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Abstract

Identifications of novel genetic signals conferring susceptibility to human complex diseases

is pivotal to the disease diagnosis, prevention, and treatment. Genetic association study is a

powerful tool to discover candidate genetic signals that contribute to diseases, through sta-

tistical tests for correlation between the disease status and genetic variations in study sam-

ples. In such studies with a case-control design, a standard practice is to perform the

Cochran-Armitage (CA) trend test under an additive genetic model, which suffers from

power loss when the model assumption is wrong. The Jonckheere-Terpstra (JT) trend test

is an alternative method to evaluate association in a nonparametric way. This study com-

pares the power of the JT trend test and the CA trend test in various scenarios, including dif-

ferent sample sizes (200–2000), minor allele frequencies (0.05–0.4), and underlying modes

of inheritance (dominant genetic model to recessive genetic model). By simulation and real

data analysis, it is shown that in general the JT trend test has higher, similar, and lower

power than the CA trend test when the underlying mode of inheritance is dominant, additive,

and recessive, respectively; when the sample size is small and the minor allele frequency is

low, the JT trend test outperforms the CA trend test across the spectrum of genetic models.

In sum, the JT trend test is a valuable alternative to the CA trend test under certain circum-

stances with higher statistical power, which could lead to better detection of genetic signals

to human diseases and finer dissection of their genetic architecture.

Introduction

Over the past fifteen years, genome-wide association studies have significantly expanded the

knowledge base for genetic factors in important healthcare outcomes [1]. Such studies have
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identified numerous genetic signals contributing to various complex human diseases, which

can be very important to the diseases’ diagnosis, prevention, and treatment. One commonly

used approach to test association in a case-control genetic study is the Cochran-Armitage

(CA) trend test [2, 3] under the assumption of an additive genetic model [4, 5], which can

reach the optimal power when the underlying genetic model is also additive. However, it can

suffer from power loss when the true genetic model is nonadditive (see, e.g., [6–9]). Power loss

is one critical issue in genetic association studies. On the one hand, conducting a statistical test

with reduced power may fail to detect true genetic signals, leading to false negative results. On

the other hand, to achieve the same level of statistical power, the sample sizes needed will

increase, leading to higher study expenses and resource requirements.

To test for associations between the disease status and genetic variation, one alternative

approach to the CA trend test is the Jonckheere-Terpstra (JT) trend test [10, 11], which is a

rank-based nonparametric test. The JT trend test does not make assumptions on genetic mod-

els or data distribution, and thus has the potential to achieve better statistical power than the

parametric CA trend test under certain circumstances. The potentially higher power from the

JT trend test may result in novel genetic discoveries for complex human diseases, which can

help researchers better understand the genetic etiology and eventually aid in the development

of effective diagnosis, prevention, and treatment strategies of the diseases. Although the JT

trend test offers an alternative to the CA trend test with potential advantages, their compara-

tive performance has not been examined in the genetic literature. In this study, we aim to fill

this research gap by comparing the power of the two tests in various conditions via simulations

and real data analysis. The knowledge gained in this study can help guide the model selection

between the CA and JT trend tests when conducting genetic case-control studies in practice.

Methods

Consider a diallelic locus with the major and minor alleles denoted as a and A, respectively,

the genotype distribution in a case-control study can be summarized as in Table 1. Specifically,

denote ri and si as the number of cases and controls, respectively, for genotype Gi, where i2
{0,1,2} reflects the number of A alleles a subject has. Thus G0, G1, and G2 correspond to geno-

types aa, Aa, and AA, respectively. Denote by R, S, and ni the marginal sums such that

R ¼
P2

i¼0
ri; S ¼

P2

i¼0
si, and ni = ri+si, and by N the total sample size such that

N ¼ Rþ S ¼
P2

i¼0
ni. Assume (r0, r1, r2) follow a trinomial distribution with parameters R

and (τ0, τ1, τ2), and (s0, s1, s2) follow a trinomial distribution with parameters S and (υ0, υ1, υ2).

The null hypothesis of no association between the disease and genotype is thenH0: τi = υi, for

i2{0,1,2}. Equivalently, we can also assume ri’s are drawn from binomial distributions Bin(ni,
πi). The null hypothesis of no association between the disease and genotype isH0: π0 = π1 = π2.

Assuming G0, G1, and G2 are three ordered categories, a restricted alternative hypothesis for a

trend test isH1: π0�π1�π2 or π0�π1�π2 with at least one strict inequality.

Table 1. Genotype distribution at a diallelic marker in a case-control study.

Genotype�

Phenotype aa Aa AA Total

Cases r0 r1 r2 R
Controls s0 s1 s2 S

Total n0 n1 n2 N

� A denotes the minor allele across the paper.

https://doi.org/10.1371/journal.pone.0280809.t001
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To testH1, the CA trend test assigns a set of scores (x0, x1, x2) to G0, G1, and G2, respectively,

with the constraints x0�x1�x2 and x0<x2, and examines whether there is a linear relationship

between πi’s and xi’s by fitting a linear regression model. The test statistic is

TCA ¼
NðN
P2

i¼0
rixi � R

P2

i¼0
nixiÞ

2

RS½N
P2

i¼0
nixi2 � ð

P2

i¼0
xiniÞ

2 �
. UnderH0, TCA follows a χ2 distribution with 1 degree-of-free-

dom (d.f.). The choices of (x0, x1, x2) represent assumptions on the genetic models. In practice,

the additive model with (x0, x1, x2) = (0,0.5,1) is usually assumed because of its robustness.

Hereinafter we denote it as TAddCA .

Alternatively, the JT trend test compares the ranks of subjects based on their affection status

between genotype groups to testH1. Consider the disease status of case and control as an ordi-

nal variable Y, and denote by Yij2{0,1} individual j0s phenotypic value with genotype Gi. The

JT test statistic is TJT ¼
½U� EðUÞ�2

VarðUÞ , where U ¼
Pn0

j¼1

Pn1

k¼1
SðY0j;Y1kÞ þ

Pn0

j¼1

Pn2

k¼1
SðY0j;Y2kÞþ

Pn1

j¼1

Pn2

k¼1
SðY1j;Y2kÞ;E Uð Þ ¼

N2 �
P2

i¼0
n2
i

4
, and Var Uð Þ ¼ A

72
þ B

36NðN� 1ÞðN� 2Þ
þ C

8NðN� 1Þ
, in which

A ¼ NðN � 1Þð2N þ 5Þ �
P2

i¼0
niðni � 1Þð2ni þ 5Þ � SðS � 1Þð2Sþ 5Þ � RðR � 1Þ�

ð2Rþ 5Þ;B ¼
P2

i¼0
niðni � 1Þðni � 2Þ½SðS � 1ÞðS � 2Þ þ RðR � 1ÞðR � 2Þ� and

C ¼
P2

i¼0
niðni � 1Þ½SðS � 1Þ þ RðR � 1Þ�. The components of U are the Mann-Whitney U

statistics defined as SðY�j;Y�kÞ ¼

1; if Y�j < Y�k
0:5; if Y�j ¼ Y�k
0; if Y�j > Y�k

8
><

>:
. For large N and ni0s not too small, TJT also

follows a χ2 distribution with 1 d.f. underH0.

For simplicity, hereinafter we use TJT and TAddCA to refer to both tests and test statistics.

Simulation

We conduct simulations to compare performance between TJT and TAddCA in terms of statistical

power under various conditions. Define the penetrance function for each genotype as fi = P
(affected|Gi), i = 0, 1, 2, and define genotype relative risk as λi = fi/f0; thus λ0 = 1. The domi-

nant, additive, and recessive genetic models can be specified by λ1 = λ2, λ1 = (1+λ2)/2, and λ1 =

1, respectively. Note that the genetic model is defined in regard to the minor allele in this

study. The model can be reparameterized by defining λ1 = 1+λcosθ and λ2 = 1+λsinθ, where

λ�0 is the distance between point P = (λ1, λ2) and point O = (1,1), which determines how far

the genetic effect is from the null, and θ2[π/4, π/2] is the angle between OP and the horizontal

line in a two-dimensional space, which determines the genetic model [12]. Therefore, the null

hypothesis can be rewritten asH0: λ = 0. In terms of genetic models, θ = π/4, arctan 2, and π/2

correspond to dominant, additive, and recessive models, respectively. We performed simula-

tions under the following alternative settings. Assume a disease prevalence (K) of 0.1 and the

minor allele frequency (MAF) q2(0.05,0.1,0.2,0.3). Fix the alternative hypothesis as λ = 1 and

vary the genetic models by setting θ‘ = θ/π from 1/4 to 1/2, i.e., from the dominant model to the

recessive model, with an increment of 0.01. Under each genetic model, penetrances are deter-

mined by f0 ¼ K=½ð1 � qÞ
2
þ 2l1qð1 � qÞ þ l2q2� and fi = λif0. The probabilities of the two tri-

nomial distributions for cases and controls are then τi = P(Gi)fi/K and υi = P(Gi)(1−fi)/(1−K),

respectively. Consider a balanced design, i.e., R = S with the total sample size N2(200, 500,

1000). At each setting 10,000 replicates are simulated, and each dataset is examined by both TJT
and TAddCA . The empirical power is estimated as the proportion of the replicates for which the p-

value is less than or equal to 0.05. In an additional set of simulations for wider range of sample

size and MAF, we considered N = 1500 and 2000 as well as q = 0.4 across the genetic models.
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Because the sample sizes and MAF were large, the effect size in the alternative hypothesis was

set to λ = 0.5 to make the maximum power less than 1 for the sake of comparison.

The simulation results across the main settings are presented in Fig 1 and the results for the

additional set of simulations are presented in S1 Table. In all situations TJT is more powerful

Fig 1. Power comparison between the Jonckheere-Terpstra trend test (TJT) and the Cochran−Armitage trend test ðTAdd
CA Þ.

The black solid line denotes TJT and the red dashed line denotes TAddCA . Along the x-axis, θ = π/4, arctan 2, and π/2 correspond

to dominant (D), additive (A), and recessive (R) genetic models, respectively. The y-axis is the average empirical power at the

0.05 level based on 10,000 replicates each. The disease prevalence equals 0.1. MAF: minor allele frequency.

https://doi.org/10.1371/journal.pone.0280809.g001
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than TAddCA when the underlying genetic model is dominant. The power advantage of TJT dimin-

ishes as the genetic model evolves toward the additive model. In most situations except for

small sample sizes and low MAFs, the two tests have approximately equivalent power when

the underlying model is additive. TJT becomes less powerful than TAddCA and the disadvantage

enlarges when the genetic model keeps evolving toward the recessive end. In case of low MAFs

and small sample sizes, e.g., N = 200 & q�0.1 or N�1000 & q = 0.05, TJT is more powerful than

TAddCA .

To verify the above findings, for each simulation setting we construct a table with the value

in each cell equal to the expected value under the trinomial distributions for cases and controls,

respectively, i.e., E(ri) = τiN/2 and E(si) = υiN/2, i2{0,1,2}. Specifically, in each simulation set-

ting, using the fixed combination of sample size (N), MAF (q), and genetic model (θ), the cell

probabilities of each genotype for cases and controls in the genotype distribution table

(Table 1) can be calculated, and therefore, the expected cell values can also be calculated by

multiplying the probabilities with the sample size. This table consists of the expected cell val-

ues, which allows us to evaluate the relative performance of the two tests by comparing their

theoretical test statistics (TJT and TAddCA ) in each simulation setting. For each table, the theoreti-

cal TJT and TAddCA are calculated and compared by DT ¼ ðTJT � TAddCA Þ

TAddCA
� 100%. Therefore, a positive

(or negative) value of ΔT indicates the JT trend test is more (or less) powerful than the CA

trend test. The results of ΔT for dominant, additive, and recessive genetic models across simu-

lation settings are reported in Table 2. Consistent with the simulation results, ΔT>0 when the

genetic model was dominant; |ΔT|<2% when the genetic model was additive, and ΔT<0 when

the genetic model was recessive. The only discrepancy is that in case of low MAFs and small

sample sizes, theoretically ΔT would be less than zero under the recessive model, but empiri-

cally it is greater than zero. We suspect it is because the parametric assumptions and asymp-

totic theory behind TAddCA do not hold in these circumstances, whereas TJT does not impose

assumptions on data distribution.

Real data analysis

We further compared TJT and TAddCA in real data, which confirmed the simulation results. The

first example is on the association between the variant rs2398162 and hypertension in the

Table 2. Percent difference between the Jonckheere-Terpstra trend test statistic (TJT) and the Cochran-Armitage trend test statistic (TAdd
CA ) based on the expectation

of genotype distributions under dominant, additive, and recessive genetic models.

N Minor Allele Frequency ðTJT � TAdd
CA Þ=T

Add
CA

Dominant Additive Recessive

200 0.05 2.15% -1.39% -69.47%

200 0.1 4.97% -1.67% -62.83%

200 0.2 9.92% -1.00% -46.62%

200 0.3 11.58% 0.14% -27.71%

500 0.05 2.46% -1.10% -69.38%

500 0.1 5.28% -1.38% -62.71%

500 0.2 10.25% -0.70% -46.46%

500 0.3 11.91% 0.44% -27.49%

1000 0.05 2.56% -1.00% -69.35%

1000 0.1 5.39% -1.28% -62.68%

1000 0.2 10.36% -0.60% -46.41%

1000 0.3 12.03% 0.54% -27.42%

https://doi.org/10.1371/journal.pone.0280809.t002
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Wellcome Trust Case Control Consortium study [13]. There were 1940 cases (r0 = 1205, r1 =

624, r2 = 111) and 2923 controls (s0 = 1608, s1 = 1121, s2 = 194), and it was suggested the minor

allele have a dominant effect. Applying the two trend tests on the dataset, we can obtain TJT =

22.82 (p-value = 1.8×10−6) and TAddCA ¼ 19:97 (p-value = 7.9×10−6). These results were in line

with the observations in the simulation that TJT is more powerful than TAddCA when the underly-

ing genetic model is dominant.

Additional real data analyses came from case-control studies for falciparum malaria [14],

age-related macular degeneration (AMD) [15] and hypertension with additional variants, with

the genotype counts all extracted from [9]. In the falciparum malaria study, variant rs10900589

in ATP2B4 was associated with the disease in the Ghanaian samples. This association was also

evaluated in the Gambian samples and it was significant under a recessive model but insignifi-

cant under dominant and additive models. In the AMD study, variants rs380390 and

rs10131337 in CFH were associated with AMD. We examined the associations of the three var-

iants with the diseases using both tests. Cell counts, test statistics and p-values are reported in

Fig 2. For rs10900589, the minor allele approximately acts in a recessive mode
r0
n0
�

r1
n1
<

r2
n2

� �

and TJT < TAddCA , which were consistent with the simulation results that TJT is less powerful than

TAddCA when the underlying genetic model is recessive. For both rs380390 and rs10131337, the

minor allele approximately acts in an additive mode
r1
n1
�

r0=n0þr2=n2

2

� �
and TJT � TAddCA , which

were consistent with the simulation results that the two tests have comparable power when the

underlying model is additive. In the hypertension study, we compared the two tests on three

SNPs that showed genome-wide significance. The results are reported in S2 Table. The conclu-

sion still holds in this real data analysis: TJT and TAddCA had similar power when the genetic

model was close to be additive (rs7961152, rs1937506, rs6997709).

To assess the potential genotyping errors among the variants considered in the real data

analysis, we tested the Hardy-Weinberg equilibrium (HWE) among the cases and controls,

separately, for each variant [16, 17]. An exact test for HWE was conducted using the R package

HardyWeinberg [18], and the results with exact p-values for the variants were reported in S3

Table. Results showed that the p-values of the HWE tests for all the variants were larger than

0.01, with only two between 0.01 and 0.05, suggesting that there was little evidence of genotyp-

ing error among the variants. Moreover, we conducted allelic test to evaluate the association

for the variants. The allelic test assesses the genetic association at the allele level by collapsing

the genotypes into the counts for reference and alternative alleles, between cases and controls,

however, this approach is not robust against the HWE departures [4]. The test statistics and p-

values of allelic test results were summarized in S3 Table. Of note, the results were close to

those of TAddCA , suggesting that the assumptions of HWE were not violated.

Discussion

Our previous work elucidates the mechanism of the CA trend test that it examines the location

shift of genotype scores between the case and control groups [19] by measuring the goodness

of fit of a linear regression model correlating proportions of cases in genotype groups with

their respective scores [20]. The preassigned scores reflect assumptions on the genetic model.

In contrast, the JT trend test examines the location shift of phenotype scores among genotype

groups in a rank-based nonparametric way without making assumptions on genetic models or

data distribution. The power difference between the two tests in different situations shown in

this study can be explained by their properties. When the underlying model is dominant, TAddCA

suffers power loss because of the wrong model assumption that it is inferior to TJT; when the

underlying model is recessive, the limited information on location shift hampers TJT more
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than the wrong model assumption hampers TAddCA ; in case of low MAFs and small sample sizes

where the large-sample theory breaks, TJT outperforms TAddCA because it does not impose

assumptions on data distribution as the latter does.

In sum, in this study we compared the power of TAddCA and TJT under different situations. By

simulation and real data examples, we show TJT can provide a valuable alternative to TAddCA in

case of small sample sizes and low MAFs; when the genetic mechanism is known to be domi-

nant, or that is the only model of interest, TJT is preferred. However, in a moderate to large

sample size study with the true mode of inheritance unknown, the use of the JT trend test is

Fig 2. Comparison between the Jonckheere-Terpstra trend test (TJT) and the Cochran−Armitage trend test ðTAdd
CA Þ in four real datasets. A

denotes the minor allele; ri0s and si0s are as defined in Table 1.

https://doi.org/10.1371/journal.pone.0280809.g002
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not recommended compared to the CA trend test under an additive model, which is more

robust under a wide range of modes of inheritance.
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