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Abstract

Previous general super-resolution methods do not perform well in restoring the details struc-
ture information of face images. Prior and attribute-based face super-resolution methods
have improved performance with extra trained results. However, they need an additional
network and extra training data are challenging to obtain. To address these issues, we pro-
pose a Multi-phase Attention Network (MPAN). Specifically, our proposed MPAN builds on
integrated residual attention groups (IRAG) and a concatenated attention module (CAM).
The IRAG consists of residual channel attention blocks (RCAB) and an integrated attention
module (IAM). Meanwhile, we use IRAG to bootstrap the face structures. We utilize the
CAM to concentrate on informative layers, hence improving the network’s ability to recon-
struct facial texture features. We use the 1AM to focus on important positions and channels,
which makes the network more effective at restoring key face structures like eyes and
mouths. The above two attention modules form the multi-phase attention mechanism.
Extensive experiments show that our MPAN has a significant competitive advantage over
other state-of-the-art networks on various scale factors using various metrics, including
PSNR and SSIM. Overall, our proposed Multi-phase Attention mechanism significantly
improves the network for recovering face HR images without using additional information.

Introduction

Face super-resolution, a crucial component of the image super-resolution method, is the pro-
cedure that recovers the high-resolution face image from the input low-resolution face image.
Since face super-resolution is a vital image restoration task and is broadly used in many situa-
tions, such as faces in surveillance videos and identity recognition, increasing attention and
research focus on face super-resolution.

Recently, general super-resolution methods, including basic CNN-based methods, GAN-
based methods and so on, have progressed rapidly. For example, Li Z et al. proposed a feed-
back method SRFBN [1], which utilizes the recurrent neural network (RNN) to form the feed-
back mechanism in recovering the HR face images. Zhang M et al. proposed a pixel-wised
GAN named SPGAN [2], which uses a discriminative matrix and a supervised pixel-wise
adversarial loss to restore realistic face images. However, these general super-resolution meth-
ods have difficulty in recovering key face structures such as eyes and mouths. These structures
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only make up a small part of the face, but they require more attention for the network to
recover. And they are often more challenging to recover than other parts because they contain
large pixel changes.

On the other hand, previous face super-resolution research mainly focuses on using addi-
tional information such as the prior and attribute information [3, 4] to reconstruct the high-
resolution image. For example, Ma C et al. proposed the recursive cooperation method DIC
[3], which utilizes the prior knowledge of landmark estimation to recover the face image, and
uses a new attentive fusion module to improve the effect of landmark maps. Yu X et al. pro-
poses an attribute-embedded method EFSRSA [4], which incorporates the facial attribute vec-
tors into the autoencoder and utilizes the deconvolutional layers to upsample the feature
maps. However, two main drawbacks exist: (1) More effort and computing resources are
needed to obtain the additional information; (2) Effective additional information is challeng-
ing to get from the low-resolution image.

Moreover, if the face image is separated into many small parts and each part is regarded as
an individual sample, we need to balance the interrelationship between parts that include key
face structures and other parts which do not include key face structures, and retain the infor-
mative features. We also need to extract features from layers of different depths to recover face
texture details. This suggests we need to propose a new network to solve these problems men-
tioned above.

Therefore, this paper introduces a Multi-phase Attention Network (MPAN), which con-
structs by stacking integrated residual attention groups (IRAG) for face super-resolution. The
IRAG is composed of residual channel attention blocks (RCAB) [5] and an Integrated Atten-
tion Module (IAM). Each IRAG’s IAM comprises a channel attention module and a spatial
attention module. The channel attention module allocates different channel weights to extract
critical information. The spatial attention module assigns a distinct weight to each position of
the feature map. The IAM makes the network place a greater emphasis on important compo-
nents such as the eyes and mouths. Our MPAN also applies the concatenated attention module
(CAM) to weight feature layers of different depths. The concatenated attention module makes
the network focus more on the informative layer, not the deeper layer of the network, leading
the network more efficient in recovering face textures details. For this paper, the main contri-
butions are as follows:

1. We propose a multi-phase attention network (MPAN) without relying on prior or attribute
information. And our MPAN has an advantage over other face super-resolution methods
in recovering face HR images. Also, it achieves better performance than other networks on
various scale factors with metrics including PSNR and SSIM [6, 7].

2. We propose a novel IRAG structure, which is the basic block of the network to construct
the deep network. And the IRAG structure bootstraps the face structures, for example, face
outline.

3. By stacking IRAG in the MPAN, the IAM in different IRAG makes the network focus more
on key face structures such as eyes and mouths.

4. The proposed CAM makes the network more efficient in recovering face texture details and
greatly improves the representation of our MPAN.

5. The proposed IAM and CAM form the multi-phase attention to reallocate features among
channels, positions, and layers. Extensive experiments show the great advantage of our
MPAN.
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Related work
Face super-resolution methods

There are five categories of face super-resolution methods [8]. General face super-resolution
methods concentrate on effective networks with various advanced structures such as residual
block [9-11] and attention mechanisms [12] to enhance the effectiveness. General face super-
resolution methods can be further subdivided into four distinct groups: basic CNN-based
methods, GAN-based methods, reinforcement learning-based methods, and ensemble learn-
ing-based methods. Prior-based face super-resolution methods first extract the prior facial
information such as facial heatmaps [13], facial landmarks [14], and facial parsing maps. Then
utilize them to reconstruct a clearer facial structure. Identity-preserving face super-resolution
methods take full advantage of the identity information of face images to maintain identity
consistency. Attribute-constrained face super-resolution fully exploits the facial semantic
knowledge, for example, the description by the witness. Reference face super-resolution meth-
ods utilize several high-resolution face images of the low-resolution face image. These high-
resolution images may be used to restore facial photographs by providing identification infor-
mation. But sometimes, it is tough to find the available reference image.

In recent decades, various face super-resolution methods have been presented. The pioneer
CNN-based method for super-resolution was EDSR [15] which can also be applied in the face
super-resolution. EDSR removes an unnecessary batch normalization module from the resid-
ual blocks to improve performance. Based on the EDSR, Haris M et al. first proposed the
DBPN [16] which uses the deep back-projection to enhance the interdependence between low
and high-layer image features. Zhang Y et al. first introduced the RDN [17] which uses dense
connections to learn more effective features from the previous parts. The previously men-
tioned three methods mainly focus on residual blocks and skip connections. Attention mecha-
nisms are also applied in face super-resolution. Chen Y et al. proposed a face image super-
resolution method [18], which applies the channel attention mechanism on feature maps. This
method extracts features from LR images, reallocates channel features, and recovers HR
images at various scales. The latest proposed methods restore the high SR from the low SR
image base on extra facial information such as facial landmarks, facial heatmap, and facial
parsing maps. Chen C et al. proposed a progressive semantic-aware style transformation
method PSFR-GAN [19], which takes advantage of the parsing maps and pixel space features
from LR face images. This method also has a semantic aware loss function that computes the
semantic region loss to recover the face key structures better. However, the mentioned meth-
ods either lead to the loss of key face structure details in intermediate feature layers [20]
because of the very deep depth or generate some artifacts or unreal details. We propose a
multi-phase attention network that contains the concatenated attention module and the inte-
grated attention module to reallocate the features across layers, channels, and positions.

Attention network

Various networks that use attention mechanisms are introduced to solve the vision tasks. The
key point of the attention mechanism is to utilize the attention map to reweight features in the
network [21]. Hu J et al. first proposed a squeeze and excitation network (SENet) [22], which
introduced attention mechanisms and modularity first compared to other networks. Wang Q
et al. proposed a Efficient Channel Attention for Deep Convolutional Neural Networks (ECA--
Net) [23], which uses the convolution operation to generate the channel attention map. Woo S
et al. proposed a convolutional block attention module (CBAM) [24], which uses spatial atten-
tion and channel attention in sequence. Park J et al. proposed a Bottleneck Attention Module
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(BAM) [25], which consists of spatial attention and channel attention and places them in two
separate paths. Mugeet A et al. proposed a Multi-Attentive Feature Fusion Super-Resolution
Network (MAFFSRN) [26], which constructs by stacking muti-attention blocks. The multi-
attention block integrates and enhances channel and spatial attention. Zhang Y et al. proposed
the residual channel attention network (RCAN) [5], which applies not only residual structure
with long skip connections but also channel attention to allocate weight to different channels.
Dai T et al. proposed a second-order attention network (SAN) [27], which combines long-dis-
tance interdependences with the entire network structure information and obtains remarkable
performance. Wang C et al. proposed a two-step face super-resolution network (FishSRNet)
[28], which utilizes face prior knowledge. And the FishSRNet uses multi-scale channel mecha-
nisms and spatial attention mechanisms. Zhao H et al. proposed a lightweight and effective
network (PAN) [29], which is composed of a novel pixel attention mechanism. Pixel attention
works the same way as channel attention and spatial attention. But it applies the 3D attention
maps and has fewer parameters. However, these previously mentioned algorithms only focus
on the channel and spatial interdependences and neglect the correlations between layers of dif-
ferent depths. As a result, we propose the multi-phase attention network to fully utilize the fea-
ture interrelations between hierarchical layers.

MPAN for face super-resolution
Ethics statement

The individuals pictured in Figs 1, 5-9 have provided written informed consent (as outlined in
PLOS consent form) to publish their image alongside the manuscript.

Network architecture

As illustrated in Fig 1, our proposed MPAN is primarily composed of four major components:
shallow feature extraction, attention in residual (AIR), concatenated attention module (CAM)
and the final reconstruction part.

Shallow feature extraction. We refer to I and Igp as the input and output of MPAN. As
investigated in [15, 30], we extract the shallow feature F, from the LR input using a
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Fig 1. The network architecture of our MPAN.
https://doi.org/10.1371/journal.pone.0280986.9001
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convolutional layer:
Fy = Hy(I), (1)

Where the Hgg represents the convolution operation. Then the F is utilized as the input of
the backbone attention in residual (AIR).

Attention in residual (AIR). The details of our AIR structure are shown in Fig 1. The
AIR structure consists of G integrated residual attention groups (IRAG) and G skip connec-
tions (SC). Every IRAG further consists of B residual channel attention blocks (RCAB) [5] and
an Integrated Attention Module (IAM). Simply stacking many IRAGs may lead to bad perfor-
mance. So the skip connections (SC) are used to stabilize the training of the deep network
[31]. The function of the first IRAG in the AIR structure can be represented as:

F, :H](FO) (2)

And the other IRAG in the AIR structure can be represented as:

F,=H(F_, +F,), i=23, ...,G, (3)
F; denotes the i-th IRAG’s output. G is the number of IRAG. And H; is the function of the i-
th IRAG. So the output of AIR structure is formulated as:

Fpp = WCF(FG+FO) (4)

Fg is the output of the last IRAG. And Fpris the output of the AIR structure. The Wris
the weight assigned to the Conv layer at the AIR’s tail.

Concatenated attention module (CAM). Previous AIR structure extracts the hierarchical
features F;. To model the feature correlations between layers, we further propose a
concatenated attention module (See Section3.2 in detail) that weights the different layers of
depths.

The proposed concatenated attention fully utilizes features from all previous layers and is
formulated as:

F,=H.(F,,F, ...,F,....F;), i=1,2,....G, (5)
where Hc, denotes the CAM. The CAM scales the fused intermediate features F; which are
generated by output features of IRAG. Consequently, high-contribution feature layers in CAM
are enhanced, while redundant feature layers are suppressed.

Image reconstruction. After processing features in the previous structure, we perform an
element-wise summation to combine output features. To convert the scale sampling, we next
apply the sub-pixel convolution, which acts as the upsampling module. The sub-pixel convolu-
tion utilizes an array of upscaling filters to convert LR feature maps to HR output, reducing
the upscale operation’s computational complexity. Then the upscaled features are then per-
formed a convolution operation. The whole process can be represented as:

I = HREC(FU +FL+FDF)? (6)

Where the Hypc represents the reconstruction operation which includes the sub-pixel con-
volution and the convolution operation. The inputs of the Hrgc are Fy + F; + Fpp. The Igg is
the operated SR output.
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Concatenated attention module

Although dense skip connections are used to learn more effective features from shallow layers
and stabilize the training of the deep network [10], the interdependences between layers are
not fully utilized. Thus, we propose a novel CAM that learns the interrelationship of layer fea-
tures of various depths to enhance the performance of network representation. Specifically, the
CAM forms feature maps of feature groups into two vector matrices and constructs interde-
pendencies between different feature layers. The CAM allocates distinctive attention weight to
the layer features, improving the feature representation capability.

Fig 2 depicts the structure of the CAM. The input consists of discrete feature groups taken
from G integrated residual attention groups(IRAG). Then we do the concatenation operation.
The dimension of the concatenation output is G x H x W x C. Then, we restructure the feature
groups into two 2D matrices using convolution. One matrix’s dimensions is G x HWC. The
other is HWC x G. Also, we do the matrix multiplication to the previous two matrices to calcu-
late the interdependencies of different feature layers

W, = (p(O(FG)i : (()(FG))jT), ij=1,2,...,G, (7)

Where ¢(-) and 6(-) represent the softmax and reshape operation. i denotes the i-th row of
reshaped feature groups matrix. j denotes the j-th column of reshaped transpose feature groups
matrix. w;; denotes the corresponding coefficients between i-th and j-th extracted feature lay-
ers. Next, we multiply the calculated coefficient matrix with the first reshaped feature groups
matrix using matrix multiplication:

F, = wiFGy, i,j=1,2,...,G, (8)

k=1

Where FGy; denotes the k-th row j-th column element of the feature groups matrix. Fj;
denotes the i-th row j-th column element of output of the matrix multiplication. At last, we
reshape the output of the matrix multiplication and add the input feature groups. Overall, the
proposed CAM structure makes the network concentrate on more informative and intermedi-
ate layer features.

GxHxWxC Sigmoid HxWxGC
GXHWC

Function

Matrix
Multiplication

GxG

# ol

CONV

| |

Concatenation
|

HWCXG

CONV res

Coefficients Matrix

Feature Groups Feature Groups

Fig 2. The structure of the proposed concatenated attention module.

https://doi.org/10.1371/journal.pone.0280986.g002
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Fig 3. The structure of the proposed integrated attention module.
https://doi.org/10.1371/journal.pone.0280986.9003

Integrated attention module

The existing channel attention networks [22, 23] construct a weight correlation matrix and
allocate different weights to channels, with little consideration of the spatial features. On the
other hand, spatial attention networks [24, 25] neglect the distinctive weights of channels. As a
result, we propose an integrated attention module (IAM) that fuses the channel and spatial
attention modules to increase accuracy.

Every IRAG consists of B residual channel attention blocks (RCAB) [5] and an Integrated
Attention Module (IAM). The input of the first IRAG is Fy. And the output features of RCABs
in the first IRAG are Hrcap(Fo). The output of the first IRAG is F;. Here we mainly focus on
the condition i > 2. So the input of the i-th IRAG is F;; + F,. And the output features of
RCABs in the i-th IRAG are Hpcap(Fi1 + Fy). Hrcap represents the function of B residual
channel attention blocks (RCAB). We perform the IAM for the output features of the RCAB,
as shown in Fig 1.

The structure of our proposed IAM is shown in Fig 3. We perform the channel attention
operation to obtain the channel attention weight W,. The dimension of W4 is Cx 1 X 1.
This process contains two fully connected layers and a batch normalization operation which
can be represented as:

Weu = BN(FL(FL(HRCAB(FFI + Fo)))) (9)

Where the FL represents the fully connected layer. And the BN represents the batch nor-
malization operation. We also perform the spatial attention operation to generate the spatial
attention weight Ws,. The dimension of Wi, is 1 x H x W. This process contains two convo-
lutions and two dilated convolutions which can be represented as:

We =W, (Wdconv(wdconv(w (HRCAB(FI‘—I + Fo))))) (10)

conv conv

We replicate the number of the channel attention weight W4 to HW. And rearrange these
channel attention weights to get a new channel attention weight whose dimension is C x H x
W. At the same time, we replicate the number of the spatial attention weight W4 to C. And
stack these spatial attention weights to get a new spatial attention weight whose dimension is C

FUSION [—

WSA € Rl xHxW

Spatial Attention Integrated Attention

N
\/
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x H x W. Then we do the element-wise summation to fuse [32] two new attention weights and
get the Wp,. Moreover, we do element-wise multiplication with the feature maps Hrcap(Fi1 +
F,) and the correlation weights matrix Wy4. At last, we add the feature map Hrcap(F; 1 + Fo)
with the output of the element-wise multiplication to obtain the weighted features:

Fi :HRCAB(FFI +F0)® WIA+HRCAB(F1’71 +FO)’ (11)

Where © denotes the element-wise multiplication. Thus, F; is the weighted operated output
performed by the integrated attention module. Unlike the traditional channel attention and
spatial attention module, our IAM selectively learns the inter-channel and in-channel features
by constructing a channel and spatial adjusted independent weights intercorrelation.

The proposed algorithm of MPAN

The Fig 4 provides the pseudocode of MPAN in a PyTorch-like style. This algorithm includes
three parts: the main part, the CAM function and the IRAG function. The main part provides
the code for one batch data training including forward propagation, loss computing [33] and
back propagation. The CAM function provides the code for concatenation attention construc-
tion and application. The IRAG function provides the code for RCAB modules and integrated
attention construction and application.

Experiments

This section begins by analyzing the contributions of the two proposed attention modules.
Then we compare our MPAN algorithm to the most advanced algorithms using our test data-
set. Results on more images are shown in the additional part.

Settings

Datasets. The FFHQ [34] is a high-quality human faces dataset. It is composed of 7000
high-quality face images that were downloaded in 1024x1024 resolution from the internet and
used for various human face tasks such as human face detection and super-resolution. We cre-
ate our dataset by ourselves. As the training set, choose 22,000 photos of individuals of varying
ages and sexes from the FFHQ dataset. Additionally, choose 2000 images for the testing set.
The face images in the training set and testing set are entirely distinct [35]. We resize the
images to 128x128 with bicubic interpolation operation [36] as the ground-truth HR images.
We transform the restored RGB result into YCbCr space. The final results are assessed on met-
rics such as PSNR and SSIM [37] on the luminance Y channel [38].

Implementation details. We use PyTorch [39] platform to implement the multi-phase
attention network. In our experiment, the patch size is set as 96 x 96. Our network is trained
with ADAM [40] optimizer. The batch size [41] is 16. The initial learning rate [42] is set as
107* and the learning rate decay factor is 0.5 after each of 2 * 10° iterations. We use data aug-
mentation [43] which randomly rotates the training images by 90°, 180°, 270° and horizontal
flipping to avoid overfitting. We apply attention in residual (AIR) as the main part of our net-
work. The number of integrated residual attention group (IRAG) in AIR is G = 10. And there
are B = 20 residual channel attention blocks (RCAB) in each IRAG. The number of epochs is
set as 200. Every result requires two days of training on an Nvidia GTX 3080Ti GPU.

Ablation study regarding the proposed CAM and IAM

The proposed CAM and IAM generate weight correlations matrix on different layers, chan-
nels, and spatial. But we need to know the real effects of our two modules. We conduct
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Algorithm 1: Pseudocode of MPAN in a PyTorch-like style

1 # load train data including LR images and HR images

2 for batch, (Ir, hr, _,) in enumerate(loader_train) do

3 | f=[] #build a list which contains layer features

a | f[0] = feconv(lr) # extract shallow feature

5 | f[1] = IRAG(f[0]) # obtain first layer features

6 # obtain other layer features

7 for i in range(2,G): do

s | | flil= IRAG(f-1), f0)

9 end

10 | fd = conv(f[0],f[G-1])

11 fl = CAM(f) # operate CAM

12 st = lastconv(Upsample(f[0], fl, fd)) # do the reconstruction operation
13 loss = self.loss(sr, hr) # compute the loss
14 loss.backward() # back propagation

15 optimizer.step() # use Adam optimizer to update the parameters
16 end
17 Def CAM(f):

18 fg = cat(f) # do the concatenation operation

19 fg_shape = conv.one(fg) # change dimension to GFHWC

20 fg_shape_two = conv_two(fg) # change dimension to HWC*G

21 # obtain attention weights between layers by matrix mutiplication
22 concate_attention = matmul(fg_shape, fg_shape_two)

23 # obtain weighted feature groups by matrix mutiplication

24 fg_weighted = matmul(concate_attention, fg_shape)

25 # change dimension and do element-wise sum

26 out = add(conv_three(fg-weighted), fg)

27 return out

28 Def IRAG(ff, fi):

29 temp = add(ff, fl)# do element-wise sum

30 temp = RCAB(temp) # operate RCAB module

31 # use two fully connected layers and one batch normalization

32 ch_attention = BatchNorm(linear(linear(temp)))

33 # use two convolutions and two dilated convolutions

34 spa.attention = conv(dconv(dconv(conv(temp))))

35 # fuse two attention weights to get an integrated attention weight
36 int_attention = sigmoid(fusion(ch_attention, spa_attention))

37 # apply the integrated attention weight by element-wise mutiplication
38 mul = multiple(temp, int.attention)

39 # do element-wise sum

40 | out = add(mul,temp)

41 return out

Fig 4. Pseudocode of MPAN in a PyTorch-like style.

https://doi.org/10.1371/journal.pone.0280986.9004

experiments without using CAM and IAM on our face dataset with a scale factor of 4x and

make comparisons.

Table 1 presents the quantitative results. The model with CAM achieves 0.06 dB greater
PSNR performance than the baseline model without the CAM and IAM modules, whereas the
model with IAM simulates 0.16 dB. The model using both CAM and IAM modules performs

Table 1. Ablation study about the proposed CAM and IAM.

baseline with CAM with IAM CAM And IAM
PSNR/SSIM 24.373/0.8381 24.433/0.8382 24.533/0.8383 24.573/0.8386
https://doi.org/10.1371/journal.pone.0280986.t001
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best on PSNR on scale factor X4. Fig 5 represents the vital effectiveness of face structures and
details using both CAM and IAM modules.

Ablation study regarding the number of integrated residual attention
group

In this paper, the integrated residual attention group (IRAG), the main part of the network, is
composed of residual channel attention blocks (RCAB) and the IAM. The IAM integrates
channel attention and spatial attention to promote the network representation ability. We
study the effect of IRAG numbers in MPAN. Specifically, we set the IRAG number equal to
one, three, five, and ten. And the PSNR and SSIM results on scale factors X4 are shown in
Table 2. The evaluation is apparently improved with the increase of IRAG numbers. This abla-
tion study demonstrates the significant impact of IRAG modules. So we choose option ten
IRAG which obtains the best scores as part of our network.

Ablation study regarding the number of residual channel attention block

We conduct an ablation research to determine the optimal number of residual channel atten-
tion blocks (RCAB) to feed to the proposed integrated residual attention group (IRAG) mod-
ule. Specifically, we apply five, ten, fifteen and twenty RCAB in each IRAG module and
evaluate our network on the testing dataset. As indicated in Table 3. we compare our four

HR Bicubic EDSR RDN RCAN SPARNet SAN MPAN

PSNR/SSIM  23.84/0.827 25.84/0.847  26.80/0.862 26.37/0.853 26.51/0.855 26.60/0.857 26.98/0.893

PSNR/SSIM  28.72/0.892  31.39/0.933  31.49/0.931 31.59/0.935 31.77/0.940 31.65/0.938 32.55/0.945

Fig 5. Visual comparison for X3 SR on our face dataset. The best results are bold. Our network achieves superior performance and recovers more face details
than previous networks.

https://doi.org/10.1371/journal.pone.0280986.9005
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Table 2. Ablation study about IRAG numbers.

MPAN(1 IRAG) MPAN(3 IRAG) MPAN(5 IRAG) MPAN(10 IRAG)
PSNR/SSIM 24.430/0.8375 24.461/0.8380 24.543/0.8383 24.573/0.8386

https://doi.org/10.1371/journal.pone.0280986.t002

types of models based on the X4 scale factor. Clearly, when the number of RCAB increases, the
PSNR and SSIM values on test data increase as well. This ablation study illustrates the effective-
ness of RCAB. So option twenty RCAB, which has the best performance, is our choice for the
network.

Comparisons with state-of-the-art methods

We compare our proposed network with state-of-the-art methods, including SR methods like
EDSR [15], RDN [17], RCAN [5], SPARNet [44], and SAN [27]. We utilize the open-source
code of the models above and train them using the same dataset.

Overall results. Quantitative comparisons of X2, X3, and X4 on our face image dataset
are shown in Table 4. In terms of PSNR and SSIM scores, our MPAN performs better than
other state-of-the-art approaches. With two proposed attention modules, our MPAN recovers
face details structure better. It is shown in Fig 6 that most other state-of-art methods are unable
to recover the nose and eyes accurately and suffer from blurring details. But MPAN obtains
shaper results similar to the ground truth HR images.

Detailed comparisons.

a. Attention mechanisms. RCAN, SPARNet, SAN, and MPAN are the methods being com-
pared that involve attention mechanisms. RCAN is designed and widely used for various
SR tasks. It is comprised of a channel attention mechanism that adaptively rescales channel-
wise features by assigning distinct channel weights. Channel attention has been proven to
be effective for conventional SR tasks, but spatial attention is substantially more advanta-
geous when addressing low-resolution face super-resolution issues. This is why the other
three methods, which contain spatial attention mechanisms, perform better than RCAN
shown in Table 4.

b. Compared with RDN. The RDN makes full use of hierarchical features from layers of differ-
ent depths by using the residual dense block which includes dense connections from lower
to higher layers. The RDN does not use any attention mechanism. In contrast, our MPAN
uses not only the layer, channel, and spatial attention mechanisms but also skip connec-
tions. Our MPAN outperforms RDN on evaluation metrics and recovering key face struc-
tures shown in Table 4 and Fig 7, demonstrating the attention mechanism’s superiority.

c. Compared with SPARNet. The SPARNet is composed of stacking Face Attention Units
(FAUs) which consist of the attention branch and the feature branch. The attention branch
utilizes the spatial attention mechanism to focus more on feature-rich face regions. How-
ever, our MPAN integrates the channel and spatial attention mechanism to form the inte-
grated attention mechanism, making the network pay more attention to the key face
structures. Also, our MPAN rescales the features of layers to form concatenate attention

Table 3. Ablation study about RCAB numbers.

MPAN(5 RCAB) MPAN(10 RCAB) MPAN (15 RCAB) MPAN (20 RCAB)
PSNR/SSIM 24.453/0.8377 24.473/0.8380 24.554/0.8384 24.573/0.8386

https://doi.org/10.1371/journal.pone.0280986.t003
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Table 4. Quantitative results with 128x128 output and scale factor of X2, X3 and X4. The top and second-place results are emphasized in bold and underlined,
respectively.

Methods DBPN EDSR RDN RCAN SPARNet SAN MPAN
PSNR X2 28.529 28.800 28.796 28.784 28.805 28.831 28.977
SSIM 0.9265 0.9296 0.9294 0.9292 0.9298 0.9301 0.9318
PSNR X3 24.802 25427 25.174 25.125 25.301 25.314 25.553
SSIM 0.8509 0.8643 0.8592 0.8590 0.8601 0.8618 0.8672
PSNR X4 24.109 24.549 24.482 24.512 24.522 24.411 24.573
SSIM 0.8258 0.8380 0.8371 0.8372 0.8375 0.8329 0.8386

https://doi.org/10.1371/journal.pone.0280986.1004

HR Bicubic EDSR RDN RCAN  SPARNet SAN MPAN
Y R ‘ — § g :

PSNR/SSIM  25.45/0.878  27.63/0.895  27.60/0.896 27.59/0.894 27.62/0.897 27.45/0.891 27.95/0.910

PSNR/SSIM ~ 24.07/0.846  25.97/0897  26.05/0.901 25.90/0.888 25.95/0.885 25.97/0.896 26.27/0.905

Fig 6. Visual comparison for 4X SR on our face dataset. The best results are bold.

https://doi.org/10.1371/journal.pone.0280986.9006

HF | "RDN MPAN

Fig 7. Comparative results of MPAN and RDN for 4X SR.

https://doi.org/10.1371/journal.pone.0280986.9007
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HR SPARNet

Fig 8. Comparative results of MPAN and SPARNet for 2X SR.
https://doi.org/10.1371/journal.pone.0280986.9008

mechanism, allowing the network to reconstruct facial texture information. So our MPAN
performs better than SPARNet shown in Table 4 and Fig 8.

d. Compared with SAN. The SAN uses both the channel and spatial attention mechanism. It
places the spatial attention module at the front and end of the network and places the chan-
nel attention module in every part of the network backbone. Our MPAN also uses layer,
channel, and spatial attention mechanisms. But the specific implementation and usage are
different. Our MPAN places the channel and spatial attention mechanism in each part of
the network. And use the layer attention mechanism to allocate different weights to layers,
which is beneficial to restoring texture details. Thus, our MPAN outperforms SAN on all
upscale factors clearly shown in Table 4. Our MPAN can recover more face details than
SAN shown in Fig 9.

e. Compared with different upscale factors. Our models are trained using X2, X3, and X4
upscale factors. The X2 model was trained from scratch, while the X3 and X4 model were
initialized with the pre-trained X2 model. We compare the SR results of a different upscale
factor in Table 4. MPAN achieves the most significant outcomes for all upscale factors, par-
ticularly the X2 upscale factor. Among all upscale factors, all the models obtain the best
results for the X2 upscale factor and the worst ones for the X4 upscale. So the models can
reconstruct face images better with enough face features.

Conclusions

In this paper, we build the Multi-phase Attention Network (MPAN) for face super-resolution,
which rescales the features among different layers, channels, and positions. Specifically, The
integrated residual attention groups (IRAG) build the basic block of the MPAN. The

T —

HR SAN MPAN

Fig 9. Comparative results of MPAN and SAN for 4X SR.
https://doi.org/10.1371/journal.pone.0280986.9009
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concatenated attention module (CAM) reallocates dependencies among layers of different
depths. The integrated attention module (IAM) incorporates features of channels and posi-
tions. The above two attention modules form the multi-phase attention to further enhance the
performance of recovering face HR images. The extensive experiment demonstrates that our
MPAN performs better than other state-of-the-art methods in terms of PSNR and SSIM, mak-
ing the restored SR face images more realistic to the real HR face images.
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