.

scAEGAN outperforms existing methods for the integration of paired and

unpaired multi-omic datasets

Aiming for generality, we investigated the integration of multi-omic datasets. To this end, we

integrated scRNA-seq and scATAC-seq data as a case study. When the scRNA-seq and scA-

TAC-seq data are collected from different cells, referred to as unpaired data, it also includes

the challenge of having different samples. Both data modalities are collected from the same cell

in the paired case. Thus, the integration of scRNA-seq with scATAC-seq data could be either

paired or unpaired. Recent progress has mainly targeted unpaired data. Tools such as Seurat3

and MOFA+ have demonstrated promising results. A recent upgrade, Seurat4, is the first

attempt to our knowledge targeting the paired data-integration challenge. We evaluated the

architectures using paired (Fig 4a–4d) and unpaired data. As for the previous settings we used

the Jaccard Index and Adjusted Rand Index as quality measures for quantifying the integration

quality. Interestingly, scAEGAN outperforms Seurat 3, Seurat 4, and MultiVI, even when dis-

carding the pairing information between the two modalities (Fig 4e). To further assess the

datasets, f) scAEGAN shows robust performance, when there is an imbalance of cell types in two datasets (denoted by

No overlap with A (cluster present in dataset A only and not in dataset B), 10_A(10% of cells removed in dataset A

from cluster 6_1) and likewise for 50_A and 100_A respectively.

https://doi.org/10.1371/journal.pone.0281315.g003
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robustness of scAEGAN, we evaluated the performance of scAEGAN by removing the % of

cells in paired data. We observed that the performance of Seurat4 decreases with the number

of cells compared to the scAEGAN. On the other hand, the scAEGAN outperforms Seurat4

(Fig 4f), thus suggesting better robustness than the Seurat4.

scAEGAN facilitates predicting one modality from another modality

To further investigate the efficacy of scAEGAN, we attempted to predict one modality from

another modality. We trained the scAEGAN on scRNA-seq and tried to predict the scATAC-

Fig 4. Multi-modal integration results of scAEGAN with paired scRNA-seq and scATAC-seq data. The unpaired case is simulated by randomizing

the pairing information, a, b) 2D UMAP visualization of integration results from scAEGAN and Seurat with the input domains (Rna, Atac)

respectively, depicting that scAEGAN preserving the cluster identity in the translated domains. c, d) 2D UMAP visualization of integration results from

MultiVI and AE_Concat with the input domains (Rna, Atac) e) scAEGAN outperforms AE-Concatenated, MultiVI and Seurat 4, even when discarding

the pairing information between the two modalities f) scAEGAN shows robust performance, even when certain % of cells are removed from each

modality.

https://doi.org/10.1371/journal.pone.0281315.g004
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seq. To this end we divided our scRNA-seq and scATAC-seq data into training(n = 53850)

and testing (n = 1350) sets and trained scAEGAN jointly on scRNA-seq and scATAC-seq

training sets. After training predictions were inferred from the test set. We used Pearson corre-

lation as an evaluation metric as used in Babel, for cross-domain inference between the empiri-

cal expression(scRNA-seq) and the scAEGAN’s inferred (translated expression) between each

pair of cells. scAEGAN outperforms Babel, where scAEGAN achieved a Pearson correlation

(0.60) compared to Babel (0.55).

Discussion

Recent technological advances in single-cell genomics (SCG) have set the stage to discover, cat-

alog, and characterize cell types at an unprecedented level using various profiling techniques

and library protocols. In addition, such community efforts have increasingly produced single-

cell atlases at an unprecedented resolution and scope [30]. Yet, we need to synthesize data

from various sources to achieve a more holistic understanding of cellular identity, diversity,

and function. However, integrating data from different data modalities, samples, and library

protocols when studying a specific question or biological system is an unprecedented challenge

[31]. Several highly specialized machine learning techniques address, as a rule, a narrow chal-

lenge, such as how to integrate different samples of scRNA data. Yet, when studying a specific

question or biological system, there is a need to integrate data originating from one or more

data modalities, different library protocols, and paired or unpaired data.

Moreover, the investigator wants to predict missing data or data modalities from the avail-

able data samples. Such predictions are helpful since they can be subject to validation in down-

stream experiments. However, it is challenging and time-consuming to navigate and

potentially combine different tools and their results to perform a holistic integrative and pre-

dictive biological analysis.

To address this challenge, we developed scAEGAN, a unifying end-to-end unsupervised

single-cell data integration and predictive method combining an AE architecture for efficient

representation of scRNA-seq data with a CycleGAN network for translation across datasets.

We demonstrate the sufficiency in that such a unifying machine learning architecture can

achieve state-of-the-art or better performance by tackling seemingly “different” integration

challenges. Anchoring-based methods, such as Seurat [3], have a strong domain of applicabil-

ity and performance when the different datasets are “close” or “similar”. This result is natural

since the method is predicated on the assumption of “shared” anchors. Yet, the anchoring

approach is limited when the datasets are too dissimilar or when there is a need to perform

predictions out of the sample. For example, as for the challenge of predicting scATAC data

from scRNA, machine learning techniques such as Babel [7] are superior to the anchoring

approach. Yet, thus far, machine learning methods such as Babel have not yet been able to

reach the performance of Seurat on a task such as clustering and integrating unpaired omics

data. Here we find that scAEGAN is much more robust against sparsity in data than the

anchoring technique when different datasets are similar. Notably, scAEGAN surpasses the cur-

rent state-of-the-art technique for predicting out-of-the-sample data modalities. Our evalua-

tions using the concatenated AE support the interpretation that the critical reason for our

success is that the AE respects each sample’s uniqueness and protocol. The outcome of this

evaluation makes sense since such a procedure preserves the biological signal instead of dilut-

ing the original signal by forcing differences in datasets to be reduced. In contrast, our novel

architecture allows the cGAN network to exploit the similarity in the data distributions in the

latent space. Thus, since we do not require similarity in the original dataspace, we can learn to

map the latent space across different conditions, thus enabling a predictive capacity. An
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interesting challenge for future work is to further generalize our approach such that it can han-

dle say N number of different modalities, paired or unpaired. In the current formulation, we

would need to learn the mappings between the latent spaces corresponding to the different

modalities. That would most likely require either an extension of the cycleGAN learning or a

more generalized architecture suitable for the task.

As the community progresses with developing powerful data integration methods, we may

be able to revisit the early vision of system biology [32]. Combining rich multi-modal high-res-

olution single-cell data with data-driven integration techniques may enable mechanistic pre-

dictive modeling of cells and their interactions [33]. Whole-cell modeling has been challenging

in the past. Still, being an attractive target in the system biology community. Part of the chal-

lenge is the model size and a large number of parameters [34, 35]. This could, in part, be miti-

gated by efficient integrative multi-modal models capturing the essence of the signal in the

data. This would reduce the model size and the number of parameters. The attraction is that

by using modeling based on integrated single-cell data, we can, on the one hand, reach funda-

mental insight into biological processes and begin to disentangle mechanisms of diseases [36].

Thus, it remains vital to explore how to integrate single-cell data into a coherent interpretable

representation of cells and their interactions. We view the scAEGAN as one step towards this

larger aim.

Supporting information

S1 Fig. Two datasets containing 600 cells from 5 populations and with 3000 genes simu-

lated using SymSim (X. Zhang et al., 2019) with the ‘Phyla5’ tree and the following param-

eters: nevf 35, evf_type ‘continuous’, n_de_evf 5, sigma 0.5, gene_effect_prob 0.5,

gene_effect_sd 0.2, alpha_mean 0.05, alpha_sd 0.02, depth_mean 5e4, depth_sd 3e3.

(TIFF)

S2 Fig. Jackstraw plot showing the informative principal components from the young and

old mice as well as simulated datasets.

(TIFF)

S3 Fig. Integration results with across platforms data from CelSeq2, SmartSeq and its quanti-

tative comparison, a) scAEGAN results shows its outperformance as compared to AE-Conca-

tenated, integrating data CelSeq2, SmartSeq platforms, b) The results from the

AE-Concatenated shows its bad performance while integrating the datasets from CelSeq2,

SmartSeq platforms, c) scAEGAN results shows its outperformance as compared to AE-Con-

catenated, Seurat and cGAN for integrating data across different platforms.

(ZIP)
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