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Abstract

Despite the rising global burden of stroke and its socio-economic implications, the neuroim-

aging predictors of subsequent cognitive impairment are still poorly understood. We address

this issue by studying the relationship of white matter integrity assessed within ten days

after stroke and patients’ cognitive status one year after the attack. Using diffusion-weighted

imaging, we apply the Tract-Based Spatial Statistics analysis and construct individual struc-

tural connectivity matrices by employing deterministic tractography. We further quantify the

graph-theoretical properties of individual networks. The Tract-Based Spatial Statistic did

identify lower fractional anisotropy as a predictor of cognitive status, although this effect was

mostly attributable to the age-related white matter integrity decline. We further observed the

effect of age propagating into other levels of analysis. Specifically, in the structural connec-

tivity approach we identified pairs of regions significantly correlated with clinical scales,

namely memory, attention, and visuospatial functions. However, none of them persisted

after the age correction. Finally, the graph-theoretical measures appeared to be more robust

towards the effect of age, but still were not sensitive enough to capture a relationship with

clinical scales. In conclusion, the effect of age is a dominant confounder especially in older

cohorts, and unless appropriately addressed, may falsely drive the results of the predictive

modelling.
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Copyright: © 2023 Bučková et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The structural

connectivity matrices are available together with

patients’ cognitive performance on the Open

Science Framework (https://osf.io/rjpt9/). The raw

imaging data were measured in the University

Hospital Motol and are not publicly available due to

restrictions imposed by the administering

institution. Raw anonymized data can be shared

based on a formal data sharing agreement based

on a submission of a project outline, that may—

depending on the nature of the data requested—

require project amendment approval from the local

https://orcid.org/0000-0001-5619-3946
https://orcid.org/0000-0002-3718-5702
https://orcid.org/0000-0003-1402-1470
https://doi.org/10.1371/journal.pone.0280892
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280892&domain=pdf&date_stamp=2023-04-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280892&domain=pdf&date_stamp=2023-04-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280892&domain=pdf&date_stamp=2023-04-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280892&domain=pdf&date_stamp=2023-04-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280892&domain=pdf&date_stamp=2023-04-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280892&domain=pdf&date_stamp=2023-04-14
https://doi.org/10.1371/journal.pone.0280892
https://doi.org/10.1371/journal.pone.0280892
http://creativecommons.org/licenses/by/4.0/
https://osf.io/rjpt9/


Introduction

The global burden of stroke is increasing while the disease maintains the second position as

the leading cause of deaths and disability, rising to 104.2 million prevalent cases worldwide in

2017 [1]. Despite the drop in incidence in developed countries, the number of cases is growing

in low and middle-income states, reinforcing the need to understand the disease and the

recovery process better [2].

Stroke is triggered by insufficient blood perfusion of the brain which significantly affects

patients and usually leads to considerable sensory-motor and cognitive disabilities [3]. The

damage induced by stroke may be direct or indirect—through secondary degeneration.

Sensory-motor impairments following stroke are widely described and include hemibody

weakness, skin breaks, urinary tract or chest infections [4–6]. The treatment of muscle-

restricted mobility usually consists of various forms of rehabilitation [7, 8]. The field has pro-

gressed so far as to construct predictive models to anticipate individual patient motor recovery

potential [9, 10].

Contrarily, cognitive comorbidities of acute stroke, which include aphasia, loss of memory,

orientation, and attention, although widely prevalent, are not as well understood and treated

[11–13]. The current cognitive rehabilitation methods may be thus not optimally targeted [14–

17]. As the treatment of post-stroke comorbidities presents a considerable social and economic

burden [18], it is necessary to deepen our insight into the structural damage within the affected

tissue, primarily the white matter [19]. The loss of white matter integrity is among the most

direct consequences of stroke. Research concerning its impact on cognition has so far brought

inconclusive results.

One of the well-established methods for studying white matter abnormalities is TBSS

applied to Fractional Anisotropy (FA) maps or other white matter integrity metrics, linking

localized decrease in FA to the decline in various cognitive scales [20–24].

Another approach to investigate the white matter integrity is to use a structural connectome

(SC). Connectome describes brain as a topologically complex interconnected network which

balances regional and functional specialisation and integration [25–27]. This results in the

coordination of processes across brain regions at low connection cost. However, it also implies

that any dysfunction will spread through the network easily, possibly initiating pathological

processes [28–30]. SC is determined by the model of white matter fibre pathways that physi-

cally connect predefined brain regions and is derived from the diffusion weighted imaging

data, using methods of fibre tracking. Quantification of the relationships between the respec-

tive units of brain usually leads to the construction of a connectivity matrix which describes

the existence and potentially magnitude of interconnection among all parts of the system and

may be analysed.

Considering the uncertain effect of white matter integrity on cognition, the reports of the

effect of structural disconnection are even more inconclusive. The ambivalence primarily orig-

inates in the differences among the study designs as well as in a wide variety of cognitive scales

used [31, 32]. Moreover, the added potential of structural connectivity information provided

on top of the usual lesion size for outcome prediction was investigated, so far, with contradic-

tory results [33–35].

The analysis of connectivity matrices often employs so-called graph theoretical analysis. In

this framework, the connectivity matrix is understood as an adjacency matrix of the graph

[36]. The vertices of the graph represent anatomically defined parts of the brain, and the edges

are given by the weights of the matrix between individual regions. Graph-theoretical properties

quantifying the topological features of the network are then determined. Usually, they include:
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clustering coefficient, characteristic path length, small-world coefficient, centrality, efficiency,

transitivity, assortativity, or rich club coefficient [37–39].

Using these measures individual connectivity profiles may be derived to investigate healthy

subjects and provide insights into networks damaged by either functional or structural discon-

nection. As stroke presents a violent disruption of the healthy network, clinical as well as

empirical evidence suggests that investigation of the connectome or its parts could provide

new insights into stroke-related comorbidities [40–42].

In summary, the relationship between white matter integrity and possible cognitive

impairment following stroke is complex and has not yet been effectively explained. Numerous

studies approached the topic using either white matter integrity measures such as fractional

anisotropy or, more recently, analysed connectivity networks using structural neural paths

derived from tractography [20, 32, 34]. However, the studies are not directly comparable, as

they vary in design, methods for quantification and inference concerning white matter integ-

rity disruption, cognitive scales used, and the interval between MRI and cognitive scales mea-

surements with respect to the stroke date.

The time aspect is also of particular importance, as each study may reflect a specific stage of

white matter and cognitive recovery. In this work, unlike some previous studies that dealt with

the immediate cognitive consequences of stroke, we focus on investigating the degree to which

it is possible to predict future cognitive status (1 year after stroke) based on the white matter

state measured within two weeks after the stroke. This task might be potentially more challeng-

ing but, on the other hand, more relevant clinically.

We decided to contribute to the integration of the knowledge in this area by using three dif-

ferent methodologies for investigating the integrity of structural brain connectivity, particu-

larly Tract-Based Spatial Statistics (TBSS), the structural connectivity matrix estimated by

tractography, and finally, graph-theoretical analysis thereof. Within each approach, we high-

light specific methodological aspects and discuss their role in the analysis and interpretation of

the results.

Materials and methods

Patients

Patients hospitalised with acute ischemic stroke between October 2015 and March 2017 were

considered for the study. Within the acute phase of stroke (sudden onset language impairment,

unilateral arm, leg, or face weakness), an appropriate treatment was given (intravenous throm-

bolysis or/and mechanical thrombectomy) based on the decision of an on-call stroke

specialist.

Subsequently, the patients were offered to participate in the study, if they fulfilled the fol-

lowing criteria: age above 18 years, positive supratentorial acute ischemic lesion on admission

(confirmed via MRI, in the second week after stroke), and signed informed consent. The

exclusion criteria included a history of epilepsy or acute symptomatic seizure preceding the

current stroke, antiepileptic drug treatment planned for over two weeks after stroke, history of

clinical stroke, and contraindication to gadolinium administration. Furthermore, patients

with other neurological (e.g. Alzheimer´s disease, Parkinson´s disease) or psychiatric comor-

bidities (e.g. bipolar disorder, major depression) possibly affecting congition or brain tissue

integrity, were not included. Finally, approximately one year after the stroke, patients under-

went a set of neuropsychological tests, which were only administered to patients who did not

clinically manifest aphasia.

The final dataset included 46 patients fulfilling all criteria (Fig 1, Table 1). All volunteering

patients gave written informed consent to participate in the study. Written informed consent
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was obtained directly from the included patients where possible. The level of information pro-

vided to patients was matched to their level of understanding as determined by the investiga-

tor. In large hemispheric infarction patients unable to understand or express themselves, the

consent was given by a legally authorised representative (e.g., spouse or legal guardian), or

physician not participating in the study team, in accordance with regional legal practice and

Fig 1. An overview of the analytical process. Initially the data of 66 patients were acquired. The data of 19 patients

were discarded because of the unsuitable quality of the diffusion images or unsuccessful image registration. Moreover,

we identified one severe outlier in neuropsychological performance who was not included in the analysis. Overall, the

data of 46 patients were analysed.

https://doi.org/10.1371/journal.pone.0280892.g001
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regulations. The study was approved by the Ethics committee of University Hospital Motol

(Ref. number: EK-1091/14) and was conducted according to the Declaration of Helsinki ethi-

cal principles.

Cognitive function assessment

Patients’ handedness was assessed during the acute phase using Edinburgh Handedness Inven-

tory. The rest of the neuropsychological scales were assessed on average 395 days after neuro-

imaging. The examination lasted approximately 45–60 minutes. Global cognitive performance

was assessed by Mini-Mental State Examination (MMSE). The results of the neuropsychologi-

cal assessment were converted to z-scores and combined into five cognitive domains by aver-

aging the corresponding z-scores. Z-scores of the tests, in which a higher score indicated lower

performance (TMT, Prague Stroop Test, BNT) were inverted. The five cognitive domains were

as follows: (1) Memory: Free and Cued Selective Reminding Test (Free recall, Total Recall,

Delayed free recall, Delayed total recall) [43]; (2) Executive functions: Trail making test part B,

Phonemic verbal fluency (letters K,P,S), Similarities from the Wechsler Adult Intelligence

Scale-Third Edition, Prague Stroop Test [44, 45]; (3) Attention and working memory: Trail

making test Part A, Digit span forward and backward from the Wechsler Adult Intelligence

Scale-Third Edition [45]; (4) Language: Boston naming test (15-item version), Semantic verbal

fluency (animals) [45]; (5) Visuospatial functions: Visual object and space perception battery

(Number location), and Rey-Osterrieth Complex Figure Test [46, 47]. Detailed description of

the scores is shown in S1 Table.

MRI acquisition

MRI imaging was performed seven to twelve days after the onset of the symptoms using 1.5T

magnetic resonance scanner (Philips Medical Systems). The acquisition protocol consisted of

T1 and T2-weighted anatomical scans, FLAIR contrast, and DWI, with the following parame-

ters: 3D T2 weighted: TR 3200 ms, TE 263 ms, FA 90˚, acquisition matrix 228x227, voxel size

in mm 1.1x1.1x1.1; 3D T1 weighted: TR 25 ms, TE 4.6 ms, FA 30˚, acquisition matrix

220x198, voxel size in mm 1.1x1.1x1.1; DWI: TR 3157 ms, TE 94 ms, flip angle 90˚, acquisition

matrix 92x90, acquisition voxel size in mm 2.43x2.49x2.5, the reconstructed matrix dimension:

128x128 resulting in a reconstructed pixel of 1.75x1.75, no gaps, bipolar gradient sampling

scheme, b = 0 and 800 s/mm2 (one b0 direction and 32 b800 directions).

Table 1. Description of the sample.

Men Women All

Number 24 22 46

Age (years) 66 (9; 50; 88) 66 (11; 40; 86) 66 (10; 40; 88)

Time between measurements (days) 408 (93; 340; 794) 381 (33; 342; 470) 395 (72; 340; 794)

Affected hemisphere (R/L/Both) 10/10/4 12/10/0 22/20/4

Edinburgh Handedness Inventory 400 (-150, 400) 400 (-100, 400) 400 (-150, 400)

Age and time between measurements are described as mean (std; min; max). Edinburgh Handedness Inventory is

described as median (min; max). Time between measurements stands for the number of days between stroke and

cognitive scales measurement.

https://doi.org/10.1371/journal.pone.0280892.t001
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Data processing

The diffusion-weighted imaging data were preprocessed using a combination of FSL software

[48] and MRtrix3 [49]. First, all images were denoised and Gibbs ringing artefacts were

removed using the dwidenoise and mrdegibbs functions, respectively [50–52]. Due to

the lack of multiple b0 values we employed the Synb0-DisCo algorithm [53], to synthesize an

undistorted non-diffusion weighted image used as an anatomical target for distortion correc-

tion. Subsequently, the eddy current correction (eddy) was performed [54] to address geo-

metrical distortions introduced by diffusion acquisition. For the initial analysis, the fractional

anisotropy, mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) maps

were generated using the combination of dwi2tensor and tensor2metric commands,

and the Tract-Based Spatial Statistics (TBBS) was employed to identify the regions of white

matter related to the individual cognition scores [55]. The pipeline non-linearly aligns the frac-

tional anisotropy maps onto a predefined template, and subsequently affine aligns them to a

standard MNI space where the image skeleton is created. We applied a threshold of 0.3 onto

the mean skeleton, restricting the subsequent analysis only to the most dominant and well-

aligned white matter tracts.

The construction of structural connectivity matrices based on deterministic tractography

followed. We chose the Tax recursive calibration algorithm to determine the response function

(dwi2response) and dwi2fod csd algorithm to estimate the fibre orientation distribu-

tions for spherical deconvolution [56, 57]. Deterministic tractography was performed using

the tckgen SD STREAM algorithm with the following parameters: number of streamlines:

10 million; step size: 1; the maximum angle in degrees: 60; minimum length (in mm): 10; max-

imum length (in mm): 300; cutoff for terminating streamline: FA<0.1. [58, 59]. Seeding was

performed homogeneously over white matter voxels. The tractograms were inspected, and a

disproportional amount of 300 mm long tracts was discovered (as it was the maximum allowed

length of the algorithm). To avoid a possible bias caused by these tracts, we decided to discard

them. Finally, we registered the Automatic Anatomical Labeling (AAL) atlas [60] in two-step

procedure: first, the standard MNI brain was registered to the T1 anatomical image using

affine transformation with 12 degrees of freedom (flirt) available in the FSL library. Subse-

quently, the transformation that registered T1 to the b0 image of diffusion data was performed

in the same manner. The individual structural connectivity matrices, contained the absolute

count of streamlines between each pair of regions.

Analysis

In the TBSS part of the analysis, we constructed a general linear model to identify regions of

white matter related to each of the cognitive scales. The statistics were corrected using Thresh-

old-free cluster enhancement (TFCE) [61], and 5% level of significance was considered. We

also considered variables suspected as potential confounds: age and hemisphere affected by

stroke, which we included into the models as covariates.

In an exploratory analysis of the SC matrices, we initially constructed a median SC matrix,

which served as a template defining typical brain structural connectivity. The median was cho-

sen to avoid any bias towards the affected pairs of regions. Based on the template, we selected

5% of the most extensively connected pairs of regions and included them in further analyses

(Fig 2). Thus, these strongest links define a kind of a backbone of the most substantial struc-

tural connections, including the most relevant 198 out of 3960 possible pairs of regions. Apart

from significantly decreasing the amount of connections for which we are going to test, this

approach also avoids superfluous analysis of potential false positive edges that might have

arisen during tractography. We computed the Spearman correlation (R) of selected pairs of
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regions with age, and each of the six cognitive scales controlled for age. The p-values (p)

obtained were corrected using False Discovery Rate (FDR) on the level of individual scales

[62]. For clarity, we report the raw p-values of this analysis throughout, but only for those

pairs of regions, which survived the FDR correction.

Finally, we proceeded with the computation of graph-theoretical measures, which we corre-

lated (using Spearman correlation) with clinical scores. We considered the following measures:

assortativity, average strength, clustering coefficient, efficiency, graph energy, characteristic

path length, rich-club coefficient, and transitivity. For comprehensiveness, we describe these

measures in their binary form. Note that in this work, they have been appropriately adjusted

and used in their weighted alternative [63].

Average strength is the average of all edge weights in the graph. Graph energy is the sum of

the absolute values of the eigenvalues of its adjacency matrix. Assortativity describes a prefer-

ence for graph nodes to attach to other similar nodes. Computationally, it is defined as the

Pearson correlation coefficient of the node degree between pairs of linked nodes [38], i.e.

assessing the connections to nodes similar in terms of connectivity degree or strength.

Clustering coefficient of vertex v is defined as ratio of all triangles (cycles of length three)

around vertex v to all possible triangles around v. The clustering coefficient of the entire graph

is the average over all vertices. It quantifies the tendency of the graph to form clusters and is

closely related to transitivity–the ratio of 3×number of all triangles in the graph to all possible

triangles in the graph.

The characteristic path length of vertex v, is the average of all the shortest path lengths

between the vertex v and the remaining vertices of the graph. Subsequently, the characteristic

path length of the graph is the average of all characteristic path lengths of the vertices of the

graph. Conversely, efficiency is an average of the inverse values of the shortest path lengths

between all vertices in the graph. It measures the efficiency of information exchange between

the vertices.

Fig 2. Median Structural Connectivity (SC) matrix. SC containing the median number of streamlines of 46 patients included in the analysis (left) and

binary matrix with highlighted 5% of the strongest links (right). Each row/column represents an area of the AAL atlas (in the original order).

https://doi.org/10.1371/journal.pone.0280892.g002
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ϕ(k) is defined as the ratio of the present number of links to the maximum possible number

of links between elements with node-degree at least k (in this study, we considered k = 70). In

other words, ϕ(k) is the density of the subgraph induced by vertices of degree greater than k.

Generalisation for weighted graphs is described in detail in [64].

Results

The results of TBSS showed a positive correlation of FA with attention, executive functions,

and memory (Fig 3). However, there was also a significant negative correlation with age. Nota-

bly, after controlling for this variable, no statistically significant relationship was identified

with cognitive scales. In contrast, the position of stroke (in terms of the affected hemisphere)

did not play a significant role in the prediction of cognitive status. We consequently disre-

garded this variable in further analyses. Mostly equivalent results held for the rest of the diffu-

sion metrics. In all cases, we observed widespread negative correlation with executive

functions and attention, none of which survived controlling for widespread positive correla-

tion with age (S1–S3 Figs).

In the structural connectivity approach, a similar behaviour occurred. Specifically, we

observed one pair of regions significantly correlated with memory, two pairs of regions signifi-

cantly correlated with attention, and five pairs of regions correlated with visuospatial functions

(all significant after the FDR correction). However, the age variable was again predictive of SC.

Five pairs of regions showed a significant negative and two pairs significant positive correla-

tion. After controlling for age, we did not observe any link (belonging to the backbone)

between the number of tracts and any of the cognitive scales which would survive the FDR

correction.

In case of graph-theoretical measures, we observed a slightly different behaviour. Relation-

ship between the features and age was less predominant—only clustering coefficient, efficiency

and rich club were significantly correlated (p = 0.0313, p = 0.0157, p = 0.0115 respectively,

Fig 4). Moreover, none of the clinical scales was correlated with the features even before the

age-correction. This suggests that the graph-theoretical measures are less sensitive towards the

effect of age that the previous methods, however, also less sensitive to the (future) cognition

status.

Discussion

We examined associations between the condition of white matter acquired shortly after stroke

and cognitive status measured with one-year delay. The prolonged period between the two

examinations is uncommon in this setup. Thus, rather than reflect an immediate relationship

between brain damage and cognition, the potential findings would reflect a predictive charac-

ter of MRI features on later cognition. In contrast with previous works, we investigated differ-

ent levels of resolution and methodology, namely: TBSS, statistical analysis of SC matrices, and

their graph-theoretical measures. Regardless of the analytical approach, we observed a strong

effect of age, which was driving apparent correlations with the clinical scales. In all cases, corre-

lations with clinical scales did not persevere after controlling for age.

TBSS analysis

The most significant correlate of all WM-derived metrics in the TBSS analysis proved to be

age, which was related to a widespread change of diffusion metrics. Additionally, executive

functions, attention and memory score were significantly correlated with FA, MD, and RD.

Only attention and memory were correlated with AD. However, after controlling for age, the

effect in neither of the cognitive scales (and diffusion metric) was preserved. Indeed, cognitive
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decline is associated with ageing in healthy individuals [65], which suggests the effect of age on

cognition would be relevant also in subjects after stroke. However, the effect of age is not

always discussed or controlled for in quantitative analyses, risking that its effect might be inap-

propriately assigned to other variables of interest [66, 67].

We also considered the effect of lesion laterality which was previously identified as an

independent predictor of cognitive outcome after stroke [68–71]. However, the affected

Fig 3. The results of TBSS for fractional anisotropy (FA). Blue colour scale signifies negative correlation between FA

and the clinical variable, red colour scale stands for positive correlation (either positive or negative correlation is

depicted per clinical scale). A: Negative correlation of FA and age. B: Positive correlation between FA and executive

functions. C: Positive correlation between FA and attention. D: Positive correlation between FA and memory. Note

that the correlations shown in B, C, C, did not persist (as statistically significant) after controlling for age, that was

indeed detected as a significant analysis confound, see A.

https://doi.org/10.1371/journal.pone.0280892.g003
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hemisphere did not play a significant role in the TBSS model and we consequently disregarded

it from further analyses. It is probable that the information about position is already intrinsi-

cally present in the data in form of reduced FA, alternatively, the (almost) binary nature of the

position encoding might not have been precise enough to play a role in the analysis.

Dacosta et al. [21] studied 14 patients with right hemispheric stroke and found a significant

decrease of FA in right brain anatomical areas compared to healthy controls. They demon-

strated a relationship between cognitive functions and FA in several regions in both hemi-

spheres. In another study [23], FA in the thalamus was associated with lower verbal fluency

performance. However, in both cases the sample size was relatively small–17 patients in the lat-

ter study and subgroups as small as 8 or 6 subjects in the former study and, notably, neither

study discussed the effect of age nor reported controlling for it. We did not observe any com-

parable results in the language or executive functions domain, neither in the whole white mat-

ter skeleton analysis, nor in a targeted analysis limiting the region only to the thalamic area as

in the original study [23]. Of note, there is a range of relatively smaller differences between the

studies, such as that time of acquisition, which was three months after stroke in the prior stud-

ies mentioned.

Zamboni et al. [72] studied the effect of acute stroke on early cognitive impairment (mea-

sured one month after the attack) represented by the Montreal Cognitive Assessment Scale

and Mini-Mental State Exam on over 400 patients. In this case, the Montreal Cognitive Assess-

ment Scale was correlated with reduced FA in the anterior tracts after controlling for the Mini-

Mental State Exam.

In a longitudinal study following 117 stroke patients, 25 of which were cognitively

impaired, lower remote white matter integrity was associated with a worse long-term cognitive

performance [20]. This result is specific as it reflects the relationship between cognition and

white matter eleven years after the attack.

The reasons behind the absence of effect in the TBSS part of our study may be multifacto-

rial. As argued above, the inconsistent practice concerning controlling for the effect of age may

play a role in the heterogeneity of the previously reported results, as well as the time of DTI

and cognitive scales assessment. In our case, the scans were taken in the subacute phase–within

the second week after the stroke, whereas the cognitive scales were measured one year after,

Fig 4. The relationship of age and the graph-related measures. Scatter plots of the graph-theoretical measures computed from the structural

connectivity matrices of all subjects. Subjects are visually stratified according to sex (colour) and the lesion location (marker).

https://doi.org/10.1371/journal.pone.0280892.g004
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effectively attempting a more challenging medium-term cognitive outcome prediction rather

than (almost) instantaneous correlation.

Structural connectivity analysis

On a structural connectome level we again detected pairs of regions significantly correlated

with some of the clinical scales (memory, attention, and visuospatial functions), none of which

persisted after controlling for age. We identified five pairs of regions significantly negatively

correlated with age after the FDR correction, in line with the intuitive interpretation of the

reduction of white matter tracts over time.

Additionally, two pairs of regions were identified to positively correlate with age. This

observation is to a degree counterintuitive. However, such increases in strength of shorter

tracts might be a technical consequence of an overall white matter deterioration with age. In

particular, such deterioration might complicate correct tracing of longer tracts—thus dispro-

portionately increasing the number of short tracts (when working with a fixed amount of

tracts). Indeed the two pairs of tracts positively correlated with age in our dataset were on aver-

age shorter than those negatively correlated with age.

In related works which investigated SC in relationship to clinical outcome such as aphasia,

Yourganov et al. [32] constructed connectomes of 90 stroke patients scanned at least six, but

on average, 42 months after the attack. The results highlighted the area of temporoparietal

junction and its connectivity as essential for language tasks, which was later supported by fur-

ther analyses [73]. Apparently contradictory are the results from an extensive study that used

the methodology of Yourganov et al. and acquired data of 818 patients suffering from aphasia

approximately 58 months after a stroke [34]. The purpose of the study was to assess the added

value of the structural disconnection information on top of the lesion load features to predict

language score. No additional effect of the structural information was observed. Nevertheless,

the study did not directly use the DTI data to evaluate the structural connectivity but rather

imposed the disconnection defined by the lesion location on healthy subjects tractography.

This approach might thus disregard the remote structural changes caused by a stroke that

would affect language performance.

None of the cognitive scales was significantly related to the structural connectivity in this

framework. The reason behind the absence of a relationship may be tied to a common natural

issue with such observational studies, that is, missing information on the exact cognitive scores

before stroke. Without the reference of the patient’s cognitive performance before the stroke,

the specific individual impact of stroke with respect to premorbid cognition can not be exactly

inferred—this is a common problem for studies of stroke effects, or other unexpected clinical

events. Moreover, the potential presence of small vessel disease or other related conditions

[74] could affect both the white matter and cognnitive variables, leading to both spurious posi-

tive and false negative results depending on the specific effects.

Finally, in order to more directly connect and compare the results of the TBSS with our

findings in structural connectivity, we extracted mean diffusion metrics along the backbone

tracts in all patients and performed the same analysis (Spearman correlation with the FDR cor-

rection). Our findings further supported the results of TBSS in terms of finding multiple signif-

icant correlations with age across backbone tracts whereas finding no correlation with other

cognitive scales after controlling for age (S4 Fig). Overall, the effect of age on diffusion and the

metrics derived thereof is a widely discussed topic, however, it is still not fully understood.

There is sufficient evidence that the diffusion metrics are sensitive to age [75], however, this

effect is not necessarily homogeneous across the brain, but spatially varies [76–78]. Conse-

quently, the sensitivity of the DTI-derived measures to age varies as well. In our study AD,
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MD, and RD appeared to be more sensitive towards the effect of age than FA (in terms of num-

ber of connections significantly correlated with age). This is consistent with the results of

TBSS, where the effect of age was more widespread for other measures than for the FA.

Graph-theoretical measures analysis

In the final part of our analysis, the features represented by the graph-theoretical measures

were less sensitive towards the effect of age than in the previous approaches. Despite the high

degree of intercorrelation between the features, only clustering coefficient, efficiency and rich

club coefficient were significantly correlated with age. Additionally, no relationship between

the features and clinical scales was found. There have been studies using other graph connec-

tivity measures to study the effects of stroke [79–81]. Among the reported findings were the

correlation of The National Institute of Health Stroke Scale with betweenness centrality of the

right pallidum and the clustering coefficient of the left superior occipital gyrus, and a positive

correlation between the nodal betweenness centrality of the posterior cingulate gyrus and

immediate recall [80, 81]. Upon replicating the measures, we did not observe any of the effects

above, which, again, may be a consequence of the discrepancies in the designs and cognitive

scales used. Notably, compared to the earlier discussed TBSS findings that we have not been

able to confirm, these two studies included explicit control for age (as a key potential con-

found), and had a higher sample size (N = 46 and N = 15). Apart from some relatively minor

technical differences and the ever-present chance of a false positive/negative result, the poten-

tial key factor behind the lack of replication of the observation of cognitive correlates of local

graph theoretical measures reported by [80] is the temporal difference between the MRI and

cognitive assessment–our study attempted one-year prediction, while the previous study

apparently works with almost concurrent measurements.

Limitations

As was pointed out in the earlier parts of the article, the main impediment of our analysis is

the lack of premorbid cognition scores for our participants, which affects our ability to

unequivocally assign any observed relationship of white matter and cognition score to stroke

only. Unfortunately this is the limitation of all studies discussing this topic and may only be

solved by designing prospective trial focused on individuals at risk of stroke. More tangible

limitation of this work is in the heterogeneity of the lesion location in participants. The inclu-

sion criteria did not specify the position of stroke. Consequently, it is possible that were the

lesions locations more consistent across the dataset, more specific conclusions might have

been drown. However, to maximize the size of the data, we did not conduct more position-

specific analysis. Finally, as the diffusion acquisition protocol was optimized for widespread

use in the hospital setup, we were limited by the methods which might be applicable to our

data. In our case, we consciously used more conservative methods of fibre tracking and limited

the analysis to mostly adjacent pairs of regions and employed rigorous methods of statistical

testing to minimize the possibility of obtaining false positive results.

Conclusion

In this work, we focused on linking the white matter integrity in patients with stroke with the

prediction of cognitive status one year after the insult. Using a standard TBSS analysis, we

showed that cognitive correlates of white matter fractional anisotropy in patients with stroke

can be attributed to the general effect of interindividual age differences—an effect that has not

been considered in some previous studies. Indeed, we were not able to reproduce some of the

earlier TBSS findings from such analysis of smaller datasets; although this could be also
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ascribed to the more challenging forecasting, rather than nowcasting nature of our statistical

prediction task. Our subsequent analyses of structural connectivity matrices and graph-theo-

retical measures further supported our observation of the effect of age driving the correlations

with clinical scales. However, the direct interpretability of the structural network predictors of

cognitive outcome of stroke is not straightforward and asks for further investigation.

Supporting information

S1 Table. Results of clinical tests across 46 patients.

(PDF)

S1 Fig. The results of TBSS for axial diffusivity (AD). Blue colour scale signifies negative cor-

relation between AD and the clinical variable, red colour colour scale stands for positive corre-

lation. Either positive or negative correlation is depicted per clinical scale). We observed: Age:

Widespread positive correlation of AD and age. Attention: Global negative correlation

between AD and attention. Negative correlation between AD and executive functions. Mem-

ory: Scattered negative correlation between AD and memory. Localized negative correlation

between AD and language. Note that the correlations with clinical scales did not persist (as sta-

tistically significant) after controlling for age.

(TIF)

S2 Fig. The results of TBSS for mean diffusivity (MD). Blue colour scale signifies negative

correlation between MD and the clinical variable, red colour colour scale stands for positive

correlation. Either positive or negative correlation is depicted per clinical scale). We observed:

Age: Widespread positive correlation of MD and age. Attention: Global negative correlation

between MD and attention. Executive functions: Negative correlation between MD and Exec-

utive functions. Scattered negative correlation between MD and language. Memory: Localised

negative correlation between MD and memory. Scattered negative correlation between MD

and language. Note that the correlations with clinical scales did not persist (as statistically sig-

nificant) after controlling for age.

(TIF)

S3 Fig. The results of TBSS for radial diffusivity (RD). Blue colour scale signifies negative

correlation between RD and the clinical variable, red colour colour scale stands for positive

correlation. Either positive or negative correlation is depicted per clinical scale). We observed:

Age: Widespread positive correlation of RD and age. Attention: Negative correlation between

RD and attention predominantly in the left hemisphere. Executive functions: Scattered nega-

tive correlation between RD and executive functions. Scattered negative correlation between

RD and Language. Visuospatial functions: Localized negative correlation between RD and

visuospatial functions. Memory: Localised negative correlation between RD and memory.

Note that the correlations with clinical scales did not persist (as statistically significant) after

controlling for age.

(TIF)

S4 Fig. Correlation of fractional anisotropy mean diffusivity, axial, and radial diffusivity

with age along the backbone tracts. We extracted tracts between each pair of regions along

the backbone and computed average FA and MD. The figures depict the FDR-corrected p-val-

ues of Spearman correlations of these values with age. The colour indicates, whether the corre-

lation is positive or negative. Note that no pair of regions was significantly correlated with any

diffusivity metrics after controlling for age.

(TIF)
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of early cognitive impairment detected by the montreal cognitive assessment after transient ischemic

attack and minor stroke. Stroke. 2017; 48(6):1539–1547. https://doi.org/10.1161/STROKEAHA.116.

016044 PMID: 28487328

73. Del Gaizo J, Fridriksson J, Yourganov G, Hillis AE, Hickok G, Misic B, et al. Mapping language networks

using the structural and dynamic brain connectomes. Eneuro. 2017; 4(5). https://doi.org/10.1523/

ENEURO.0204-17.2017

74. van der Flier Wiesje M, van Straaten Elizabeth C W, Frederik Barkhof, Ana Verdelho, Sofia Madureira,

Leonardo Pantoni, et al. Small Vessel Disease and General Cognitive Function in Nondisabled Elderly.

Stroke. 2005; 36(10):2116–2120. https://doi.org/10.1161/01.STR.0000179092.59909.42

75. Beaudet G, Tsuchida A, Petit L, Tzourio C, Caspers S, Schreiber J, et al. Age-Related Changes of Peak

Width Skeletonized Mean Diffusivity (PSMD) Across the Adult Lifespan: A Multi-Cohort Study Frontiers

in Psychiatry. 2020; 342. https://doi.org/10.3389/fpsyt.2020.00342 PMID: 32425831

76. Behler A, Kassubek J, Muller H. Age-related alterations in DTI metrics in the human brain—conse-

quences for age correction Frontiers in aging neuroscience. 2021; 300. https://doi.org/10.3389/fnagi.

2021.682109 PMID: 34211389

77. Faizy T, Thaler C, Broocks G, Flottmann F, Leischner H, Kniep H, et al. The Myelin Water Fraction

Serves as a Marker for Age-Related Myelin Alterations in the Cerebral White Matter—A Multiparametric

MRI Aging Study Frontiers in Neuroscience. 2022; 14. https://doi.org/10.3389/fnins.2020.00136

78. Molloy C, Nugent S, Bokde A, Alterations in Diffusion Measures of White Matter Integrity Associated

with Healthy Aging. The Journals of Gerontology: Series A. 2021; 76(6):945–954. https://doi.org/10.

1093/gerona/glz289 PMID: 31830253

79. Pustina D, Coslett HB, Ungar L, Faseyitan OK, Medaglia JD, Avants B, et al. Enhanced estimations of

post-stroke aphasia severity using stacked multimodal predictions. Human Brain Mapping. 2017; 38

(11):5603–5615. https://doi.org/10.1002/hbm.23752 PMID: 28782862

80. Shi L, Wang D, Chu WC, Liu S, Xiong Y, Wang Y, et al. Abnormal organization of white matter network

in patients with no dementia after ischemic stroke. PloS one. 2013; 8(12):e81388. https://doi.org/10.

1371/journal.pone.0081388 PMID: 24349063

81. Zhang J, Zhang Y, Wang L, Sang L, Yang J, Yan R, et al. Disrupted structural and functional connectiv-

ity networks in ischemic stroke patients. Neuroscience. 2017; 364:212–225. https://doi.org/10.1016/j.

neuroscience.2017.09.009 PMID: 28918259

PLOS ONE Structural connectivity-based predictors of cognitive impairment in stroke patients attributable to aging

PLOS ONE | https://doi.org/10.1371/journal.pone.0280892 April 14, 2023 18 / 18

https://doi.org/10.1159/000289344
http://www.ncbi.nlm.nih.gov/pubmed/20203483
https://doi.org/10.1161/STROKEAHA.116.016044
https://doi.org/10.1161/STROKEAHA.116.016044
http://www.ncbi.nlm.nih.gov/pubmed/28487328
https://doi.org/10.1523/ENEURO.0204-17.2017
https://doi.org/10.1523/ENEURO.0204-17.2017
https://doi.org/10.1161/01.STR.0000179092.59909.42
https://doi.org/10.3389/fpsyt.2020.00342
http://www.ncbi.nlm.nih.gov/pubmed/32425831
https://doi.org/10.3389/fnagi.2021.682109
https://doi.org/10.3389/fnagi.2021.682109
http://www.ncbi.nlm.nih.gov/pubmed/34211389
https://doi.org/10.3389/fnins.2020.00136
https://doi.org/10.1093/gerona/glz289
https://doi.org/10.1093/gerona/glz289
http://www.ncbi.nlm.nih.gov/pubmed/31830253
https://doi.org/10.1002/hbm.23752
http://www.ncbi.nlm.nih.gov/pubmed/28782862
https://doi.org/10.1371/journal.pone.0081388
https://doi.org/10.1371/journal.pone.0081388
http://www.ncbi.nlm.nih.gov/pubmed/24349063
https://doi.org/10.1016/j.neuroscience.2017.09.009
https://doi.org/10.1016/j.neuroscience.2017.09.009
http://www.ncbi.nlm.nih.gov/pubmed/28918259
https://doi.org/10.1371/journal.pone.0280892

