
RESEARCH ARTICLE

Exploration of the intelligent control system of

autonomous vehicles based on edge

computing

Guo MingID*

School of Automotive Engineering, Wuhan University of Technology, Wuhan City, PR. China

* 158878@whut.edu.cn

Abstract

The development of science and technology continues to promote the progress of society.

The current intelligence and automation technology has become widely used in society. To

this end, this study proposes a vehicle intelligent control system based on edge computing

and deep learning to promote the far-reaching development of intelligent technology and

automation technology. First, control algorithms are used to design a switch control strategy

combining accelerator and brake. Second, a fuzzy control algorithm based on vehicle track-

ing and trajectory deviation is designed to enhance the vehicle’s stability during steering. A

Convolutional Neural Network (CNN) is used to recognize the car’s surroundings as it drives.

In addition, accelerator and brake controllers and vehicle tracking and trajectory deviation

controllers are connected to the vehicle’s wiring. Then, the data transmission function based

on edge computing is applied to the vehicle’s intelligent control system. Finally, trajectory

tracking and emergency braking experiments are carried out on the control system to verify

the practicability and reliability of the method and the effectiveness of CNN. The simulation

experiments are carried out on two states of medium speed and high speed to verify the

effectiveness of the longitudinal anti-collision system of the test vehicle when the target vehi-

cle suddenly decelerates. The results demonstrate that the driving speed of the experimental

vehicle is set to 50km/h, the distance between the experimental vehicle and the target vehicle

is 40m, and the target vehicle in front drives at a constant speed of 50km/h. The target vehicle

in front of the car suddenly decelerates in 5 seconds, and the speed drops to 0 after 5 sec-

onds. The actual distance between the experimental vehicle and the target vehicle is very

close to the expected safe space, and the experimental vehicle is in a safe state during this

process. When the experimental vehicle starts to decelerate, the experimental vehicle adopts

emergency deceleration to ensure a safe distance between the two vehicles. At this time, the

car enters the second-level early warning state, but driving safety can still be guaranteed. It is

advisable to maintain low-speed emergency braking in this state. This study provides crea-

tive research ideas for the follow-up research on the intelligent control system of uncrewed

vehicles and contributes to the development of intelligence and automation technology.
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Introduction

Artificial intelligence (AI) technology has been deeply integrated into people’s daily lives with

the continuous development of science and technology. Some smart technologies have been

implanted into ordinary cars, such as automatic parking and active braking technology. Driv-

erless cars obtain and identify the vehicle’s surrounding environment by installing various sen-

sors and then conduct correct analysis and judgment through the corresponding intelligent

control system. It prompts the intelligent design to make proper decisions and correct con-

trols. The movement of the vehicle realizes actual uncrewed driving [1]. The essential differ-

ence between driverless and ordinary cars lies in the different degrees of intelligence.

Uncrewed vehicles can realize all-around control of the driving process of the vehicle and

independently complete operations such as acceleration and steering [2]. The motion control

of uncrewed vehicles is mainly reflected in the vertical and horizontal intelligent control sys-

tems. The longitudinal control system refers to the management of the acceleration and decel-

eration of the car; the lateral control system refers to the control of the car’s steering operation

and path tracking [3]. The basis for realizing driverless cars is to ensure driving safety, so the

car’s anti-collision system is fundamental [4]. The automobile anti-collision system mainly

relies on onboard sensors to collect relevant information on automobile driving to realize real-

time detection of safe driving. In an emergency, the collision avoidance system can send an

early warning to the intelligent control system. The smart control system can take correspond-

ing measures through the early warning information to ensure the safety of the people in the

vehicle to a certain extent and reduce the frequency and loss of traffic accidents [5]. It can be

seen that society’s demand for AI technology and automation technology is getting increas-

ingly high under the continuous development and improvement of uncrewed driving technol-

ogy. Combining deep learning technology with edge computing technology to meet the needs

of society has improved the application effect of AI technology. Still, the current application of

this technology in autonomous driving is not sufficiently mature. Therefore, further research

is needed to provide support for its development.

At present, many researchers have researched uncrewed vehicles. Yu et al. (2018) proposed

a path-planning method for the navigation control system of uncrewed electric buses. They

used the Dijkstra algorithm based on the ArcGIS analysis tool, improving the driving effi-

ciency and reducing the complexity of intelligent system calculations [6]. Wells et al. (2020)

developed an algorithm for planning corresponding driving trajectories between two points

specified on a map. This approach will make a practical contribution to navigation systems for

self-driving cars [7]. Yağ and Altan (2022) proposed a predictive control algorithm based on

an adaptive predictive model to improve trajectory tracking accuracy and designed a lateral

motion control strategy. Finally, they utilized MATLAB/Simulink and CarSim co-simulation.

The results showed that the control strategy improves the driving stability of the uncrewed rac-

ing car and the trajectory tracking accuracy conditions under the limit state [8]. Lyons (2022)

presented a dynamic obstacle detection and tracking method based on multi-feature fusion

and a dynamic obstacle recognition method based on spatiotemporal feature vectors. Firstly,

the pulse width characteristics of obstacle echoes were considered to improve the accuracy of

obstacle detection and tracking based on the geometric attributes of dynamic obstacles. Sec-

ondly, the space-time feature vector was constructed based on the obstacle time dimension

and space dimension information. Then, the support vector machine method was adopted to

recognize dynamic obstacles to improve the accuracy of obstacle recognition. Finally, the accu-

racy and effectiveness of the proposed method were verified by a real vehicle test [9]. Tan et al.

(2022) explored the application of deep learning in driverless cars in response to the urgent

need of contemporary society to develop driverless vehicles. First, the authors discussed
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driverless cars’ working principles and architectural design. Then, the authors applied unsu-

pervised learning to cluster the data in each layer and supervised learning to adjust the rela-

tionship between each layer based on the basic concepts. Besides, it was applied to the

deceleration horn and acceleration and deceleration control in driving [10]. It can be seen that

the actual development of uncrewed driving technology is not ideal. Therefore, it is necessary

to improve the degree of perfection of uncrewed driving technology by improving the applica-

tion method of AI technology.

In summary, although many scholars have researched uncrewed driving technology, its

development status is not perfect. Therefore, this study introduces deep learning technology to

promote the development of uncrewed driving technology. Besides, edge computing technol-

ogy is discussed. Finally, incremental Proportion Integration Differentiation (PID) is adopted

to design the throttle system to reduce the error rate of control. Meanwhile, the fuzzy algo-

rithm is employed to design the braking system to improve the stability of control based on

reducing the amount of calculation. In addition, the path tracking algorithm and fuzzy control

algorithm based on the course deviation is used to design the lateral control system to effec-

tively improve the stability of the vehicle lateral control system and trajectory tracking. The

innovation of this study lies in the efficient integration of deep learning technology and edge

computing technology, highlighting both advantages and optimizing their application effect.

The research reported here provides technical support for the development of AI technology

and facilitates the development of driverless technology.

Method

Basic framework and technical support for driverless cars

The overall driverless vehicle framework includes an environment perception system [11] to

recognize the surrounding environment, a planning decision tree system [12] to plan the driv-

ing route, and a motion control system [13] to control the behavior of the vehicle. Fig 1 pres-

ents the specific architecture.

Autonomous vehicles depend on positioning and navigation technology [14], information

fusion technology [15], and wire-based transformation technology [16]. The car navigation

and positioning technology locates the vehicle’s position and plans the vehicle’s driving route

simultaneously, which is the basis of the control of the driverless car.

PID control algorithm

The PID control algorithm is a relatively common and classic control method. It is mainly

composed of three parts: proportional (P), integral (I), and differential (D). The linear relation-

ship is obtained by calculating the target control amount through the difference between the

input and output values of the input system. Fig 2 reveals the primary rationale.

In Fig 2, r(t) denotes the system input value, y(t) represents the system output value, and e
(t) stands for the deviation between the input and output values. The obtained variation is

input into the controller. The corresponding control quantity u(t) can be obtained through the

combined operation. Then, the correction of the output value of the controlled object can be

realized. The PID operation can be described as:

u tð Þ ¼ Kp e tð Þ þ
1

Ti

R t
0
e tð Þ þ Td

de tð Þ
dt

� �

ð1Þ

e tð Þ ¼ r tð Þ � y tð Þ ð2Þ
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where Kp represents the proportional coefficient; Ti denotes the time constant corresponding

to the integral; Td refers to the differential time constant.

The PID algorithm is mainly divided into incremental and positional [17]. Eq (3) describes

the position-mode PID.

u tð Þ ¼ Kp e tð Þ þ
1

Ti
St
i¼0
e ið ÞT þ Td

e tð Þ � e t � 1ð Þ

T

� �

ð3Þ

It can also be expressed as Eq (4).

u tð Þ ¼ Kpe tð Þ þ KiS
t
i¼0
e ið Þ þ Kd e tð Þ � e t � 1ð Þ½ � ð4Þ

In Eq (4), Ki ¼ Kp
T
Ti

, and Kd ¼ Kp
Td
T ; Kp represents the proportional coefficient; Ki denotes

the integral coefficient; Kd refers to the differential coefficient; T stands for the sampling time

serial number.

The integral coefficient term in Eq (4) signifies the accumulated value of the deviation, and

the calculation amount increases gradually with the increase of time. The incremental PID

algorithm takes the control amount as the output. The increment represents the amount that

needs to be raised at the current moment and the previous moment, as presented in Eq (5).

Du tð Þ ¼ u tð Þ � u t � 1ð Þ ¼ Kp e tð Þ � e t � 1ð Þ þ Kie tð Þ þ Kd e tð Þ � 2e t � 1ð Þ þ e t � 2ð Þ½ �f g ð5Þ

In Eq (5), Δu(t) refers to the control output of the incremental PID control algorithm.

Fig 1. Intelligent autonomous vehicle system.

https://doi.org/10.1371/journal.pone.0281294.g001
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Intelligent control system for autonomous vehicles based on edge

computing

Driverless cars based on edge computing. With the rapid development of science, tech-

nology, and AI, people’s expectations of self-driving cars are getting even higher. However,

because the intelligent control system of self-driving vehicles has an enormous computational

task, the computational performance of current onboard computers is inadequate to meet the

needs of self-driving cars. At the same time, cost control is necessary for improving computing

power, which is a significant challenge for the industrialization of autonomous vehicles.

Researchers have proposed a cloud-based self-driving car system with the help of connected

vehicle technology and cloud computing. They introduce edge computing into the intelligent

control system of the car to balance the computational load of each task of the driving vehicle

Fig 2. Fundamentals of the PID control algorithm.

https://doi.org/10.1371/journal.pone.0281294.g002
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and reduce the task load. Fig 3 reveals the architecture of self-driving cars based on edge

computing.

Although the edge computing architecture in Fig 3 can solve many problems, there are still

specific problems in data transmission between cars and edge nodes due to a large amount of

data collection and processing for autonomous vehicles. The Vehicle-to-edge Data Transmis-

sion (VDT) problem is optimized to ensure autonomous vehicles’ safety, practicability, and

stability. Besides, two heuristic algorithms are proposed to find an excellent solution in a lim-

ited time to furnish the VDT problem with a practical optimization strategy.

The deviation detection algorithm can flexibly use various aggregation functions and opti-

mize part of the data in real-time at any period, effectively reducing the algorithm’s complex-

ity. The deviation detection algorithm detects and evaluates the data transmission in the

evaluation period and adjusts the correlation coefficient of the sensor data transmission in one

period. Fig 4 is the flowchart of the deviation detection algorithm.

Fig 4 shows the basic design idea and the overall framework of the deviation detection algo-

rithm. The mean value corresponding to the two types of sensor data needs to be calculated in

each evaluation period.

The deviation detection algorithm takes all the cars in a specific road section as a whole and

evaluates and adjusts the entire in a fixed period. The basic design idea of the greedy algorithm

is to obtain the local optimal solution as much as possible under the premise of ensuring the

overall information quality. Then, it obtains the optimization result close to the global optimal

solution based on the local optimal solution of all vehicles. Fig 5 presents the overall design

framework of the greedy algorithm.

Each type of sensor data of each autonomous vehicle needs to be collected. The framework

is used to process the data separately in a multi-threaded manner. In other words, the global

framework of the deviation detection algorithm is disassembled into a single-vehicle-oriented

process.

Fig 3. Architecture of autonomous vehicles based on edge computing.

https://doi.org/10.1371/journal.pone.0281294.g003
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Design of the longitudinal control system

Throttle controller design. The longitudinal driving process of the car is easily affected

by the resistance. The driving force of the forward driving of the vehicle must be greater than

or equal to the sum of the resistance. Hence, the design of the accelerator control system must

be based on the longitudinal dynamic model of the car [18]. The control object of the accelera-

tor control system designed here is the stroke amount simulated by the accelerator pedal, and

the speed deviation is selected as the input amount. The various factors affecting the speed dur-

ing the driving process are calculated using the formula to confirm the corresponding speed

influence amount. Then, the final speed influence amount is obtained by adding up, and the

Fig 4. Flow of the deviation detection algorithm.

https://doi.org/10.1371/journal.pone.0281294.g004
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Fig 5. Procedures of the greedy algorithm.

https://doi.org/10.1371/journal.pone.0281294.g005
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initial speed deviation and the speed influence amount of the resistance are used as the final

speed deviation e(t). Here, the incremental PID algorithm is used to design the throttle control

system to ensure the stable control of the vehicle and reduce the amount of calculation and

error rate.

Because the vehicle will encounter various complex situations during the driving process,

the ordinary incremental PID algorithm will have the problems of inaccurate control and large

error to a certain extent. Therefore, the incremental PID is optimized by introducing the four-

point central difference method. This optimization can enhance the applicability of the incre-

mental PID algorithm to the environment in the driving process of the car. Since the differen-

tial term deviation greatly influences the control variable in the ordinary algorithm, the

problem of adjustment failure or delay will occur when the control variable exceeds the upper

and lower limits. The differential term is corrected by the four-point central difference method

to suppress the above phenomenon. Eq (6) indicates the corresponding mathematical expres-

sion.

�e tð Þ ¼
e tð Þ þ e t � 1ð Þ þ e t � 2ð Þ þ t � 3ð Þ½ �

4
ð6Þ

When time is considered, the differential term is approximated by a weighted summation.

Td � De
T

¼
Td

4

e tð Þ � �e tð Þ
1:5T

þ
e t � 1ð Þ � �e tð Þ

0:5T
þ

�e tð Þ � e t � 2ð Þ

0:5T
þ

�e tð Þ � e t � 3ð Þ

1:5T

� �

¼
Td

6T
e tð Þ þ 3e t � 1ð Þ � e t � 2ð Þ � 3e t � 3ð Þ½ � ð7Þ

The parameters of the PID control system are determined through the adjustment experi-

ence of parameters and the test of a large number of experimental vehicles: Kp = 2.5, Ki = 0.03,

and Kd = 2.5.

Design of the brake controller

The design of the brake controller using the common PID algorithm will be affected by fre-

quent control. Frequent trampling of the brake pedal will lead to aggravated vibration of the

vehicle and reduce comfort. Fuzzy control shows high stability, so the fuzzy control algorithm

is used to design the braking controller [19], divided into the following four steps.

1. Determination of the input variable and output variable

In the process of designing the fuzzy brake controller, the input variables select speed devia-

tion ev and acceleration deviation ea; the variation of the brake pedal stroke Δs represents

the output variable [20]. If the pedal does not change, the pedal stroke is 0%; the maximum

pedal stroke is 100%, meaning that the brake pedal is fully depressed. The stroke change Δs
represents the difference between the current time and the previous time. A positive Δs
means pressing down on the brake pedal, and a negative Δs means the pedal rebounds.

2. Variable fuzzification

The value range of the speed deviation ev is [-1, 1]; the unit is m/s; the value range corre-

sponding to the acceleration deviation ea is [-0.1, 0.1], and the unit is m/s2. The fuzzy set

domain corresponding to acceleration deviation and velocity deviation is [-2, 2]; the value

range of the output variable brake pedal stroke change Δs is [-60%, 60%]; the fuzzy set

domain is [-3, 3].

The fuzzy subset of two input variables ev and ea is F3, F2, F1, L, Z1, Z2, and Z3. These

elements represent the expected velocity relative to the actual velocity or the expected

PLOS ONE Intelligent control system of autonomous vehicl
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acceleration relative to the actual acceleration: minimum, very small, small, moderate,

large, very large, and maximum. The output variable fuzzy set is F3, F2, F1, L, Z1, Z2, and

Z3. They means that the brake pedal is lifted a lot, lifted by an appropriate amount, lifted a

little, kept unchanged, stepped on a little, stepped on an appropriate amount, and stepped

on a lot.

The available set corresponding to fuzzy subsets of input variables and output variables is

expressed as:

ev; eaf g ¼ F3; F2; F1;Z1;Z2;Z3f g ð8Þ

Ds ¼ F3; F2; F1;Z1;Z2;Z3f g ð9Þ

A triangular function is selected as the membership function of input and output variables

[21], as shown in Fig 6.

Fig 6. Membership functions of input and output variables (a) velocity deviation (b) acceleration deviation (c) brake pedal stroke change.

https://doi.org/10.1371/journal.pone.0281294.g006
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3. Construction of fuzzy control rules

Table 1 illustrates the fuzzy control rules formulated after analyzing the driver’s braking

behavior during driving.

In Table 1, the column corresponds to the velocity deviation ev, and the row corresponds to

the acceleration deviation ea.

4. Clarification of output variables

The output obtained by fuzzy rules is fuzzy not the final output. The corresponding fuzzy

reasoning and clear calculation are carried out by the area centroid method. The brake con-

trol system can realize the automatic control of the brake system by controlling the brake

pedal through the output quantity.

Throttle and brake control switching

During normal driving, the car must switch between the accelerator and the brake frequently.

The control system of the driverless car needs to switch the accelerator and brake smoothly

according to the current road’s actual situation to realize the car’s stable control in the longitu-

dinal direction.

The switching between the accelerator and the brake of the driverless car is mainly based

on the current controller state and speed deviation ev to determine the switching mode. The

specific situations are divided into the following three situations.

1. The accelerator and brake controllers are not controlled; that is to say, neither the accelera-

tor nor the brake is stepped on. When ev> 0, the throttle controller presses down on the

car to accelerate its motion. When ev< 0, the brake controller stepped on the car to

decelerate.

2. When the accelerator controller is in the acceleration state, the simulated stroke of the

accelerator pedal is regulated through ev to control acceleration and deceleration. When the

simulated stroke of the accelerator pedal is 0, ev< 0, and the brake control is switched to

perform deceleration action.

3. When the brake controller is in the control state, the simulated stroke of the accelerator

pedal is regulated through ev to control acceleration and deceleration. When the simulated

stroke of the brake pedal is 0, ev> 0. The target speed is not reached at this time, so the

accelerator control is switched to perform acceleration action.

A transition area is set before the throttle and brake control to efficiently control the stable

driving of the vehicle. A threshold h is set 0.5m/s for ev. When |ev|< 0.5, the mode is not

switched; when |ev|> 0.5, the mode is switched according to the actual situation.

Table 1. Fuzzy control rules.

Brake pedal stroke change Acceleration deviation ea
F3 F2 F1 L Z1 Z2 Z3

Speed deviation ev F3 Z3 Z3 Z2 Z2 Z1 Z1 L

F2 Z3 Z2 Z2 Z1 Z1 L F1

F1 Z2 Z2 Z1 Z1 L F1 F1

L Z2 Z1 Z1 L F1 F1 F2

Z1 Z1 Z1 L F1 F1 F2 F2

Z2 Z1 L F1 F1 F2 F2 F3

Z3 L F1 F1 F2 F2 F3 F3

https://doi.org/10.1371/journal.pone.0281294.t001
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Design of the lateral control system

Path tracking algorithm based on trajectory deviation. The path tracking algorithm

based on heading deviation plays a critical part in applying uncrewed vehicle path planning. It

mainly acts on the lateral control system of the driverless vehicle to correct the deviation value

between the actual heading of the vehicle and the target heading in real time, continuously

reducing the deviation value and finally making the two consistent [22]. The vehicle heading

angle change in the unit period during the turning process is calculated according to Eq (10).

df ¼
y

k
ð10Þ

In Eq (10), δf signifies the deflection angle of the front wheel of the car; θ stands for the

steering wheel angle; k represents the ratio of the deflection angle of the steering wheel to the

front wheel.

The turning radius of the car is R, which calculated through Eq (11).

R ¼
aþ b

tan df �
p

180

� � ð11Þ

Eq (12) indicates the change in heading angle from time t to time t − 1 in a unit period.

bt ¼
lt
R
¼
lt � tan df �

p

180

� �

aþ b
ð12Þ

In Eq (12), lt denotes the path that the car travels from time t − 1 to time t.
Fig 7 reveals the flow of the path tracking algorithm based on heading deviation.

Design of the steering controller

A fuzzy control algorithm based on heading deviation and path tracking algorithm is proposed

to improve the accuracy and comfort of lateral control without increasing the amount of calcu-

lation. The algorithm is implemented through the Matlab fuzzy logic toolbox (Fuzzy Logic

Designer). The design of the binning controller for the algorithm is as follows.

1. Determining the input and output variables

The heading deviation eβ and preview distance L are used as input variables in this design;

the change Δθ in steering wheel angle is used as the output variable. Δθ refers to the differ-

ence between the steering wheel at the current moment and the previous moment; Δθ< 0

means that the steering wheel is turned to the left; Δθ> 0 indicates that the steering wheel

is turned to the right.

2. Variable fuzzification

The corresponding range of the input variable eβ is [−30˚, 30˚]; the corresponding fuzzy set

universe is [−3, 3]; the preview distance L is [0, 30], and the unit is m; the fuzzy set universe

is [0, 30]. The range of the output variable steering wheel angle variation Δθ is [−180˚,

180˚]; the fuzzy set universe is [0, 30]. Seven fuzzy subsets of heading deviation eβ are

selected: F3, F2, F1, L, Z1, Z2, and Z3. They indicate that the target heading angle and the

actual heading angle deviate a lot to the left, to the left, a little to the left, keep the same, a lit-

tle to the right, a little to the right, and a lot to the right. The fuzzy subsets of preview dis-

tance L are S1, S2, S3, S4, and S5, meaning that the preview distance is very small, small,

large, very large, and extremely large. The fuzzy subset of the output variable steering wheel

angle change is F4, F3, F2, F1, L, Z1, Z2, Z3, and Z4. They demonstrate that the turn the
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steering wheel excessively left, left a lot, left moderately, left a little, hold still, hit a little to

the right, hit the right amount, hit the right a lot, and hit the right excessively. The fuzzy

subset set of input variables and output variables is expressed as:

eb ¼ F3; F2; F1; L;Z1;Z2;Z3f g ð13Þ

L ¼ L1; L2; L3; L4; L5f g ð14Þ

Dy ¼ F4; F3; F2; F1; L;Z1;Z2;Z3;Z4f g ð15Þ

The membership function of input variable and output variable adopts triangular member-

ship function, as shown in Fig 8.

3. Construction of fuzzy control rules

Table 2 lists the fuzzy control rules formulated by analyzing the driver’s braking behavior

during driving.

Fig 7. Basic flow of the path-tracing algorithm.

https://doi.org/10.1371/journal.pone.0281294.g007
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Fig 8. Membership function of input and output variables (a) heading deviation (b) preview distance (c) steering wheel angle change.

https://doi.org/10.1371/journal.pone.0281294.g008

Table 2. Fuzzy control rules.

Steering wheel angle change Preview distance

L1 L2 L3 L4 L5

Course deviation F3 F4 F4 F3 F3 F2

F2 F3 F3 F2 F2 F1

F1 F3 F2 F2 F1 F1

L L L L L L

Z1 Z3 Z2 Z2 Z1 Z1

Z2 Z3 Z3 Z2 Z2 Z1

Z3 Z4 Z4 Z3 Z3 Z2

https://doi.org/10.1371/journal.pone.0281294.t002
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4. Clarification of output variables

The output obtained by fuzzy rules is the fuzzy quantity, and the final output is not

obtained. The area centroid method carries the corresponding fuzzy reasoning and clear

calculation. The steering control system controls the steering motor auto through the out-

put to realize the control of the braking system.

Design of the anti-collision system based on deep learning

The primary function of the convolutional neural network (CNN) is to process grid-structured

data. CNN refers to a neural network in which the conventional matrix multiplication opera-

tion is replaced by a convolution operation [23]. In the deep neural network algorithm, the

CNN mainly consists of the local receptive field, shared weight, and pooling layer. Convolution

represents the mathematical operation of two real variable functions, as presented in Eq (16).

s tð Þ ¼ x � oð Þ tð Þ ð16Þ

In Eq (16), the input represents the first parameter, marked as a function x. The second

function represents the kernel function, expressed as ω. The output result is usually called a

feature map.

Reasonable system early warning plays a critical role in the safe driving of uncrewed vehi-

cles. The early warning system, after activation, provides alarm signals to the control system to

make reasonable decisions. CNN is utilized to study collision avoidance warnings and train

the constructed model on accurate orbit datasets. The Collision Avoidance Warning (CAW)

[24] algorithm can process the vehicle motion trajectory information to obtain and preprocess

the characteristics of the collision accident and finally classify the acquired image information

to complete the collision avoidance. Fig 9 shows the collision process.

The anti-collision warning model is trained by integrating the sample collection algorithm

[25] and the forward learning algorithm [26]. The training set and the test set corresponding

to the input model are Strain and Stest, respectively. M indicates the output-optimized anti-colli-

sion warning model. The specific process is to initialize the CNN, then divide the sample data

and input it into the neural network for training, and finally obtain the network structure.

During the training process, the network parameters are continuously adjusted until the data

set is traversed or the maximum number of iterations is reached to end the training.

Results and discussion

Optimization of the data transmission algorithm based on edge computing

The actual running time and actual accuracy of the two heuristics are evaluated to verify the

practicability of the bias detection algorithm and the greedy algorithm. Table 3 lists the actual

accuracy of the deviation detection algorithm and the greedy algorithm after optimization.

According to the data in Table 3, the two algorithms have the highest accuracy of 99.48%

and the lowest accuracy of 91% in three different application environments. The calculation

effect of the two algorithms in Lidar is the best. Besides, the actual accuracy of the two heuristic

algorithms can meet the accuracy requirements of the three sensors. As the number of vehicles

increases, the accuracy rate shows an overall upward trend. Table 4 summarizes the average

time for two algorithms to perform optimization calculations on three types of sensor data.

As shown in Table 4, the longest cumulative calculation time of the deviation detection

algorithm under different calculation conditions is 14.1 ms, and the shortest is 4.6 ms; the lon-

gest calculation cumulative time of the greedy algorithm is 7.0 ms, and the fastest is 3.6 ms.
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Both algorithms perform better in Land Maker. Experimental results indicate that the devia-

tion detection algorithm and the greedy algorithm require very little cumulative time to calcu-

late the data transmission optimization for each sensor. The deviation detection algorithm and

greedy algorithm can optimize data transmission in time and have high application values. At

the same time, they can improve the safety and stability of the intelligent control system of

uncrewed vehicles and help the development of uncrewed vehicles.

Table 3. Accuracy of two heuristic algorithms.

Periods Optimization way GPS accuracy / % Land Maker accuracy/% Lidar accuracy/%

Normal duration Deviation monitoring algorithm 97.63 97.09 98.89

Greedy algorithm 94.52 98.68 98.91

Rush hour Deviation monitoring algorithm 97.07 97.54 99.48

Greedy algorithm 93.99 98.71 99.03

Night _ Deviation monitoring algorithm 91.37 95.54 97.9

Greedy algorithm 92.71 96.74 98.98

Accuracy requirement 91 94 97

https://doi.org/10.1371/journal.pone.0281294.t003

Fig 9. Flow of the CAW algorithm.

https://doi.org/10.1371/journal.pone.0281294.g009
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Test results of the control system of self-driving cars

Circular trajectory tracking experiment. The steering wheel’s driving speed and turning

angle during the turning process are analyzed to achieve the control effect of the vehicle con-

trol system. Fig 10 provides the response curve of the steering wheel angle.

According to Fig 10a, the effect of the lateral control algorithm gradually becomes larger in

curve driving. When the vehicle turns over the target angle, the intelligent system drives the

steering controller to control the steering wheel to return to the forward direction through the

deviation corresponding to the driving trajectory. The steering wheel angle is constantly

adjusted to become smaller and more stable. It can be found that the deviation between the

two is tiny by comparing Fig 10a and 10b. The maximum deviation is only 0.7 meters during

the entire curve driving process. After the vehicle completes the turn, the speed is adjusted

back to the pre-planned rate through the PID algorithm. Therefore, the research method

reported here can adapt well to the control requirements of current uncrewed driving technol-

ogy. It can provide technical support for deep learning technology and edge computing tech-

nology to optimize uncrewed driving technology.

Emergency braking test

An emergency braking experiment is carried out on the experimental vehicle to verify the reli-

ability and safety of the longitudinal control system. Car routes are planned, and obstacles are

placed in pre-planned enclosed places. Fig 11 shows the speed change curve of the vehicle dur-

ing the braking process.

Fig 11 shows the test process of the braking system. The experimental vehicle ran at 10km/

h and 15km/h, respectively. The brake decelerated from the second round, so the experimental

car’s speed dropped rapidly. During the whole braking process of the vehicle, when the initial

speed is 10km/h, the deceleration process takes 1.4s, and the braking distance is 1m. The decel-

eration time is 2s when the initial speed is 15km/h, and the braking distance is 1.7m. The test

results can generally meet the emergency braking. motion request.

Test results of the anti-collision system based on deep learning

Training test results of the deep learning model. MATLAB, Python, and other computer

software are used to train the anti-collision model to verify its real-time performance. In the

training process, some samples are selected from the sample set and input into the network to

calculate the actual output Y and the error D by D = Bi − Y. The weight matrix W is adjusted

according to the obtained error. The above process is repeated for all the selected samples until

the specified error is reached. Twenty pieces of data were randomly selected from the example

set for processing. The average prediction time and sensitivity were analyzed using the

Receiver Operating Characteristic (ROC) curve. The specific situation is shown in Fig 12.

Table 4. Running time of two heuristic algorithms.

Period Optimization way GPS runtime/ms Land Maker runtime/ms Lidar runtime/ms

Normal duration Deviation monitoring algorithm 7.3 8 7.6

Greedy algorithm 6.9 6.6 7.0

Rush hour Deviation monitoring algorithm 14.1 12.9 13.1

Greedy algorithm 6.8 6.5 7.0

Night Deviation monitoring algorithm 5.1 5.0 4.6

Greedy algorithm 3.6 3.6 3.8

https://doi.org/10.1371/journal.pone.0281294.t004
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Fig 12a suggests that the error results of the 20 samples are all less than 0.1, indicating that

the model has excellent real-time performance. The closer the curve in Fig 12b is to the (0, 1)

point, the better the effect of the curve is. In other words, the smaller the area on the curve, the

better the curve algorithm. It is found that the effect of the CAW curve is significantly better

than that of the MCWA curve by comparing the ROC curve.

Fig 10. Experimental results of the vehicle control system (a) steering wheel angle curve (b) speed curve.

https://doi.org/10.1371/journal.pone.0281294.g010
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Simulation test results of the anti-collision system

1. Simulation test when the vehicle ahead is stationary

During the simulation test, the driving speed of the experimental vehicle is set to 60km/h,

and the distance between the experimental vehicle and the target vehicle is 60m. Fig 13

presents the specific test results when the selected target vehicle is stationary.

The driving speed of the experimental vehicle is 60km/h. When it is approaching the sta-

tionary target vehicle, the experimental vehicle adopts the braking operation to decelerate.

After 37 seconds, the speed of the experimental vehicle drops to 0. At this time, the distance

between the experimental vehicle and the stationary target vehicle is 3.7m, and no collision

event occurs.

2. Simulation test of the vehicle ahead driving at a constant speed

In the simulation experiment, the driving speed of the experimental vehicle is set to 120km/

h. The distance between the experimental vehicle and the target vehicle is 50m. The driving

speed of the target vehicle in front is 30km/h. The two vehicles are driving at a uniform

speed. The anti-collision test results of the experimental car are shown in Fig 14.

From the simulation results in Fig 14, it can be seen that the experimental vehicle is running

at a high speed of 120km/h. While approaching the low-speed vehicle in front, the experi-

mental vehicle decelerates fast. Besides, the current target vehicle is running normally. In

the case of decreasing speed, the distance between the experimental vehicle and the target

vehicle is at a safe distance.

3. Simulation test of emergency deceleration of the vehicle ahead

Simulation experiments were carried out for two states of medium speed and high speed to

verify the effectiveness of the longitudinal anti-collision system of the experimental vehicle

with the sudden deceleration of the target vehicle. The driving speed of the experimental

vehicle is set to 50km/h; the distance between the experimental vehicle and the target vehi-

cle is 40m; the target vehicle in front drives at a constant speed of 50km/h. Before the 5th

Fig 11. Changing curves of the emergency braking speed.

https://doi.org/10.1371/journal.pone.0281294.g011
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second, the target vehicle suddenly decelerates, and the speed drops to 0 after 5 seconds. Fig

15 illustrates the test results of the experimental vehicle anti-collision system.

In the initial stage of the above process, the actual distance between the experimental vehicle

and the target vehicle is very close to the expected safe distance. Besides, the experimental vehi-

cle is in a safe state during this process. When the experimental vehicle starts to decelerate, the

experimental vehicle adopts an emergency deceleration to ensure a safe distance between the

two vehicles. At this time, the car enters the second-level warning state, but the safety of driv-

ing can still be ensured. It is advisable to maintain low-speed emergency braking in this state.

Fig 12. Model training results (a) Average prediction time (b) ROC curve.

https://doi.org/10.1371/journal.pone.0281294.g012
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Conclusion

With science and technology’s continuous development and progress, industrial production

technology is constantly optimized. Therefore, self-driving cars have emerged as required to

efficiently meet society’s needs. At the same time, self-driving cars have become one of the

leading directions for the future development of the automotive industry and an essential part

of the intelligent transportation system. However, AI technology in self-driving cars is still not

mature enough. Therefore, this study mainly studies the smart control system of driverless

cars through the lateral control and longitudinal control systems of driverless cars. First, the

lateral and longitudinal control systems are designed for driverless cars. Then, the steering,

brake, and throttle systems are modified based on the controller designed here. In addition,

deep learning models are applied to collision avoidance systems. At the same time, edge

Fig 13. Simulation results of anti-collision of front vehicle at rest (a) comparison between actual distance and expected distance (b) comparison

between actual acceleration and expected acceleration (c) comparison of two vehicle speeds.

https://doi.org/10.1371/journal.pone.0281294.g013
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computing is used in the intelligent control system of automobiles. Finally, circular trajectory

tracking and emergency braking experiments are carried out on the modified experimental

vehicle to verify the practicability and reliability of the control system. The results suggest that

the driving speed of the experimental vehicle is set to 50km/h; the distance between the experi-

mental vehicle and the target vehicle is 40m; the target vehicle in front travels at a constant

speed of 50km/h. The target vehicle in front of the car suddenly decelerates in 5 seconds, and

the speed drops to 0 after 5 seconds. The actual distance between the experimental and target

vehicles is very close to the expected safe distance. Besides, the experimental vehicle is in a safe

state during this process. When the front vehicle starts decelerating, the experimental vehicle

adopts emergency deceleration to ensure a safe distance between the two vehicles. The car

enters the second-level early warning state at this time, but driving safety can still be guaran-

teed. It is advisable to maintain low-speed emergency braking in this state. Although this study

conducts virtual research on the application effect of AI technology in uncrewed driving

technology, it does not explore its actual application effect. Therefore, future research will

Fig 14. Anti-collision simulation results of the target vehicle driving at a constant speed (a) comparison between expected distance and actual

distance (b) comparison between expected acceleration and actual acceleration (c) speed comparison between the two vehicles.

https://doi.org/10.1371/journal.pone.0281294.g014
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comprehensively verify AI’ practical application to promote the joint development of AI tech-

nology and driverless technology.
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