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Abstract

In recent decades, droughts have critically limited crop production, inducing food system

shocks regionally and globally. It was estimated that crop yield variability in around one-third

to three-fourths of global harvested areas is explained significantly by drought, revealing the

notable vulnerability of crop systems to such climate-related stressors. However, under-

standing the key factors determining the global pattern of crop yield sensitivity to drought is

limited. Here, we investigate a wide range of physical and socioeconomic factors that may

determine crop-drought vulnerability in terms of yield sensitivity to drought based on the

Standardized Precipitation Index at 0.5˚ resolution from 1981 to 2016 using machine learn-

ing approaches. The results indicate that the spatial variations of the crop-drought sensitivity

were mainly explained by environmental factors (i.e., annual precipitation, soil water-holding

capacity, soil acidity, annual potential evapotranspiration) and crop management factors

(i.e., fertilizer rate, growing season). Several factors might have a positive effect in mitigating

crop-drought vulnerability, such as annual precipitation, soil water holding capacity, and fer-

tilizer rate. This study quantitatively assesses the possible effect of various determinants

which might control crop vulnerability to drought. This understanding may provide insights

for further studies addressing better crop vulnerability measures under future drought

stress.

Introduction

The impact of global climate variabilities on crops has been well investigated. Empirically,

around one-third of the variability of crop measures (i.e., crop yield, production) [1–3] and

harvested area globally [4] are explained by climate variabilities during the last several decades.

As one climate extreme, drought has been widely recognized as a notable limiting factor for

crop yield and production [5, 6]. One-third to three-fourths of the global harvested areas expe-

rienced yield losses due to drought [7, 8], corresponding to approximately 166 billion US dol-

lars from 1983 to 09 [7]. The serious drought impact on crops may unveil the global crop

system’s vulnerability to climate-related stressors, which can later threaten local or global food

security in the current and future climate [3, 9, 10].
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Approaches for understanding the drought risk on the crop system may include assessing

its potential impact and crop vulnerability under specific dry condition definitions (e.g., pre-

cipitation deficit, soil moisture stress) [11–13] during the growing period as a hazard and

exposure measures [9]. The drought impact on crops can be measured by damages or losses

on crop production measures (i.e., crop yield, crop production, or harvested area) due to cer-

tain drought conditions, whereas the vulnerability can be presented by the sensitivity or sus-

ceptibility of the crop production responding a drought severity [9, 14]. While the drought

impact on crops and their vulnerability is growingly evident (through field-scale experiments

to larger scale based on global physical modeling and statistics [1, 15–18]), quantitative identi-

fication of multiple factors that may determine such crop-drought relationship patterns across

global agricultural systems is limited in previous works.

Agricultural risk and vulnerability to drought in a region may be determined by several fac-

tors [14, 17], which can be generally grouped as physical (e.g., climate, soil, topography, crop

production factors) and socio-economic (e.g., crop management, agricultural input, field size,

demography, farmer income, Gross Domestic Product (GDP) per capita, technology) [19–21].

These determinants govern the adaptive capacity of a system to climate disruptions over time.

For instance, studies [7, 22] reported that technological improvements (i.e., high-yield breed-

ing, adoption of drought-tolerant seed) associated with per capita GDP growth could further

increase the resilience of crop production systems to droughts in a region. Current reports also

revealed that more resilient agricultural systems, due to social, institutional, and agroecological

factors [23] could adapt to stress and recover better than those less resilient, even with a com-

parable or higher climate extreme exposure [20, 22]. Therefore, quantifying the adverse impact

on crops due to extreme events such as a drought is imperative to understanding crop vulnera-

bility to climate disruptions since drought impact is known to be one of the most disastrous

climate extremes causing crop damage.

Furthermore, how socio-economic factors drive the global crop-drought relationship is

often overlooked. Several studies [12, 19, 21] attempted to quantitatively explore how various

physical and socio-economic factors might control crop productivity measures (i.e., crop yield,

production). Even though numerous existing local studies with a specific context and underly-

ing physical and socio-economic conditions existed [24, 25], these studies might not represent

the understanding to a larger extent. On a global scale, previous studies often use aggregated

country or sub-country level data to assess socio-economic factors’ influence to crop vulnera-

bility [19, 20, 26, 27]. This approach might not represent heterogeneous agricultural systems,

given that adaptive capacity may differ within local or smaller levels [28–30].

For instance, existing global scale studies by Simelton et al. [20] and currently Kinnunen

et al. [31] have attempted to understand the socioeconomic factors which determine crop vul-

nerability to climatic stress (i.e., drought and heat). They employed several socioeconomic

proxies at subnational and national levels, such as governance, GDP per capita, human devel-

opment index, fertilizer, water stress index, and irrigation infrastructure indicator. They

emphasized the importance of socioeconomic factors (e.g., income level, governance, fertilizer

application) in defining global crop vulnerability to climatic stress. These existing studies also

suggested crop production in countries with higher agricultural investments (i.e., higher fertil-

izer application) is generally less vulnerable to drought, despite a variation across crops and

the type of regions. However, some complex and nonlinear relationship has been reported,

particularly for economic indicator (e.g., GDP per capita, human development index) [20].

Moreover, these previous studies have not discussed the effect of importance and the direction

of how a wide range of factors combining physical (e.g., climate, soil, topography, irrigation,

crop production factors) and socioeconomic variables affect crop-drought vulnerability in a

finer spatial scale (i.e., grid-scale).
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Therefore, this study addresses the above gaps of lacking quantitative evidence of the effect

of multiple factors (i.e., physical, socioeconomic) in determining global crop-drought vulnera-

bility based on gridded historical data. Particularly, this present study explores 1) how much

global harvested area and crop yield anomaly are significantly affected by drought and 2) how

the key factors mitigate or exacerbate the crop-drought vulnerability in terms of their crop

yield sensitivity to drought. Here, we examine the sensitivity of maize, rice, soybean, and

wheat yield to drought based on a meteorological drought indicator as drought proxy (Stan-

dardized Precipitation Index, SPI) with a spatial resolution of 0.5˚ grid-cell from 1981 to 2016.

Finally, we explore how the key factors determine global crop-drought sensitivity using

machine learning approaches. These study results are necessary to indicate which factors are

important to determine the global crop sensitivity to drought on a global scale. This may pro-

vide light for further attempts to understand crop system vulnerability and its determinants

for future adaptation and mitigation efforts in the global context.

Materials

The dataset used in this study mainly consists of global gridded crop yield data, the Standard-

ized Precipitation Index (SPI), and several indicators that possibly control crop sensitivity to

drought. We consider all the data for 1981–2016 associated with this study analysis period.

Since the spatial resolution of the datasets varies, we re-gridded all the datasets to 0.5˚ using

bilinear interpolation.

Drought indicators

Here, the drought indicator is based on one of the meteorological drought indices, the Stan-

dardized Precipitation Index (SPI) [32]. While SPI is solely based on precipitation, this index

has been widely used and well-recognized in previous drought studies and applications [33–

36]. Other drought indexes such as the Palmer Drought Severity Index (PDSI), the Standard-

ized Precipitation Evapotranspiration Index (SPEI), and other indices (e.g., soil moisture

anomaly) have also been used but require more parameterization, which may introduce addi-

tional uncertainties [37, 38]. Therefore, the simple but robust drought definition based on SPI

is employed in this study to reveal the global drought pattern from 1981 to 2016.

SPI is obtained based on the standardization of monthly precipitation accumulation within

various timescales (e.g., 3, 6, 9, 12 months) over the window period of 1981–2016; thus, the

standardized value finally has a mean of zero and a standard deviation of one. Before standard-

ization based on the normal Gaussian distribution, the data is fitted based on the Gamma dis-

tribution [39]. Here, SPI is developed based on several historical global gridded precipitations

to obtain the best agreement among datasets according to their ensemble mean (GPCC, CRU,

PRECL, UDEL, CPC, MSWEP, MERRA-2, and ERA-5 dataset) [8]. SPI is produced for each

dataset, and then the mean of the eight selected datasets is obtained to represent ensemble SPI

as the drought index.

The drought index (DI) based on negative SPI is used to represent the inter-annual drought

condition in this study (Eq 1) [8]. We obtain yearly DI based on monthly SPI on harvest

month each year. The harvest month data for each grid cell is obtained from the crop calendar

dataset during the year 2000 [40] and is constantly applied every year from 1981 to 2016. The

drought index (DI) is calculated as:

DIt ¼
� SPIm;t; SPIm;t < 0

null; SPIm;t � 0
ð1Þ

(
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where SPIm,t is the 9-month SPI (SPI-9) in harvest month m and year t. SPI with a 9-month

timescale is used to indicate a long-term precipitation anomaly which may indicate a more

prominent drought [32, 33]. The spatial variation of the global crop-drought relationship is

broadly similar when different SPI timescales are used [8].

Crop yield anomaly

The percentage of yield anomaly (ΔY) is estimated based on the gridded dataset of historical

yield (GDHY) [41] for the major crops: maize, rice, soybean, and wheat (Eq 2). We calculate

long-term crop yield trends as normal or expected yields (�Y ) using the local polynomial

regression method [8]. This method is selected since it can account for possible nonlinear

trends and works well for limited data series, particularly compared to the moving average

method [42]. This long-term trend generally represents the improvement of technological

advances in producing higher yields in a region, while the yield anomaly subtracted from the

expected yield is assumed to be caused by climate-related factors, although other affecting fac-

tors, such as socioeconomic factors, may also influence this short-term anomaly.

DYt ¼
Yt �

�Yt
�Yt
� 100% ð2Þ

where Y is crop yield (t ha-1) and �Y is the trend obtained by local polynomial regression (t

ha-1) in a given year t.

Crop-drought determinants

We obtain several possible factors determining crop yield and drought relationship. We define

the possible determinants as (1) climate factors [1], (2) terrain factors [43, 44], (3) soil factors

[45, 46], (4) irrigation factors [26, 27], (5) crop production (hereafter production) factors [47],

(6) fertilizer factors [20, 48], and (7) socio-economic factors [12] (see Table 1). All variables

shown in Table 1 are then used as independent variables to train the Random Forest model

(see Methods). Moreover, it is noteworthy that we use an average value or a subset of the data-

set in a specific year between 1981–2016, despite a possible change during the study period.

Previous studies [46] have also used this approach, and year-specific datasets are widely

employed, especially in the case of crop calendar and harvest area datasets [49, 50], which were

only available around the year 2000.

Methods

Crop-drought sensitivity

We estimate crop-drought sensitivity as the slope coefficient (β) of a linear regression between

yield anomaly (ΔY) and DI in the given year as time series (Eq 3). Statistical significance con-

sidered in this study is based on a two-tailed t-test with a threshold of P< 0.05.

DY ¼ aþ b � DI ð3Þ

where a and β are the model intercept and slope, respectively. These linear regression param-

eters are fitted based on the ordinary least-squares method using the “statsmodels” library in

Python [60] (see S1 Fig for an example of the regression model in a grid cell). This calculation is

applied for each grid cell and crop. Here, crop-drought sensitivity refers to the simple linear

relationship, despite possible nonlinear responses and more complex relationships occurring

across regions. Nevertheless, this simple model allows us to understand the general pattern of

how crop yield responds to drought, as demonstrated by previous studies [1, 61].

PLOS ONE Possible factors determining global-scale patterns of crop yield sensitivity to drought

PLOS ONE | https://doi.org/10.1371/journal.pone.0281287 February 2, 2023 4 / 20

https://doi.org/10.1371/journal.pone.0281287


Random forest

Here we use one of the machine learning algorithms, Random Forest [62], to reveal the key

factors defining the crop-drought relationship. We use Random Forest algorithm due to its rel-

atively better accuracy, interpretability, and efficiency with large training datasets than other

machine learning methods (e.g., decision trees, nearest neighbors) [62–64]. In addition, we

test the sensitivity of our results by comparing the model performances estimating crop-

drought sensitivity with the outputs of two other machine learning algorithms: support vector

regression (SVR) [65] and gradient boosting (XGBoost) [66], implemented in the R library,

"caret" [67].

We set the crop-drought sensitivity (β) as the response variable and various possible deter-

minants (Table 1) as independent variables or predictors. The Random Forest model has been

used to detect a nonlinear climate-crop system relationship [2, 46]. Here, the Random Forest

algorithm is applied using the “randomForest” library in R [68]. We use parameter input as

default settings (e.g., number of trees = 500) since the model skill with basic setting is adequate

to reveal the variable importance and their influence on global crop sensitivity [46]. The model

is fitted with the data from all available grid cells (representing spatial dimension) for each

crop. During the calculation process, explained variance is calculated based on OOB (out-of-

bag) error estimation by subsampling with replacement in the training samples [68].

Further, we obtain relative importance [66] for each variable based on the fitted models.

Here we use the metric measuring number of tree nodes employing the variable to reduce the

model’s impurity averaged across all trees [68]. The “randomForest” calculates and scales it as

Table 1. Determinants used to describe the crop-drought sensitivity analyzed in the study. The dataset sources and format are listed in S1 Table.

Class Variable Unit Period Source

Climate Mean annual precipitation mm year-1 1981–2016 [51]

Mean annual PET mm year-1

Mean temperature ˚C

Terrain Elevation m 2000 [52]

Slope -

Soil Topsoil saturated hydraulic conductivity a cm day-1 2013 [53]

Topsoil clay amount % weight 2000 [54]

Topsoil organic carbon kg C m-2

Topsoil acidity pH

Water-holding capacity mm 1993 [55]

Irrigation Area equipped for irrigation (AEI) % of land area 2005 [50, 56]

Area actually irrigated (AAI) % of AEI

Area irrigated with groundwater (AEIGW) % of AEI

Area irrigated with water from non-conventional sources (AEINC) % of AEI

Production Growing season length days The 1990s –early 2000s [40]

Harvested area km2 year-1 1998–2002 [49]

Fertilizer Nitrogen rate application kg ha-1 2000 [57]

Phosphorus rate application kg ha-1

Potassium rate application kg ha-1

Socioeconomic Gross Domestic Product (GDP) billion United States Dollar (USD) 2015 [58]

GDP per capita USD

Population density people km-2 2015 [59]

a30cm depth

https://doi.org/10.1371/journal.pone.0281287.t001
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the total importance for all variables equals one. Then, for ease of comparison, we normalize

them into the 0–1 range, representing the minimum and maximum values, respectively.

Finally, we plot all models based on different settings and rank them from the most important

parameter to the least.

We use a partial dependence plot from the fitted models to understand each variable’s rela-

tionship with crop-drought sensitivity as the response variable [66]. The partial dependence

allows selecting small subsets or single variables to reveal a relationship between predictor(s)

and a response variable, similar to sensitivity analysis [2]. Here, we pick up the six most influen-

tial variables based on their overall relative importance (from the average of all experiment set-

ups) to demonstrate their relationship with crop-drought sensitivity. This enables us to estimate

the effect of the important variable to determine global crop sensitivity to drought. This study

also calculates the variable importance and partial dependence plots based on SVR and XGBoost

algorithms using “caret” and "pdp" R library [69] to investigate the robustness of our results.

Results

Crop-drought sensitivity pattern

We obtain crop-drought sensitivity based on the slope of the linear regression (β) between crop

yield anomalies and the meteorological Drought Index (DI) based on SPI with a 9-month time-

scale (Fig 1). Significant relationships are evident in around a quarter of croplands or over around

Fig 1. Crop yield sensitivity to drought based on 9-month SPI across global croplands based on GDHY for maize, rice, soybean, and wheat. Sensitivity is

calculated by the linear slope coefficient (β) as crop yield anomaly (%) per drought magnitude based on SPI, while white cells show no cropland or crop yield

data. We show a map over entire global croplands for a spatially broader interpretation. The map showing only areas with significant crop yield sensitivity to

drought is provided in S2 Fig (P< 0.05). The map is made with the “cartopy” library in Python (version 0.17) and the Natural Earth free vector and raster map

data (naturalearthdata.com), which are freely available through the public domain [70].

https://doi.org/10.1371/journal.pone.0281287.g001
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one-fourth of global maize, wheat, and soybean croplands, respectively (P< 0.05). Almost entire

significant croplands show a negative correlation (~96%), confirming the damaging impact of

drought on major crops. In contrast, the negative impact of drought on rice seems offset by yield

benefits and remains low globally, with only 7% significantly correlated croplands [7].

Globally, drought reduces yield by 4%, 1%, 3%, and 6% for maize, rice, soybean, and wheat,

respectively, with increasing drought index DI (i.e., precipitation deviations from normal condi-

tion per precipitation standard deviations). Over a quarter of the total croplands with significant

drought impact, yields drop by around 14% by one drought unit (maize, soybean, and wheat).

Furthermore, we point out primary regions with a substantial drought impact, comprising gen-

erally dry croplands such as The Great Plains, Africa (southern Africa, The Sahel, and the Horn

of Africa), Australia, northeast China, the Mediterranean basin, and Central Asia (Fig 1) [7, 8].

Droughts also slightly damage maize and wheat yield in wetter regions such as South America,

The Pampas, and the African and Southeast Asian tropics. While droughts induce rice yield loss

in parts of The Sahel region and Northeast China and slightly in central Asia, rice in the tropics

broadly shows weak sensitivity to drought. The higher crop yield sensitivity over drylands may

indicate their higher vulnerability along with higher drought hazard exposures.

Possible driving factors

We investigate the importance of several possible determinants as independent variables to

control crop-drought sensitivity. We train the Random Forest models for regression with pre-

dictors of 22 variables. Results show that the variable predictors can explain overall 43%, 36%,

66%, and 37% of crop-drought sensitivity variations (R2) with root mean square error (RMSE)

of 8.61%, 5.89%, 4.63%, 10% (crop yield anomaly per drought magnitude, β) for maize, rice,

soybean, and wheat, respectively. The explanatory skills of the 22 variables are robust across

different types of machine learning algorithms (SVR and XGBoost), showing similar model

performances with a small standard deviation of R2 and RMSE by 1% and 0.2%, respectively,

across crop types and machine learning algorithms (S2 Table). Furthermore, in rice, where the

models less explain the crop-drought sensitivity variation, there are likely other more complex

effects of factors contributing to rice vulnerability to drought [1, 7].

Here, we derive each variable’s relative contribution to the models. While the important

parameters vary across crops, we average their relative importance to reveal overall important

variables (Fig 2). It shows that mean annual precipitation, water-holding capacity, soil acidity,

Potential Evapotranspiration (PET), elevation, and potassium application rate are among the

most driving factors, revealing that climate, soil, terrain, and agricultural input factors play an

important role in crop-drought sensitivity variations. In particular, for each crop, the result

suggests that the annual precipitation pattern becomes important for all crops, while water-

holding capacity, elevation, PET, acidity, and potassium rate are relevant for some crops

(Table 2). Regarding management factors, groundwater irrigation potential and population

density are slightly important for maize, soybean, and rice.

The importance of variables is generally consistent across the machine learning models,

particularly the order of the most important variables (see S3 Fig). Note that the importance of

variables from the three machine learning algorithms (Fig 2 and S3 Fig) may slightly vary in

absolute value due to different methods implemented [67]. The variable importance and par-

tial dependence plot of SVR and XGBoost are obtained using “caret” library.

Impact behavior of each factor

We obtain a partial dependence plot for each variable to describe their functional relationship

with crop-drought sensitivity patterns (Fig 3 and S4 Fig). The subsequent sections discuss the
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variable relationship for each parameter among different factors (climate, terrain, soil, produc-

tion, irrigation, fertilizer, and socioeconomic factors) based on Random Forest model. We also

obtain the partial dependence plots based on SVR and XGBoost (S5 and S6 Figs). The results

confirm that most estimated relationships between various determinants and crop yield sensi-

tivity are generally robust across the models.

Climate factors

The most important factor, mean annual precipitation, demonstrates a clear relationship with

crop-drought sensitivity; a higher precipitation rate alleviates crop yield reduction due to

Fig 2. The relative importance of the determinant factors in explaining crop-drought sensitivity based on random forest model. The importance values

are normalized to the 0–1 range computed separately across different crops. The colored points represent the relative importance of each variable. Label order

of the y-axis indicates the order from the most important variables to the least based on the overall average across crops.

https://doi.org/10.1371/journal.pone.0281287.g002

Table 2. Top six important parameters for each crop based on the average relative importance. The overall average represents the average from combinations across

crops corresponding to the order of the y-axis labels in Fig 2.

Rank Maize Rice Soybean Wheat Overall average

1 Precipitation Precipitation Water-holding capacity Precipitation Precipitation

2 Water-holding capacity PET Potassium rate Acidity Water-holding capacity

3 Elevation Population density Irrigation (groundwater) Water-holding capacity Acidity

4 Growing season length Acidity Precipitation Nitrogen rate PET

5 Irrigation (groundwater) Elevation Elevation Hydraulic conductivity Elevation

6 Soil organic carbon Irrigation (groundwater) PET Temperature Potassium rate

https://doi.org/10.1371/journal.pone.0281287.t002
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drought. For instance, based on functional relationships in maize and wheat in which the yield

loss sensitivity is high, the higher annual precipitation (e.g., ~500–1000 mm year-1) increase

may mitigate yield loss (Fig 3). This result indicates that crop yield in semi-arid and arid

regions with less precipitation is more sensitive to drought impact, as reported elsewhere [7,

71–73]. Furthermore, this confirms that crop loss sensitivity increases in most drylands, where

severe hazards and higher vulnerability occur concurrently. The other climate factor, PET,

shows an inverse response to precipitation—higher PET tends to aggravate yield loss sensitiv-

ity due to drought, while temperature slightly determines the response variables.

Terrain factors

The higher elevation is found to be an important parameter with a diminishing effect on yield

loss sensitivity. The response is particularly evident for maize, soybean, and wheat. This

implies that more serious crop-yield loss sensitivity due to drought is generally located in low-

lying cropland; while in higher elevations, where the precipitation rate is generally higher,

drought impact may be lessened [74]. Moreover, atmospheric vapor demand would generally

be lower at higher altitudes, which may alleviate moisture stress due to drought [75]. On the

other hand, the other terrain factor, the slope, does not show a clear relationship with the

drought-induced yield sensitivity.

Fig 3. Relationship between the response variable of crop-drought sensitivity (β) as the response variable and the six selected determinant factors as

independent variables based on each partial dependence using random forest models. The order shows higher to lower overall relative importance across

crops (see Table 2). The lower negative y-axis indicates higher yield loss due to drought. The partial dependence plot for all variables (22 variables) is provided

in S4 Fig.

https://doi.org/10.1371/journal.pone.0281287.g003

PLOS ONE Possible factors determining global-scale patterns of crop yield sensitivity to drought

PLOS ONE | https://doi.org/10.1371/journal.pone.0281287 February 2, 2023 9 / 20

https://doi.org/10.1371/journal.pone.0281287.g003
https://doi.org/10.1371/journal.pone.0281287


Soil factors

The most important soil factor, water-holding capacity, generally shows a consistent pattern for

all crops. The higher value may slightly moderate drought-induced yield loss, as indicated in the

previous studies [76, 77]. For instance, this parameter’s functional relationship shows a decrease

in drought-induced yield loss in all crop regions by around 330 mm water-holding capacity.

The other soil factor, soil acidity, tends to increase the drought-induced yield loss by pH values

ranging from 7 to 8. In this range, soil condition is generally more saline, while soil may become

alkaline with a pH of more than 8.5 [72]. With these conditions, salt and alkali stress may simul-

taneously restrict crop development in semi-arid and arid regions, further exacerbating crop

yield loss to drought [78, 79]. Moreover, hydraulic conductivity may also lessen drought-

induced yield loss, especially for maize and wheat within hydraulic conductivity values (i.e., up

to 25 cm d-1). This dependence generally may be related to more effective water transport and

increasing soil water content potential as soil hydraulic conductivity increases [80, 81], despite

more complex mechanisms that may be involved [15, 82]. The other parameters: soil organic

carbon and clay soil amount, however, generally remain less influence given lower relative

importance in the model, despite their importance in some cases (e.g., higher clay soil amount

in wheat seems to slightly aggravate negative crop sensitivity to drought).

Production factors

The crop production factor, growing season length, is revealed as one of the important factors

that may worsen wheat yield loss due to longer season length, particularly for maize and

wheat. The longer season length is generally attributable to winter wheat being dominated by a

global rainfed system, and the crop may be highly reliant on precipitation and sensitive to pre-

cipitation variability. For instance, the longer maize growing season (>~130 days) may exacer-

bate the yield loss. This growing season covers most of the major maize belts in higher

latitudes, including most semi-arid and arid lands, while the shorter season spans around the

tropics. The other parameter, the harvested area, may exhibit lesser effects.

Irrigation factors

Overall, irrigation parameters (i.e., percentage of area equipped for irrigation, AEI; actual irri-

gation, groundwater; and non-conventional water sources) show an unclear relationship with

the yield sensitivity, despite a slightly higher relative importance, especially for the groundwa-

ter irrigation parameter. The remaining irrigation parameters tend to have less control over

the drought-induced yield sensitivity. We acknowledge that these results contrast with previ-

ous studies arguing that irrigation may partly mitigate drought impact to crop yield.

Fertilizer factors

The fertilizer factors, potassium and phosphorus application rates, are revealed among the

important variables. In general, their higher application rate may slightly alleviate yield loss

due to drought. These fertilizer applications may effectively relieve drought stress on crops and

enhance drought tolerance [83–85]. This mechanism may be generally explained by reducing

the uptake of toxic nutrients and strengthening the physiological efficiency [83], which may

improve overall resilience to drought, while in the particular further mechanism of the role of

nutrients to mitigate drought stress on plants has been discussed in previous studies [86].

Moreover, the other fertilizer factor, nitrogen application rate, does not show an apparent rela-

tionship with the yield sensitivity indicator, despite a notable exception for the wheat with an

easing effect on the drought-induced yield loss.
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Socio-economic factors

GDP per capita relatively shows a stronger relationship with the yield sensitivity than the GDP

parameter, especially in the case of wheat and soybean. However, these relationships remain

weak, preventing us from drawing a conclusion. The other factor, the population indicator,

does not determine yield sensitivity to drought.

Discussion

The present study assesses crop sensitivity to drought from 1981 to 2016 based on a meteoro-

logical drought index using a 9-month Standardized Precipitation Index (SPI) and gridded

crop yield datasets for maize, rice, soybean, and wheat. Our estimates reveal that over one-

fourth of global cropland is significantly sensitive to inter-annual drought, which generally

agrees with previous studies [2, 7, 73], despite slightly lower estimates than the previous study

using a similar approach and dataset [7]. A negligible drought impact on rice is also confirmed

in this study, which may be attributable to its low exposure to drought with general moisture

surplus as reported elsewhere [61, 87]. Here, we highlight a corresponding result pattern

among related studies based on specific drought indicators and crop statistics during historical

periods [7, 88, 89]. The major global drylands are the hotspots of the drought-sensitive regions,

particularly for the three most affected crops: maize, soybean, and wheat. The significance of

the regions is also widely highlighted by previous studies [7, 11, 73].

This study explores several possible factors determining crop sensitivity to drought. We

indicate that environmental factors (i.e., climate, soil, terrain) have an important role in miti-

gating crop yield loss due to drought, while management factors such as fertilizer, growing sea-

son, and GDP per capita show moderate influence, while the irrigation factor seems to have

lesser control, in contrast to their typical role in mitigating the impact of drought [2, 27, 61, 87,

90]. This result may suggest that drought events in our scale are too large to prevent crop losses

by irrigation; water deficits occurred extensively in the case of large-scale droughts. Previous

study by Kinnunen et al. [31] also indicated the importance of fertilizer application to alleviate

crop yield variation during dry and hot years, while the irrigation factor was also relatively less

important due to possible differences between actual conditions and data representation.

We further discuss these findings regarding the irrigation effect as follows. First, we may

not detect the significant importance of irrigation factors as we cannot independently disen-

tangle the impact of drought on irrigated and rainfed crop yields. Here, we use mean annual

yield involving multiple crop growing systems (irrigated and rainfed) and seasons (major and

minor) [41]. Therefore, our estimates may offset the mitigating effect of irrigation due to a

comparable or even larger negative impact of drought on rainfed crops within the same grid

location. Previous studies primarily conducted on a local or regional scale employed irrigated

and rainfed yield data separately to obtain drought impact on each system [90], while further

challenges related to data availability may arise when dealing with a global scale analysis.

On the other hand, another study [2] detected response of inter-annual yield using sub-

country-level data (combined rainfed and irrigated yields) on each classified irrigated and

rainfed cropland based on a specific definition (e.g., irrigated cropland is defined as>80% of

harvested area irrigated and otherwise is rainfed). Similarly, we classify irrigated and rainfed

cropland based on the similar global harvested area dataset [49] and the classification used in

the previous study [2]. We then calculate the share of drought-affected areas for each crop-

drought sensitivity bin (Fig 4). We find that the rainfed system considerably dominates the

drought-affected regions resulted in this study, especially for soybean (99% of the total calcu-

lated harvested area), maize (89%), and wheat (83%), while in the case of rice, the proportion

of irrigated cropland is relatively higher (63%). Irrigation tends to mitigate rice yield loss as the
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centroid of the bins tends to be positive (yield gain), while rainfed rice tends to have yield loss.

For the major rainfed crops (maize, soybean, wheat), there seems to be no considerable differ-

ence between irrigated and rainfed system responses; both exhibit mainly yield loss despite a

large difference in cropland share. Nevertheless, the vast rainfed system is negatively impacted

by drought, shown by an extensive area proportion attributable to yield loss, which indicates

the substantial drought impact on this cropping system globally. Particularly, maize, soybean,

and wheat are damaged by drought, equal to 65%, 69%, and 62% of the calculated harvested

area. Therefore, we may argue that variability of irrigation fraction may not be adequate to

explain crop yield sensitivity to drought owing to the dominance of a rainfed system over

global croplands calculated in this study.

Further study may consider other important parameters for drought parameterization,

such as temperature or evapotranspiration (ET), as they play a significant role in exacerbating

drought impact through increasing evaporative demand [61, 91, 92]. The drought indicator

can also be represented by other drought parameters, such as growing season soil moisture

conditions based on physical modeling or remote sensing estimates on a global scale [37, 93].

Previous studies reported that the impact of drought on agricultural production due to lacking

soil moisture is often associated with extreme heat, posing a more severe risk to crops [61, 94,

95]. Joint drought and heat events indicators may provide insight into these relationships [88,

96, 97]. We suggest considering these possible mechanisms accounting for hydrological fea-

tures on drought estimates (rather than only meteorological factors, e.g., precipitation), espe-

cially in some regions agricultural systems impose more complex atmospheric soil interaction

Fig 4. Crop-drought sensitivity in each rainfed and irrigated defined by>80% of irrigated harvested area for maize, rice, soybean, and wheat. The x-axis

represents the bins of crop yield sensitivity, and the y-axis represents the percentage of the harvested area where data is available. The dashed line indicates the

center value (zero), separating yield loss (negative) and yield gain (positive).

https://doi.org/10.1371/journal.pone.0281287.g004
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and are heavily reliant on the other common water sources such as irrigation and groundwater

[61, 98].

Moreover, we indicate that the overall effect of socio-economic factors, i.e., GDP per capita,

is relatively weak in determining crop-drought sensitivity—which may be underestimated in

this study. Specifically for soybean, higher GDP may slightly induce higher yield loss sensitivity

to drought, while maize slightly responds differently. Previous studies [20, 99] reported that

higher GDP per capita generally reflects larger average farm sizes [100], which are typically

market-oriented. Furthermore, a previous study [99] suggested that this type of system may be

more sensitive to drought when they tend to achieve maximum yield potential associated with

higher risk instead of adjusting low-risk management practices during climate stress. Possible

reasons are highlighted: when GDP per capita increases, conventional drought coping strate-

gies may be reduced, while in poorer regions, traditional and well-settled adaptation strategies

may be more preserved, possibly reducing the harvested yield volatility [20, 99]. However, this

socio-economic indicator effect in defining the crop sensitivity to drought may remain com-

plex in actual conditions. In contrast, numerous pieces of literature have indicated that the

importance of GDP or capital indicators may decrease vulnerability (i.e., increasing adaptive

capacity) due to more financial reserves for investing in, e.g., drought-tolerant breeding, irriga-

tion facility, mechanization, or weather forecasting [13, 20, 25, 26]. Other studies also

highlighted that crop resilience to drought is higher in rich and developing countries than in

middle-income countries [20]. It is worth noting that this present study only considers a spe-

cific vulnerability measure (i.e., crop yield sensitivity, yield loss) based on the relationship

between crop yield and meteorological drought. In contrast, a vulnerability in its comprehen-

sive definition may consider more factors (i.e., drought-induced production and economic

loss, food trade) [7, 9].

Finally, we acknowledge the limitation of this study related to the datasets used, particularly

the reliance on the gridded dataset of historical yield (GDHY) and SPI-based drought indica-

tor as the two main input parameters [8]. The crop-drought sensitivity patterns are also subject

to change if other datasets (i.e., sub-country crop yield data [3]) and other drought indicators

are used [37]. The drought definition used in this study can be further improved by consider-

ing other parameters (i.e., temperature, ET, soil moisture). Therefore, we acknowledge that

crop yield sensitivity here is exclusively determined by the specific datasets used here, mainly

obtained from the SPI-based drought indicator and yield dataset from GDHY [41]. It is note-

worthy that the result of key determinants of the global pattern of crop sensitivity to drought

may be sensitive to the data and model selection in this study.

At this point, challenges and questions remain for empirically understanding the complete

drought characterization on global agriculture. Nevertheless, this study is worth undertaking

since this provides the first attempt to broadly link several possible determinants with the

crop-drought relationship to reveal the most influential parameter in defining the relationship

patterns over the global scale. Overall, this study’s results may provide a basis for measures to

achieve food security against the pressures such as increasing severity and frequency of

extreme events under climate changes, food demand due to the growing global population,

and land availability [5, 13, 101].

Conclusion

This paper explores key factors determining crop-drought sensitivity for maize, rice, soybean,

and wheat for 1981–2016. Results suggest that maize, soybean, and wheat yield are significantly

affected by drought in major dry croplands where they are mostly cultivated (e.g., The Great

Plains, Africa, Australia, the Mediterranean basin, and Central Asia), while rice is generally
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less affected. We link the crop-drought sensitivity with various determinants using the Ran-

dom Forest model. Results reveal that environmental factors (i.e., annual precipitation, soil

water-holding capacity, soil acidity, annual potential evapotranspiration) and management

factors (i.e., fertilizers application rate, growing season) are among the key factors in control-

ling crop sensitivity to drought. Our study also reveals how such important factors affect crop-

drought vulnerability: 1) crop yield in semi-arid and arid regions with low annual precipitation

and higher PET is more sensitive to drought impact; 2) other important factors such as higher

fertilizer rate, elevation, soil water holding capacity and shorter growing season have a moder-

ate association with lower vulnerability, 3) the effect of other socioeconomic indicators (i.e.,

GDP per capita, irrigation) may be underestimated in our models generally due to limitation

in modeling the actual mechanism by the selected proxies based the currently available global

dataset. These results may improve our understanding of global crop-drought sensitivity pat-

terns and their key determinants. Future studies are expected to address the remaining gaps

demonstrated in this study to understand crop system vulnerability to drought toward future

challenges to achieve food security.

Supporting information

S1 Table. List of dataset sources. All datasets are freely available via websites.

(PDF)

S2 Table. Output performance (R2 and RMSE) of each machine learning algorithm trained

in this study. The support vector machine model is built using ´´´svmRadial´´´ based on the

"caret" R library with the parameter sigma value (σ) of 0.1 and cost (C) of 1. Extreme gradient

boosting is developed using "xgbTree" method in "caret" using its default fitting parameters

(e.g., number of rounds of boosting = 500, maximum depth of a tree = 6, learning rate = 0.3).

The values of the performance skills are based on the mean value from 10-fold cross-valida-

tion, except in the case of random Forest, which is solely based on OOB (out-of-bag) validation

in this study. The unit percentage for RMSE denotes crop yield anomaly per drought magni-

tude (β).

(PDF)

S1 Fig. Example of the linear regression between yield anomaly (ΔY) and DI in a grid cell.

Crop drought sensitivity (β) is obtained based on the slope coefficient.

(TIF)

S2 Fig. Crop yield sensitivity to drought based on 9-month SPI across global croplands

based on GDHY for maize, rice, soybean, and wheat. Sensitivity is calculated by the linear

slope coefficient (β) with crop yield anomaly (%) per drought magnitude. White grid cells

show no cropland or crop yield data, and grey shows the non-significant grid cells (P� 0.05).

(TIF)

S3 Fig. The relative importance of the determinant factors based on Support Vector

Regression (SVR) and Extreme Gradient Boosting models (XGBoost). The importance val-

ues are normalized to the 0–1 range computed separately across different models. The colored

bars represent the average relative importance across different algorithms. Label order of the

y-axis indicates the order from the most important variables to the least based on the overall

average across crops and models.

(TIF)

S4 Fig. Relationship between crop-drought sensitivity (β) as the response variable and the

determinants factors as independent variables based on each partial dependence using
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Random Forest model. The order shows high to lower average relative importance across

crops based on this specific model (not overall). The lower negative y-axis indicates higher

yield loss due to drought.

(TIF)

S5 Fig. Same as S4 Fig but for SVR model.

(TIF)

S6 Fig. Same as S4 Fig but for XGBoost model.

(TIF)
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