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Abstract

The COVID-19 pandemic is the first to be rapidly and sequentially measured by nation-wide

PCR community testing for the presence of the viral RNA at a global scale. We take advan-

tage of the novel "natural experiment" where diverse nations and major subnational regions

implemented various policies including social distancing and vaccination at different times

with different levels of stringency and adherence. Initially, case numbers expand exponen-

tially with doubling times of ~1–2 weeks. In the nations where interventions were not imple-

mented or perhaps lees effectual, case numbers increased exponentially but then stabilized

around 102-to-103 new infections (per km2 built-up area per day). Dynamics under effective

interventions were perturbed and infections decayed to low levels. They rebounded con-

comitantly with the lifting of social distancing policies or pharmaceutical efficacy decline,

converging on a stable equilibrium setpoint. Here we deploy a mathematical model which

captures this V-shape behavior, incorporating a direct measure of intervention efficacy.

Importantly, it allows the derivation of a maximal estimate for the basic reproductive number

Ro (mean 1.6–1.8). We were able to test this approach by comparing the approximated

"herd immunity" to the vaccination coverage observed that corresponded to rapid declines

in community infections during 2021. The estimates reported here agree with the observed

phenomena. Moreover, the decay (0.4–0.5) and rebound rates (0.2–0.3) were similar

throughout the pandemic and among all the nations and regions studied. Finally, a longitudi-

nal analysis comparing multiple national and regional results provides insights on the under-

lying epidemiology of SARS-CoV-2 and intervention efficacy, as well as evidence for the

existence of an endemic steady state of COVID-19.

Introduction

Quantitative studies of viral infection in human severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) infected subjects have been enabled by the massive global deployment of

sensitive and rapid PCR testing for detecting viral RNA in infected persons. Data obtained

with these procedures have allowed for extensive mathematical modeling of infection dynam-

ics and viral expansion [1]. Indeed, epidemiological modeling of this pandemic has exploded,
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though results have been mixed and show how difficult it can be to provide accurate informa-

tion and predictions, especially in the early stages of the pandemic [2].

COVID-19 cases initially grew exponentially in every nation. Reduction of community

infection was initially achieved by non-pharmaceutical and social distancing interventions [3,

4]. The early and drastic social distancing measures undoubtedly curbed viral expansion [5].

However, the underlying biological, environmental and social dynamics were not fundamen-

tally modified, and viral circulation was only temporarily inhibited. National vaccination pro-

grams deployed during 2021 were also aimed to block person-to-person infection. These

interventions were enacted at different times, with different levels of enforcement, compliance

and extent among nations and in major regions within nations. This global "natural experi-

ment" makes the COVID-19 pandemic a unique opportunity to longitudinally model epidemi-

ological dynamics.

COVID-19 modeling is primarily based on the standard SIR model as the foundational tool

of mathematical epidemiology and attempts to capture the main characteristics of the complex

interplay among the virus, its host and the environment [6]. The theoretical SIR model’s solu-

tion converges on a logistic-like S-curve trajectory with rapid expansion reaching a peak and

declining in one wave [7]. Many much more elaborate models were deployed to study

COVID-19 dynamics [8, 9]; however, complexity invokes problems such as overfitting, global

optimization, and interpretability. An important feature not reproduced in these models is the

existence of a non-trivial dynamical equilibrium setpoint.

The large amount of publicly available quantitative data amassed allowed a surge of mathe-

matical modeling papers and reports during the COVID-19 pandemic. Researchers have pub-

lished more than 1,100 peer-reviewed papers in less than two years [10], mostly based on

alterations to the SIR model, e.g., the SEIR model and other more complex derivatives [11].

Much work has been performed on modeling the waves of infection which spread across the

globe [12]. Saldaña et al. reviewed the main types of epidemiological modeling during

COVID-19 [13]. In our extensive reading we found no mention of the V-shaped kinetics

observed in the infection data during intervention programs, nor attempts to model the possi-

ble endemic steady-state. We aim to show that these are critical characteristics of the virus and

the social and pharmaceutical reactions to it, and can be exploited to better understand the

observed dynamics of the pandemic. We will show that valuable information about the epi-

demic can be extracted directly from the kinetics observed in the infection data.

A key criterion of epidemic expansion is the basic reproductive number (Ro) which repre-

sents a disease’s transmissibility. Specifically, it is the average number of productive secondary

infections arising from one active infectious individual [14]. It is derived from the ratio

between the infection and removal rate constants in the SIR or similar models [15]. A bifurca-

tion threshold condition for the occurrence of a sustained epidemic is Ro�1, meaning that as

Ro<1 the infection will converge on the disease-free state. This is also an indication for "herd

immunity" [16, 17]. In contrast to the outcome of a disease-free state, most models in the con-

text of COVID-19 lack the capacity to depict sustained endemic levels of infection.

Estimation of the value of Ro is commonly based on the initial exponential growth rate [18]

and the median infectious period [19, 20]. This is clearly an overestimate as it disregards the

removal rate of cases [21]. Another problem is it ignores the distinctive infection peak and

inherent inevitable negative second derivative predicted by SIR models. Other approximations

treat reproductive rates as a function of time during the epidemic and Wallinga & Lipsitch

[22] summarize the main methods to calculate this time-dependent "effective" R (Re). A recent

review demonstrated that Cori et al. [23] derived an accurate estimate for this parameter [24].

It has also been suggested that a simple Dirac delta distribution can be used as a proxy for Re

[25]. These are important though Re will fluctuate as a function of the changes in infection
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rates as the epidemic develops [26], but further discussion is beyond the scope of this paper.

While these track changes in infection rates change over time (e.g., the first derivative) they do

not capture the underlying fundamental biological and social interactions.

This paper highlights applicability of mathematical modeling based on the viral dynamics

paradigm [27–29]. A notable characteristic of these methodologies is an endemic-like non-

trivial, non-zero, infection dynamical steady or equilibrium state. Further, they can directly

model the effects of interventions to block transmission of the pathogen throughout the popu-

lation. Its major advantage is the ability to derive estimations for the values of model parame-

ters directly from the data [30].

We refrain from exploring the dynamics of the COVID-19 virus itself. SARS-CoV-2, the

virus that causes COVID-19, is continuously changing and accumulating mutations in its

genetic code. Some variants emerge and disappear, while others emerge, spread, and replace

previous variants. For the USA, variant proportions are tracked at https://covid.cdc.gov/covid-

data-tracker/#variant-proportions. Obviously, the strategies for suppression can interact with

the evolution of the virus. We simply assume a virus which is able to evolve so that it can rein-

fect previously infected individuals.

Publicly available data for COVID-19 were used to characterize the epidemiological

dynamics of community infection. The implementation of efficacious social distancing and

lockdown interventions instituted across many nations allows the modeling of the dynamics

of infection decay and subsequent rebound as interventions were lifted or lose effectiveness. A

longitudinal comparison among nations and major subnational regions provides insights into

pathogenesis that would be difficult or impossible to obtain in past pandemics.

Materials and methods

Epidemiological data

Data for confirmed active infected cases, COVID-19-associated mortality and PCR tests were

retrieved from [31]. For most purposes we stop in September 2021 when the widespread avail-

ability of self-testing changed the testing regimes and reduces the reliability of some of the rele-

vant time series. Preliminary review shows that the data exhibit two artifacts. First, a weekly

cycle is clearly observed with a tendency for more reporting in the middle of the week and less

during weekends, sometimes with orders-of-magnitude differences. Second, large inter-day

fluctuations are reported, sometimes with differences spanning multiple orders-of-magnitude.

While it is common to smooth the data with a moving average, the resulting estimates are

highly sensitive to the fitting window, especially with small numbers and the extremely noisy

data (up to an order-of-magnitude between days). Therefore, weekly averages were adopted

here and calculated from the geometric mean of the daily measurements to stabilize the vari-

ance in the data [32].

There is clearly a delay between time of infection and reporting. Incubation times for

COVID-19 are 6.2 days and the mean generation interval is 6.7 days, with a concurrent latent

period of 3.3 days [33]. Further, there is a lag between infection and detection by lab test with a

skewed distribution [34, 35]. While the exact value is unknown, it will only offset the data in

time and does not affect the shape of the infection trajectories. Therefore, a ten-day delay is

applied here to all confirmed case numbers, only shifting them left in time and not affecting

the shape of the data.

Inclusion criteria

Analyses were performed for nations and major subnational regions with 10-fold mean differ-

ence between PCR tests and positive confirmed cases, high GDP (PPP) per capita [36]
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indicating the ability to perform an extensive testing program, and approximately one log

decrease in infections from peak to minimum rates during interventions. The 45 qualifying

units include 24 European nations, Australia and New Zealand, the UK and the four nations

constituting the UK, 10 USA states, and four Asian nations.

Interventions, mobility and vaccination coverage

Dates for national policy intervention initiation and termination are available and collated

from numerous sources and the COVID-19 stringency index was accessed from [37]. Even so,

compliance was imperfect, and mobility was used as a minimal estimate for the cumulative

efficacies of the intervention polices to block community infection. With data downloaded

from [38, 39], the magnitude decrease in mobility was calculated between the average weekly

mobility pre-intervention and the minimum mobility observed within six weeks. This differ-

ence was used in the model fit to provide an initial estimate for the intervention efficacy

parameter during the first V-shape decrease in early 2020. The number of doses of vaccines

were retrieved from Mathieu et al. [40] and population data from the World Bank [41]; these

enable calculation of the percent of the populace vaccinated. To compare countries and

regions, data are commonly normalized to population size, such as "per million". However,

COVID-19 is strongly dependent on population density [42].Therefore, to alleviate the popu-

lation density bias, the data were normalized to the built-up area [43, 44].

Mathematical modeling of COVID-19

The epidemiology of COVID-19 was analyzed here using a mathematical model of viral

dynamics, attempting to capture the mechanism of the virus infecting susceptible individuals.

The three model compartments include susceptibles (S), COVID-19-confirmed individuals

(I), and free virus particles (V). The model assumes that uninfected people are being made

available at a constant rate (σ) and the virus productively infects them with probability βVS.

Detected infected individuals are removed by quarantine at rate δI. Viral particles are released

from infected individuals at rate pI and are inactivated at rate cV. These assumptions lead to

the coupled nonlinear ordinary differential eqs:

dS
dt
¼ s � ð1 � ZðtÞÞbVS

dI
dt
¼ ð1 � ZðtÞÞbVS � dI ð1Þ

dV
dt
¼ pI � cV

This is the simplest epidemiological model which affords a non-trivial non-zero infection

steady state. A global stability analysis can be found here [45]. Table 1 summarizes the model

parameters.

Intervention efficacy to block infection, via social distancing, lockdowns and/or vaccina-

tion, is parameterized here by η(t). Assuming partial and incomplete effectiveness, e.g.,

0<η<1, the system will converge on a new lower steady state. The parameter σ is usually inter-

preted as the repopulation rate of S, though here it can also indicate the constant availability of

new susceptibles to the virus as it diffuses through the population. While σ can be expanded in

more elaborate terms, e.g., as a function of time or recovered individuals, we demonstrate that

a constant value suffices as a first approximation to provide a dynamical endemic steady state.
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The mean infectious time is 1/δ. The average number of virus particles produced during the

infectious interval of a single infected person (the burst size) is given by p/c. While asymptom-

atic carriers are thought to be efficient spreaders, they are not included here as no information

is available for this group, and we assume as a first approximation that their dynamics are simi-

lar with I and probably change in tandem with the confirmed cases.

COVID-19 associated deaths can be thought of as a subset of infected persons. Indeed,

death rates appear to be in a quasi-steady state with the infection rates, being consistently 1-

2log lower though lagging by 4–6 weeks throughout the period studied. A Granger causality

test provides statistical evidence for this observation (r = 0.95, p<0.01). For analytical simplic-

ity, they are not modeled here explicitly.

Sustained viral propagation ensues if, and only if, the average number of secondary infec-

tions that arise from one productively infected person is larger than one (Ro >1). This is the

basic reproductive number and for Eq (1) it is defined by Ro = βσp/(δc). The intrinsic growth

rate constant, r, is solved for by the dominant root of the eq:

r2 þ ðdþ cÞr þ dcð1 � RoÞ ¼ 0 ð2Þ

However, if c>>δ and r, then this can be simplified to: r = δ(Ro−1). When Ro>1, then

infection rates will initially experience an exponential increase [46].

The model predicts that as the infection grows it decelerates. The infection will converge in

damped oscillations to the non-trivial equilibrium:

�S ¼ dc=bp; �I ¼ ðRo � 1Þdc=ðbpÞ; �V ¼ ðRo � 1ÞðbÞ. This dynamical steady state is obtained

when the number of new infections equals the number of recovering individuals, where every

productive infection generates, on average, only one more new secondary infection.

Assuming a quasi-steady state, i.e., the viral dynamics are much more rapid than the epide-

miological phenomenon (p>>c), then Eq (1) can be reduced to:

dS
dt
¼ s � ð1 � ZÞb

0IS

dI
dt
¼ ð1 � ZÞb

0IS � dI ð3Þ

b
0
¼ bp=c

with no loss of generality for the major trajectories of infection dynamics [47]. This functional

Table 1. Model parameter summary.

Parameter Symbol Units

Susceptible influx σ S�wk-1

Infection rate constant β V-1�wk-1

Infected removal rate constant δ wk-1

Intervention efficacy η %

Virus production rate constant p wk-1

Virus decay rate constant c wk-1

Time of intervention implementation t0 time

Time of intervention efficacy cessation t1 time

Infection decay rate r wk-1

Infection rebound rate r1 wk-1

Basic reproductive number Ro --

https://doi.org/10.1371/journal.pone.0281224.t001
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form has the advantage to decrease model complexity, especially because the viral compart-

ment is less relevant at the community-scale. Exponential decay under interventions to block

infection is given by r0 = δ−(1−η)β’S0, where S0 are the number of susceptibles before interven-

tions are implemented (t0). Under highly efficient interventions, i.e., η!1, then a minimal esti-

mate for δ can be derived directly from the observed decay half-life of t½ = ln(2)/δ [48, 49].

This model is capable of simulating the dynamics shown in Fig 1.

When interventions are withdrawn, lockdowns are rescinded, other NPI become lax or vac-

cines become ineffectual, at time t1 then infections will rebound at an exponential rate given

Fig 1. Epidemiological dynamics under interventions to block infection. Initially, infections rise exponentially (though national COVID-19 testing

programs were also ramping up). During stringent intrvention and effective cessation of viral transmission, between t0 and t1, infection decays exponentially

with a half-life of t½ = ln(2)/r0, where r0 is derived from the slope of the ln-transformed infection data. This provides a minimal estimate for the value of

parameter δ, assuming partial intervention efficacy (0<η<1). This decay will decelerate reaching a lower steady state. Infections will naturally rebound upon

lifting of interventions and/or loss of vaccine efficacy with a doubling time of t2 = ln(2)/r and r also calculated from the exponential up-slope. The system will

converge with damped oscillations to an elevated infection steady state. This basic pattern will recur as interventions are deployed at different times. Parameter

values: σ = 104 S�wk-1, β = 10−5 V-1�wk-1, δ = 0.64�wk-1, η = 70%, t0 = 16, t1 = 28.

https://doi.org/10.1371/journal.pone.0281224.g001
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by r = β’S1−δ, where S1 is the level of available susceptibles at t1. Crucially, r can be obtained

directly from the observed slope on the semi-log graph, and its doubling-time is t2 = ln(2)/r.
This expansion in infections will continue in damped oscillations returning to the steady-state.

Estimation of the basic reproductive ratio

The basic reproductive number is based on a ratio among all five model parameters. However,

the paucity of independent knowledge and accurate values for them precludes adequate

approximations of Ro. To alleviate this, the relationship between the basic reproductive ratio

(Ro) and the exponential growth rate (r) can be recovered such that Ro = 1+r(r+δ+c)/δc. If r+δ
is small compared to c, then this approaches:

Ro ¼ 1þ r=d ð4Þ

which can be calculated directly from the exponential slopes, r0 and r, as described above.

Parameter values and statistical analysis

To determine the initial values for model parameters, half-life decay during interventions and

rebound doubling-times were calculated from the logn-transformed data of confirmed cases

(weekly geometric means). Optimized values were generated by nonlinear fitting [50], mini-

mizing the objective function J ¼
Xn

i¼1

logðOi=PiÞ where Oi and Pi are the observed and

expected values, for n datapoints, with the advantage of stabilizing the variance during the fit

[32]. Many functional forms for intervention efficacy (η) can be used but for simplicity, gener-

alizability and as a first approximation:

ZðtÞ ¼
Z; t0 < t < t1
0; otherwise

(

for each intervention wave. The observed decrease in mobility is used here be used as a proxy

to estimate its value for each country [51]. Trivially, the proportion of the population needed

to be vaccinated in order to block community spread, known as "herd immunity" threshold is

[52, 53]:

H ¼ 1 � 1=Ro ð5Þ

Longitudinal comparisons on the parameter values are performed using the Mann-Whitney

u test. 95% confidence intervals, along with their statistical significance, are calculated as

appropriate. Model errors (RMS) are reported. Data, simulations and results are available

online at: https://github.com/Model-Lab-Net/COVID-19.

Results

Dynamics of COVID-19 epidemiology

A preliminary analysis of confirmed COVID-19 cases from 12 nations which did not imple-

ment stringent intervention policies, or were unsuccessful at their implementation, indicates

widely varying rates and infection levels (Fig 2). By the end of February 2020 these nations had

initial infection levels of ~10˚ cases per km2 with sustained infection doubling times of 1.2–1.7

weeks. Levels increased exponentially for 20±8 weeks and stabilized around a dynamical steady

state with fluctuations no larger than 0.5log. Setpoints among these countries fluctuated

around 100–400 cases per km2 built-up area per day. Interestingly, South Africa and Armenia
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exhibited spontaneously oscillating kinetics with an amplitude of approximately one order-of-

magnitude, perhaps alluding to the existence of a ’limit cycle’. India exhibited one of the largest

differences in infection over time, increasing to 102.5, declining to 101.5 then peaking at 103

before declining spontaneously again to 102 cases per km2 built-up area per day. Because there

were no observed effective measures to block COVID-19 spread, the number of confirmed

cases attained a dynamical equilibrium around which case numbers fluctuated.

Dynamics during effective lockdowns

COVID-19 positive case turnover allows analysis of effective social distancing through popula-

tion-level lockdowns. Non-pharmaceutical means to block new rounds of infections were ini-

tially rapid and effectively implemented. Infections begin to decay exponentially 7–10 days

after the lockdown policies are implemented, with down slopes of 0.5±0.3 per week and corre-

sponding to half-life values of 2.0±1.1weeks. Infection rates attained nadir within 4–6 weeks

with average efficacy of 68% (range: 46–93%), declining 1-2log lower than pre-lockdown case

numbers. Confirmed cases rebounded exponentially with doubling times of 2.3-2.6 weeks fol-

lowing the end of severe lockdowns. The trajectory then converged on an empirical equilib-

rium steady state of approximately 102-103 cases per km2 built area and with fluctuations less

than 0.5log. See Fig 3.

The UK as a whole had, on average, similar dynamical characteristics as its neighbors. How-

ever, the observed decay rates during lockdowns were significantly less rapid, leading to differ-

ences that will be expanded upon later. While the initial doubling times before lockdowns

were similar to other nations and regions, half-lives during lockdowns were nearly twice as

rapid, 1.3±0.5 vs. 2.0±1.1 weeks. Asian nations, generally, had somewhat different COVID-19

trajectories probably due to the unique measures induced in the included countries here. The

Asian rebound rates differed less relative to other countries, though they were more prolonged

with some clear oscillatory effects. Additionally, the setpoint infection rates in Japan and South

Korea were an order-of-magnitude lower than in Europe. See Fig 3.

The USA is composed of distinct political entities, with large inter-state variation. SARS-

CoV-2 surged and waned differently, peaking and ebbing at different times among the various

states. Therefore, analyses of COVID-19 for the USA have been done at the state level. Ten

states conformed to the inclusion criteria. The US state COVID-19 dynamics were less extreme

Fig 2. A) COVID-19 case levels for 10 nations with no or ineffective interventions increased nearly-exponentially then spontaneously stabilized around 100

cases per km2 built area. B) The Republic of South Africa and Armenia exhibit cycling infection dynamics with spontaneous orbits around a setpoint of

approximately 100 cases per km2 built area for 24 months. Data are normalized to built-up area to account for density effects in infection rates.

https://doi.org/10.1371/journal.pone.0281224.g002
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with lockdown declines of less than 2log in most states, albeit the up- and down-slopes during

lockdowns were comparable with European nations. Four states suffered elevated steady-states

approximately one order-of-magnitude higher (103.2–103.5 cases per built-up area per day).

See Fig 4.

The earliest, most stringent and prolonged restrictions were implemented in Australia and

New Zealand. Confirmed case rates were perturbed to extremely low levels and kept at about

0.5log below the lowest rates achieved in Europe for 35 months, until July 2021. Even so, these

strict "Zero COVID" policies were insufficient to completely snuff out community spread. As

limits were relaxed, infections surged exponentially with doubling times and equilibrium states

comparable to elsewhere, even in the milieu of high vaccination coverage. See Fig 5.

Modeling of early COVID-19 infection dynamics

The frequent and robust PCR testing for COVID-19 deployed in nations and regions included

here allow for the mathematical analyses of infectious persons. Results of the modeling and the

parameter values obtained are found in Table 2. The infection dynamics parameter values

were obtained from the exponential slopes directly from the data. Initial infection expansion

rate constants were 0.5-0.7 per week during February-March 2020, with corresponding dou-

bling times of 1.2-1.6 weeks. Social distancing, lockdowns, and other such interventions

resulted in exponential decay of infection rates from the pre-intervention peak values of

Fig 3. COVID-19 positive confirmed cases between February 2020 and September 2021. Data are normalized to built-up area to account for density effects

in infection rates. On this scale the recurring patterns become apparent. The exponential decay during lockdowns and following vaccination is clear, as are the

geometric rebound trajectories. On this scale the recurring patterns in COVID-19 community diffusion kinetics are undoubtedly evident. Shaded areas

indicate the duration of aggressive interventions such as social lockdowns.

https://doi.org/10.1371/journal.pone.0281224.g003
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0.4-0.5 per week with half-life values of 1.7-2.3 weeks. This provides a maximal estimate for

the case recovery rate constant parameter (δ).

Infection rates rebounded with doubling times of 2.6–3.7 weeks (range:0.6–4.4 weeks)

upon lifting of the extreme social distancing measures. These represent a minimal estimate for

r0. This is four-fold less rapid than the initial pre-intervention exponential growth rates.

Finally, after 4–12 weeks infections reached a relatively stable setpoint level with values ranging

among countries ranging between 101.3–103.4 (CI95%: 102.3–102.6) cases per km2 built-up area

per day. Notably, initial pre-intervention infection rates are significantly correlated with steady

state infection levels (PPMCC = 0.41, P = 0.037) alluding to the importance of the intrinsic

infection rate and extent of very early viral expansion in the infective dynamical and endemic

steady state.

Similar patterns were observed for 10 states in the USA and five nations in Asian regions.

Israel implemented a second lockdown intervention during September to November 2020

leading to infections decaying with a half-life of 1.5 weeks and a subsequent rebound with a

doubling time of 2.0 weeks; values which are only 15 and 43% more rapid than those during

the primary lockdown, respectively. Markedly, not only were decay and rebound slopes

among countries of similar magnitude, but they were also similar among infection waves

within countries.

Basic reproductive number (Ro)

The analytical approach here contributes insight on the basic reproductive ratio for the com-

munity spread of SARS-CoV-2. In the literature reporting on COVID-19, and other epidem-

ics, this is approximated from the initial exponential growth phase [18] and, as noted

previously, represents an overestimation because it ignores the β/δ ratio. Here the "natural

experiment" of the efficient impedance of viral community spread during the initial phase of

the SARS-CoV-2 pandemic allows the use of the empirical rebound up-slope (r) and values for

Fig 4. COVID-19 positive confirmed cases in ten US states conforming to inclusion criteria from February 2020 to September 2021. More rural and

less dense populations have lower COVID-19 infection rates, in general. Data are normalized to built-up area to account for density effects in infection

rates.

https://doi.org/10.1371/journal.pone.0281224.g004
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the recovery/removal rate constant (δ). The estimates for the basic reproductive number are

provided in Table 3. Using experimentally established values for δ (0.4–0.5) from the decay

slope during interventions to block viral expansion and ranges for r (0.2–0.3) leads to basic

reproductive numbers ranging between 1.4–2.3, narrowing for a CI95% to 1.6–1.8. From this

perspective, active COVID-19 infected individuals would generate approximately 1.7 new sec-

ondary infections, on average.

Herd immunity and inhibition of infection by vaccination

Herd immunity is a threshold value at which new infections cannot perpetuate within the

community and is derived from the basic reproductive number. Indeed, nearly all countries

which had rapid vaccine rollouts experienced a delayed but rapid exponential decline in case

Fig 5. COVID-19 positive confirmed cases for Australia and New Zealand from February 2020 to September 2021. The strict "Zero COVID" policies

implemented for 35 months kept infection levels at low rates but they rebounded when restrictions were lifted and achieved levels similar to those in Europe.

Shaded areas indicate the duration of aggressive interventions. Data are normalized to the built-up area to account for density effects in infection rates.

https://doi.org/10.1371/journal.pone.0281224.g005
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numbers with efficacies of 44–99% (CI95%: 64–72). These half-life values following the distri-

bution of SARS-CoV-2 vaccinations (CI95%: 1.3–1.7. Table A1 in S1 Appendix) are similar to

those during the early NPI and lockdown interventions. The observed percent of the popula-

tion vaccinated concomitant with decay in confirmed cases is between 44–55%, based on the

nations and regions included here (Table 3). Now it is possible to test the previous calculation

of Ro, which should be smaller than the observed values. Indeed, the observed "herd immunity"

was slightly above the values derived mathematically, as expected from Eq (4), thereby sup-

porting our earlier estimates for the basic reproductive number. Finally, these are clearly lower

than reported values for Ro in other studies which seem extremely high.

Delta variant wave rebound

In June 2021, after the large decrease in COVID-19 following national vaccination programs,

COVID-19 cases rebounded spontaneously. The wave was apparently driven by the Delta vari-

ant, which became the dominant variant. This rebound was characterized by doubling times of

1.1–1.3 weeks (Table A1 in S1 Appendix). Infections attained average rates similar to those

observed prior to vaccination deployment. The decay due to vaccinations and this resurgence

both correspond to the trajectories observed in early 2020.

Discussion

Infection doubling times (t2) and half-life (t½) values reveal consistent rates with extremely

small variance and narrow range, longitudinally, among all countries analyzed here (Table 2).

Mean doubling times for infection levels during the initial exponential phase of the pandemic

were 1.0 weeks (CI95%: 0.5–2.0). These were quite robust with a caveat about the rate of deploy-

ment of testing regimes.

Table 2. COVID-19 kinetic characteristics in countries with no effective interventions.

Country Initial growth Time to steady state Steady State

rate t2 weeks logI ± SD

Argentina 0.2 2.8 25 2.2 ± 0.3

Armenia* 0.4 2.0 11 2.2 ± 0.4

Brazil 0.6 1.1 13 2.4 ± 0.2

Chile 0.4 1.6 13 2.4 ± 0.3

Colombia 0.3 2.4 21 2.4 ± 0.3

Costa Rica 0.5 1.3 26 2.4 ± 0.5

Ecuador 1.3 0.5 19 1.9 ± 0.1

El Salvador 0.4 1.7 17 1.8 ± 0.3

India 1.1 0.6 20 3.9 ± 0.5

Iran 0.2 4.1 45 2.3 ± 0.4

Iraq 0.4 1.7 22 2.5 ± 0.2

Mexico 0.8 0.8 17 1.7 ± 0.2

Oman 0.5 1.5 11 2.1 ± 0.4

Pakistan 0.3 2.6 25 2.3 ± 0.4

Peru 0.8 0.8 16 2.5 ± 0.3

S. Africa* 0.4 1.9 16 1.8 ± 0.4

mean 0.5 1.7 20 2.3

CI95% 0.4–0.7 1.2–2.2 15–24 2.0–2.6

*) limit cycle dynamics

https://doi.org/10.1371/journal.pone.0281224.t002
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Table 3. Optimized COVID-19 model parameter values.

Country Initial growth Decay Slope Intervention

efficacy

Rebound

trajectory

Steady state infection

rate

Reproductive

number

Herd

immunity

RMS

Europe rate t2 δ t½ eta r t2 logI ± SD Ro obs exp

wk-1 wks wk-1 wks % wk-1 wks number % %

Australia 0.3 2.3 0.8 1.6 53 0.41 1.7 1.8 ± 0.1 1.2 52 --* 0.17

Austria 0.5 1.4 0.4 1.7 71 0.3 2.6 2.0 ± 0.2 1.6 38 25 0.19

Belgium 0.3 1.8 0.3 2.3 66 0.3 2.3 2.3 ± 0.1 1.8 44 35 0.13

Cyprus 0.2 4.1 0.4 1.9 50* 0.3 2.6 2.2 ± 0.4 1.7 41 40 0.33

Czechia 0.6 1.1 0.5 1.5 60 0.3 2.2 2.9 ± 0.2 1.7 41 33 0.23

Denmark 0.3 2.1 0.2 3.9 69 0.2 4.6 2.0 ± .02 1.9 47 --* 0.21

Estonia 1.3 0.5 0.4 1.8 64 0.2 3.0 2.4 ± 0.2 1.6 38 26 0.19

Finland 1.0 0.7 0.3 2.1 51 0.3 2.7 1.2 ± 0.2 1.8 44 22 0.15

France 0.7 2.0 0.6 1.2 79 0.3 2.5 2.3 ± 0.2 1.5 33 33 0.18

Germany 0.5 1.3 0.4 2.0 57 0.3 2.2 2.4 ± 0.2 1.9 47 28 0.20

Greece 0.4 1.6 0.2 3.0 80 0.2 3.0 1.9 ± 0.2 2.0 50 25 0.26

Hungary 0.9 0.8 0.5 1.5 75 0.4 1.9 2.7 ± 0.3 1.8 44 37 0.26

Iceland 0.7 0.9 0.9 0.7 58 0.4 2.0 1.9 ± 0.3 1.4 29 --* 0.33

Ireland 0.5 1.5 0.4 1.6 76 0.3 2.7 2.0 ± 0.3 1.6 38 --* 0.27

Israel 0.5 1.3 0.7 1.0 70 0.3 2.2 2.6 ± 0.3 1.5 33 37 0.30

Italy 0.5 1.3 0.3 2.7 93 0.3 2.2 2.4 ± 0.3 1.8 44 29 0.17

Luxembourg 0.6 1.2 0.4 1.7 71 0.4 1.9 2.5 ± 0.1 1.9 47 30 0.15

Netherlands 0.6 1.2 0.7 1.0 67 0.3 2.0 2.7 ± 0.1 1.5 33 27 0.20

New Zealand 0.6 1.1 1.5 0.5 50 0.2 3.1 2.0 ± 0.3 1.7 40 --* 0.33

Norway 0.4 1.8 0.4 1.8 56 0.2 3.3 1.3 ± 0.2 1.5 33 22 0.19

Slovenia 0.7 0.9 0.6 1.1 73 0.3 2.6 2.6 ± 0.1 1.4 29 36 0.19

Slovakia 0.8 0.9 1.1 0.6 60 0.4 1.9 2.9 ± 0.2 1.4 29 28 0.20

Spain 0.4 1.7 0.3 2.7 93 0.3 2.0 2.3 ± 0.3 2.3 57 63 0.29

Switzerland 0.4 1.7 0.5 1.4 57 0.3 2.8 2.6 ± 0.3 1.5 33 27 0.18

UK 0.5 1.5 0.2 2.9 72 0.3 2.5 3.3 ± 0.2 2.2 55 22 0.14

England 0.6 1.1 0.3 2.4 74 0.3 2.3 3.5 ± 0.2 2.1 52 22 0.12

Wales 0.4 1.8 0.3 2.3 75 0.4 2.0 3.2 ± 0.2 2.1 52 38 0.14

Scotland 0.8 0.9 0.4 1.6 72 0.2 3.7 2.7 ± 0.3 1.4 29 31 0.17

N. Ireland 1.1 0.6 0.4 2.0 67 0.3 2.4 2.8 ± 0.2 1.8 44 16 0.18

mean 0.6 1.4 0.5 2.0 68 0.3 2.5 2.4 1.7 41 28 0.21

SD 0.3 0.7 0.3 1.1 11 0.1 0.7 0.3 0.3 8 12 0.06

Asia Japan 0.6 1.3 0.5 1.3 80 0.4 1.9 1.3 ± 0.4 1.8 44 46 0.12

Malaysia 0.5 1.5 0.6 1.2 72 0.1 6.5 2.1 ± 0.2 1.2 14 51 0.27

Singapore 0.7 1.0 0.4 1.9 73 0.3 2.2 3.8 ± 0.4 1.8 44 --* 0.27

S. Korea 2.0 0.4 1.0 0.7 46 0.2 3.5 1.4 ± 0.1 1.2 16 --* 0.23

mean 1.0 1.0 0.6 1.3 68 0.3 3.5 2.3 1.6 39 29 0.21

SD 0.7 0.5 0.3 0.5 15 0.1 2.1 0.3 0.4 13 11 0.07

US Connecticut 0.6 1.1 0.3 2.2 56 0.1 6.5 2.7 ± 0.2 1.6 36 34 0.22

Hawaii 0.8 0.9 0.9 0.8 85 0.3 2.5 1.9 ± 0.2 1.9 47 32 0.32

Illinois 0.7 1.1 0.3 2.3 63 0.1 8.8 2.7 ± 0.4 1.4 29 26 0.19

Massachusetts 0.6 1.2 0.3 2.3 69 0.1 6.9 2.8 ± 0.2 1.5 35 35 0.17

Montana 0.7 1.0 1.0 0.7 64 0.4 1.7 1.4 ± 0.4 1.4 31 23 0.29

N. Hampshire 0.7 1.0 0.4 1.7 55 0.3 2.2 2.4 ± 0.2 1.8 50 36 0.15

New Jersey 0.4 1.9 0.3 2.8 68 0.2 4.3 3.5 ± 0.1 1.7 40 35 0.14

New York 0.3 2.3 0.2 2.8 70 0.2 3.3 3.4 ± 0.2 2.0 50 34 0.11

Pennsylvania 0.4 1.6 0.3 4.4 60 0.1 8.0 3.2 ± 0.2 1.8 44 32 0.11

Rhode Island 0.6 1.1 0.2 3.3 69 0.1 6.4 3.4 ± 0.3 1.8 44 34 0.20

(Continued)
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SIR-based models assert that infection is acquired by S in physical contact with I. Here the

full model (Eq 1) includes the viral compartment which we interpret as the amount of virions

being expelled by the infecteds (pI) which infect the susceptibles. However, assuming that V
turns over more rapidly than I, then Eq (1) reduces to Eq (3) (i.e., with p>>c the viral com-

partment dynamic is limited to the slower dynamics of the infectious compartment). This is

the quasi-steady state discussed earlier. Indeed, this is reasonable since COVID-19 generates

large amounts of virus and is believed to be short-lived outside the host [54, 55]. Moreover,

here we have the advantage to explicitly track the infected compartment vis-à-vis the con-

firmed cases positive for SARS-CoV-2, which is not usually possible in in vivo viral dynamics

studies.

Lockdown interventions were extremely effective by inhibiting physical contact and block-

ing the virus from circulating. Countries with no effective social distancing measures rapidly

reached a setpoint equilibrium state. Limiting movement of the population was related to

intervention efficacy. Restrictions to travel of 45–93% decreased infection rates by 10-fold or

more, leading to an exponential decay of>90% in confirmed cases. Importantly, this was

uncorrelated with the minimal infection numbers. More stringent lockdowns do not appear to

confer further inhibition to stop viral diffusion and may signify the existence of an optimum

in interventions to block COVID-19. The mean associated half-life value during lockdown

interventions was 2.0 weeks (CI95%: 1.7–2.4) with no statistically significant difference among

the nations and regions studied here. The epidemiological interpretation of this measure is the

maximal value for the recovery rate of infected individuals.

As distancing policies were lifted, infections rebounded exponentially as viral diffusion over

the social network is no longer perturbed. Intrinsic doubling times can, therefore, be deter-

mined empirically by the up-slope on a semi-log graph. The observed doubling time was con-

sistently 2.5±0.7 weeks in European countries. Asian nations included here had values of 3.5

±2.1 weeks, perhaps owing to their stricter regulations and higher compliance. In the states of

the United States the value was even higher at 5.1±2.6 weeks, perhaps alluding to lower

compliance.

Taken together, we are able provide a maximal estimate for the basic reproductive number

from analysis of the rebound and decay rates in the V-shape dynamics during perturbations

on the system to block infections. Ro is overall quite consistent with a mean value of 1.7 (CI95%:

1-6-1.8), due to the invariance of the model parameters. Spain, Greece, and Britain (i.e.,
England and Wales) were areas of relatively elevated infectivity with values of 2.3, 2.0 and 2.1,

respectively. An important outcome of this calculation is the elucidation of the epidemiological

"herd immunity" threshold and the novel ability to verify it empirically from the vaccination

coverage.

Table 3. (Continued)

Country Initial growth Decay Slope Intervention

efficacy

Rebound

trajectory

Steady state infection

rate

Reproductive

number

Herd

immunity

RMS

mean 0.6 1.3 0.4 2.3 66 0.2 5.1 2.7 1.7 41 32 0.19

SD 0.2 0.5 0.3 1.1 9 0.1 2.6 0.2 0.2 8 4 0.07

mean 0.6 1.2 0.5 2.0 67 0.3 3.2 2.5 1.7 40 0.20

CI95% 0.5–0.7 1.2–

1.6

0.4–0.5 1.7–

2.3

64–71 0.2–0.3 2.6–

3.27

2.3–2.6 1.6–1.8 37–43 0.19–

0.21

*) No rapid decreases in cases observed following vaccination.

**) Data for the fits come from several sources. See Methods section.

https://doi.org/10.1371/journal.pone.0281224.t003
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During emergent pandemics, estimates of the basic reproductive number tend to be overes-

timated. Early COVID-19 studies reported very high values [56, 57]. Our estimates for Ro per-

taining to SARS-CoV-2 vary only slightly during waves of COVID-19, which would make

sense if the dynamical properties of the infection did not appreciably change. Interestingly,

they are comparable to historical influenza pandemics [58] and commensurate with seasonal

influenza outbreaks [59]. Although these estimates are substantially lower than those reported

elsewhere for COVID-19, they agree with other studies [60].

Vaccination deployment against SARS-CoV-2 had a dramatic effect on infection rates.

Confirmed cases decayed exponentially with a mean half-life value with similar rates as during

the interventions of social distancing and lockdowns, after achieving the herd immunity

threshold. For example, Israel with its early and rapid vaccination program experienced a half-

life of 1.0 weeks in confirmed cases once 45% of the population was immunized. This agrees

with the prediction given by the approximations for R0 based on Eq (3).

Following the achievement of herd immunity, after approximately 30 weeks, infections

spontaneously rebounded again as the delta-variant emerged. The observed escape trajectory

was empirically equivalent to the rebound trajectories following the interventions and with

doubling times approximately every 1.2±0.3 weeks, similar to the post-intervention rebound

doubling times. Interestingly, the Delta variant emerged in every nation included here within

4 weeks, surprising due to the low volume of international travel. Finally, infection rates

returned to similar levels as the pre-vaccination setpoint and invariant among the sampled

countries.

Although infection rates tended to initially increase exponentially when numbers were low,

they quickly saturated to a level of 102−103 confirmed cases per km2 built-up area per day.

This was reached in nearly all nations and regions within 4–6 weeks, even in absence of inter-

ventions. Even New Zealand and Australia with strict and highly effective lockdowns rapidly

reached this level of infections with the lifting of social distancing measures. Such observations,

seen everywhere, suggest a basic, perhaps fundamental, shared epidemiological dynamic and

the importance of population density for the spread of SARS-CoV-2 [42, 61, 62].

As we have shown, waves of both infection and suppression can define COVID-19. Our

concluding perspective views the infection data decomposed into their wavelet phases and

modeled with the generalized multi-logistic model [63]. This approach allows derivation of the

saturation level of cases as well as the "characteristic time" (F044t) denoting how long the infec-

tion takes to increase from 10% to 90% of its extent. While data for many nations and regions

resolve neatly into a succession of waves, Israel is unusual in having excellent data for seven

waves of infection (so far), as well as companion data about societal responses and suppression

for the first five waves. Fig 6 shows the first five infection waves and their durations ranging

from 4.4 to 10.6 weeks. The sequence of waves suggests the extremely dynamic interaction of

COVID-19, generating new variants, with the social and medical context, including lock-

downs, distancing, and vaccines. Predicting new waves remains an unsolved challenge.

To conclude, the dynamical properties of COVID-19 epidemiology are conserved with con-

sistent kinetic patterns with little variation during multiple waves of infection and globally

among nations and subnational regions. Nations and regions which implemented interven-

tions sufficient to block community spread effectively experienced a rapid decline in con-

firmed cases. However, with lifting of interventions, rates rebounded to the previous high

infection rates and attained a relatively stable empirical steady state. For COVID-19, societies

so far appear to face a choice between relatively high oscillations involving waves of suppres-

sion and infection and lesser oscillations around an endemic setpoint. The approach presented

here, based on the viral dynamics paradigm, allows derivation of fundamental measures vital

to policy such as the basic reproductive number and the magnitude of intervention efficacies.
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Values for Ro derived here of 1.6–1.8 are maximal estimates and lower than other reports.

Information on variables of interest for policy normally difficult to obtain is available through

this approach and may suggest monitoring strategies efficient for accurate determination of

the dynamical properties of future pandemics.
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