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Abstract

Backgrounds

The in-hospital mortality in lung cancer patients admitted to intensive care unit (ICU) is

extremely high. This study intended to adopt machine learning algorithm models to predict

in-hospital mortality of critically ill lung cancer for providing relative information in clinical

decision-making.

Methods

Data were extracted from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) for

a training cohort and data extracted from the Medical Information Mart for eICU Collabora-

tive Research Database (eICU-CRD) database for a validation cohort. Logistic regression,

random forest, decision tree, light gradient boosting machine (LightGBM), eXtreme gradient

boosting (XGBoost), and an ensemble (random forest+LightGBM+XGBoost) model were

used for prediction of in-hospital mortality and important feature extraction. The AUC (area

under receiver operating curve), accuracy, F1 score and recall were used to evaluate the

predictive performance of each model. Shapley Additive exPlanations (SHAP) values were

calculated to evaluate feature importance of each feature.

Results

Overall, there were 653 (24.8%) in-hospital mortality in the training cohort, and 523 (21.7%)

in-hospital mortality in the validation cohort. Among the six machine learning models, the

ensemble model achieved the best performance. The top 5 most influential features were

the sequential organ failure assessment (SOFA) score, albumin, the oxford acute severity

of illness score (OASIS) score, anion gap and bilirubin in random forest and XGBoost

model. The SHAP summary plot was used to illustrate the positive or negative effects of the

top 15 features attributed to the XGBoost model.
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Conclusion

The ensemble model performed best and might be applied to forecast in-hospital mortality

of critically ill lung cancer patients, and the SOFA score was the most important feature in all

models. These results might offer valuable and significant reference for ICU clinicians’ deci-

sion-making in advance.

Introduction

Lung cancer is the third most common malignancy and is reported the leading cause of cancer

death in males and the second most common cancer in females, which taking up more than

one-fifth of all cancer deaths worldwide [1–3]. Exceed 158,000 patients died from lung cancer

in the United States in 2016, which accounted for 27% of all cancer deaths [4, 5], the prognosis

remains poor although improvement has been made in the therapy of lung cancer, the 5-year

survival rate for all stages combined is only 15% [6, 7]. Many lung cancer patients require

admitted to intensive care unit (ICU) and respiratory failure requiring mechanical ventilation

is the major reason for lung cancer patients being admitted to the ICU [8, 9]. Although pro-

gressive improvement has been made to improve the prognosis in lung cancer patients admit-

ted to the ICUs, the mortality rate remains extremely high, the mortality rate in lung cancer

patients admitted to ICU was 43% and the in-hospital mortality is 60%, and the mortality rate

is higher in patients with stage IV (68%) [10]. Currently, the lack of early prediction and risk

stratification for in-hospital mortality is the main challenge for ICU clinicians. The decision

regarding which groups of lung cancer patients admitted to the ICU at high-risk and would

have poor prognosis is based on a complex suite of considerations including therapeutic

options and the wishes of patients and their family. These critically ill lung cancer patients usu-

ally have poor long-term survival and high financial cost. Hence, it’s necessary to explore risk

prediction models to distinguish those at high-risk of critically ill lung cancer patients admit-

ted to ICU.

The development of artificial intelligence has led to a significant improvement in the pre-

dictive models used for estimating the risk of mortality in cancer patients. Machine learning

(ML), a new type of artificial intelligence can transform measurement results into relevant pre-

dictive models, especially cancer models, based on the rapid development of large datasets and

deep learning. Recently, ML have been shown to be effective in predicting lung cancer suscep-

tibility, recurrence, and survival of malignant tumors [11–13]. However, there is still limited

data relating to the in-hospital mortality risk prediction models using ML methods in patients

with lung cancer in the ICU setting.

Therefore, this study aimed to develop six ML algorithm models including logistic regres-

sion, decision tree, random forest, light gradient boosting machine (GBM), extreme gradient

boosting (XGBoost), and an ensemble model to predict the in-hospital mortality among lung

cancer patients admitted to ICU so that individual prevention strategies for critically ill lung

cancer patients could be proposed to help clinicians to make therapeutic decisions. Moreover,

we also intended to compared the six ML models and determined the best model for in-hospi-

tal mortality prediction in lung patients admitted to the ICU.

Methods

Data source

This retrospective study utilized information from the eICU Collaborative Research Database

(eICU-CRD) [14] and the Medical Information Mart for Intensive Care-IV (MIMIC-IV
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version 1.0) database [15], eICU-CRD contains data of more than 200 thousand ICU admis-

sions in 2014 and 2015 at 208 US hospitals while MIMIC-IV includes information of more

than 70,000 patients admitted to the ICUs of Beth Israel Deaconess Medical Center in Boston,

MA, from 2008 to 2019. Due to the data used in this study were extracted from public data-

bases, it was exempt from the requirement for informed consent from patients and approval of

the Institutional Review Board (IRB). All procedures were performed according to the ethical

standards of the 1964 Helsinki Declaration and its later amendments or comparable ethical

standards. After finishing the web-based training courses (S1 Fig) and the Protecting Human

Research Participants examination, we obtained permission to extract data from the

eICU-CRD and MIMIC-IV database.

Cohort selection

Patients with one of the following conditions were excluded: (1) less than 18-year-old at first

admission to ICU; (2) repeated ICU admissions; (3) more than 80% of personal data was miss-

ing. We randomly selected MIMIC-IV database as the training cohort and eICU-CRD data-

base as the validation cohort. A total of 2,638 patients in the MIMIC-IV database assigned into

the training cohort and 2,414 patients in the eICU-CRD database assigned into the validation

cohort were finally included in this study, the detailed flowchart was shown in Fig 1.

Date collection and outcomes

Baseline characteristics and admission information: age, gender and body mass index (BMI)

were calculated as described in previous studies. Comorbidities including hypertension, diabe-

tes, chronic kidney disease, myocardial infarction, congestive heart failure, atrial fibrillation,

valvular disease, chronic obstructive pulmonary disease, stroke, hyperlipidemia and liver

Fig 1. The flow chart of this study.

https://doi.org/10.1371/journal.pone.0280606.g001
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disease were also collected for analysis based on the recorded ICD codes in the two databases.

Charlson comorbidity index (CCI) was also included. In addition, severity scores including

sequential organ failure assessment (SOFA) score, the oxford acute severity of illness score

(OASIS), the acute physiology score III (APSII) were collected. Acute complications during

ICU including acute heart failure, acute respiratory failure, acute hepatic failure and cardiac

arrest based on ICD codes, acute kidney injury based on KDIGO guideline in 48 hours [16],

sepsis based on sepsis 3.0 criteria [17] were also recorded. In addition, initial vital signs and

laboratory results were also measured during the first 24 hours of ICU admission.

The primary outcome was in-hospital mortality.

Statistical analysis

For all continuous covariates, the mean values and standard deviations are reported Categori-

cal data were expressed as frequency (percentage). The Chi-square test or Fisher’s test was

appropriately performed to compare the differences between groups. The baseline characteris-

tics were reported as a training cohort and validation cohort. The comparison of baseline char-

acteristics was performed in R software (version 4.1.0). P< 0.05 was considered statistically

significant. Modeling work were done using Python 3.6.4.

Construction of in-hospital mortality predictive models

Logistic regression, decision tree, random forest, and two gradient boosting decision trees,

including LightGBM, and XGBoost, were adopted to construct prediction models. In order to

improve prediction, an ensemble model was constructed, which applied staking strategy using

random forest, LightGBM and XGBoost [18]. The prediction probabilities of the three models

were input into a logistic regression model to produce a final prediction. Hence, six in-hospital

mortality predictive models were developed using logistic regression, decision tree, random

forest, LightGBM, XGBoost and ensemble models, which each used 100 full features for each

time window. Furthermore, the top 10 important features derived from random forest,

lightGBM, and XGBoost model were also analysis [18].

Performance evaluation

To evaluate and compare the predictive accuracy of prediction by decision tree, random forest,

LightGBM, XGBoost, ensemble model and logistic regression models. Each model was evalu-

ated according to accuracy, recall, F1 score, and AUC (area under the receiver operating char-

acteristic) curve [19].

SHAP analysis

To further analyze the positive or negative effect of the important features identified for in-

hospital mortality prediction and investigate the relationship between, a shapely additive

explanations (SHAP) analysis was performed using Python 3.7.0. The SHAP value is the

assigned predicted value of each feature of the data [20].

Results

Baseline characteristics

A total of 5,052 patients were finally included in the present study, including 2,638 patients in

the training cohort extracted from the MIMIC-IV database and 2,414 patients in the validation

cohort extracted from the eICU-CRD database. There were 653 (24.8%) in-hospital death in
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the training cohort, and 523 (21.7%) in-hospital death in the validation cohort. Table 1 showed

the baseline characteristics both in the training cohort and in the validation cohort.

Model performance

Six models, logistic regression, decision tree, random forest, LightGBM, XGBoost, and ensem-

ble models were used to predict in-hospital mortality using all the features. As can been seen

in Table 2, the traditional model logistic regression exhibited the worst predictive ability, fol-

lowed by decision tree, random forest, XGBoost, LightGBM. And the ensemble model showed

the best predictive ability with the highest accuracy (0.89), recall (0.80), F1 score (0.82) and

AUC (0.92) in training cohort. And the results in the validation cohort similar to the results in

the training cohort (Table 2). In addition, we also performed ROC analysis to further confirm

the in-hospital mortality predictive ability of these six models, as shown in Fig 2A and 2B, the

logistic regression model depicted the worst predictive ability, followed by decision tree, ran-

dom forest, XGBoost, LightGBM. And the ensemble model showed the best predictive perfor-

mance both in the training cohort and in the validation cohort.

Feature importance analysis

To clarify the important features that impacts on model output, the feature importance analy-

sis was conducted. The top 15 features derived from random forest, lightGBM, and XGBoost

model were shown in Fig 3. In random forest model, SOFA score was the most influential fea-

ture, followed by albumin, OASIS score, anion gap, billirubin, mechanical ventilation, acute

respiratory failure, APSIII score, length of hospital, BUN, WBC, respiratory rate, vasopressors

usage and RDW, and these features also had important on random forest model (Fig 3A). For

lightGBM model, anion gap played the most important role in prediction in-hospital mortal-

ity, moreover, SOFA score, OASIS score, albumin, length of hospital, billirubin, WBC, platelet,

BNU, heart rate, MCH, APSIII score, creatinine and MCV also plays important role in predic-

tion (Fig 3B). Furthermore, in terms of XGBoost model, SOFA score had the most influence

on in-hospital mortality prediction, followed by anion gap, billirubin, OASIS score, albumin,

white blood cell, bicarbonate, length of hospital, acute respiratory failure, RDW, temperature,

creatinine, platelet, MCHC and BMI (Fig 3C). Moreover, the feature importance analysis

derived from random forest, lightGBM, and XGBoost model were also conducted in validation

cohort in S2–S4 Figs. And the results were coincided with the result of the training cohort.

SHAP analysis

In order to manifest an overall positive or negative impact on model output, and to analyze the

similarities and differences of important characteristics of critically ill lung cancer with differ-

ent severities, the SHAP summary chart was used. As shown in Fig 4, SOFA score ranked the

first in importance among the top 20 features of the XGBoost model, and the higher the SOFA

score, the higher probability of in-hospital mortality development, indicating that SOFA score

should be observed first in in-hospital mortality prediction.

Taking the XGBoost model with excellent performance for predicting dead/survival using

all features as an example, combined with the SHAP analysis method, a representative dead

patient and a survival patient were selected to illustrate the effect of features on the prediction

ability. As shown in Fig 5, for predicting dead patients, SOFA score plays a major positive role

in the prediction results, the SHAP value of final model predicted for this patient is 0.96,

which is beyond than 0, thus successfully predicting the patient as an in-hospital died patient.

For predicting survival patients, anion gap plays a major positive role in the prediction results,

SOFA score played a major negative role in predicting outcomes, the SHAP value of final
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Table 1. Comparisons of baseline characteristics in all cohorts.

Characteristics Training cohort Validation cohort P value

N 2638 2414

Age, years old 68.9 ± 12.1 66.5 ± 11.3 <0.001

Gender, male, n (%) 1361 (51.6) 1272 (52.7) 0.451

BMI, kg/m2 26.1 ± 7.6 26.0 ± 7.3 0.138

Ethnicity, n (%) <0.001

White 1924 (72.9) 1950 (80.8)

Black 302 (11.4) 247 (10.2)

Others 412 (14.7) 217 (9.0)

Tumor type, n (%) <0.001

Primary 1804 (68.4) 1889 (78.3)

Metastatic 834 (31.6) 525 (21.7)

Critical care procedure, n (%)

Mechanical ventilation 901 (34.2) 738 (30.6) 0.007

Continuous renal replacement therapy 35 (1.3) 20 (0.8) 0.117

Vasopressors 718 (27.2) 359 (14.9) <0.001

Comorbidities, n (%)

Myocardial infarction 339 (12.9) 186 (7.7) <0.001

Congestive heart failure 561 (21.3) 250 (10.4) <0.001

Hypertension 1090 (41.3) 1223 (50.7) <0.001

Diabetes 608 (23.0) 493 (20.4) 0.026

Chronic kidney disease 462 (17.5) 171 (7.1) <0.001

Liver disease 198 (7.5) 21 (0.9) <0.001

Chronic obstructive pulmonary disease 1034 (39.2) 796 (33.0) <0.001

Stroke 246 (9.3) 127 (5.3) <0.001

Atrial fibrillation 720 (27.3) 248 (10.3) <0.001

Hyperlipidemia 888 (33.7) 102 (4.2) <0.001

Charlson comorbidity index, points 9.4 (2.7) 6.9 (1.7) <0.001

Acute complications during ICU, n (%)

Acute heart failure 247 (9.4) 100 (4.1) <0.001

Acute respiratory failure 765 (29.0) 904 (37.4) <0.001

Acute hepatic failure 31 (1.2) 6 (0.2) <0.001

Acute kidney injury 582 (22.1) 363 (15.0) <0.001

Sepsis 1244 (47.2) 434 (18.0) <0.001

Cardiac arrest 84 (3.2) 58 (2.4) 0.111

Score system, points

Sequential organ failure assessment 4.4 ± 1.4 3.8 ± 1.3 <0.001

Oxford acute severity of illness score 32.3 ± 9.0) 24.8 ± 10.0 <0.001

Acute physiology score III 48.3 ± 12.8) 47.9 ± 21.5 0.594

Vital signs

Systolic blood pressure, mmHg 123.7 ± 24.1 123.3 ± 24.5 0.507

Diastolic blood pressure, mmHg 69.4 ± 17.3 69.6 ± 16.4 0.661

Mean arterial pressure, mmHg 83.9 ± 17.9 83.7 ± 18.3 0.657

Heart rate, bpm 94.8 ± 21.6) 97.3 ± 21.8 <0.001

Respiratory rate, bpm 20.9 ± 6.6 21.3 ± 6.3 0.057

Temperature, ˚C 36.7 ± 0.7 36.8 ± 0.7 0.001

SpO2, % 96.1 ± 4.3 95.3 ± 6.0 <0.001

Laboratory values

(Continued)
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Table 1. (Continued)

White blood cell, × 109/L 11.5 ± 8.7 12.2 ± 9.7 0.011

Hemoglobin, g/dL 10.7 ± 2.2 11.0 ± 2.3 <0.001

Platelet, × 109/L 251.2 ± 81.6 235.6 ± 71.4 <0.001

Hematocrit, % 32.7 ± 6.2 33.6 ± 6.8 <0.001

Mean corpuscular volume, fL 90.6 ± 7.7 90.3 ± 7.1 0.184

Mean corpuscular hemoglobin, pg 29.5 ± 2.9 29.5 ± 2.6 0.418

Mean corpusular hemoglobin concerntration, g/L 32.6 ± 1.7 32.8 ± 1.5 <0.001

Red blood cell, × 1012/L 3.6 ± 0.7 3.7 ± 0.8 <0.001

Red cell distribution width, % 15.7 ± 2.5 16.1 ± 2.6 <0.001

Albumin, g/dL 3.1 ± 0.7 3.0 ± 0.7 <0.001

Bilirubin, mmol/L 1.2 ± 0.4 0.9 ± 0.3 <0.001

Anion gap, mEq/L 14.8 ± 3.6 10.8 ± 4.0 <0.001

Bicarbonate, mEq/L 24.1 ± 4.7 25.8 ± 5.2 <0.001

Glucose, mg/dL 136.5 ± 54.3 141.4 ± 51.7 0.019

Blood urea nitrogen, mg/dL 24.3 ± 8.9 23.9 ± 8.6 0.378

Creatinine, mg/dL 1.2 ± 0.5 1.1 ± 0.4 0.457

Calcium, mg/dL 8.6 ± 1.0 8.7 ±1.0 <0.001

Chloride, mmol/L 101.7 ± 6.3 100.6 ± 6.5 <0.001

Potassium, mmol/L 4.3 ± 0.7 4.2 ± 0.7 <0.001

Sodium, mmol/L 137.4 ± 5.1 136.2 ± 5.5 <0.001

Prothrombin time, s 15.4 ± 5.2 15.6 ± 5.7 0.329

Activated partial thromboplastin time, s 35.2 ± 10.3 36.3 ± 11.1 0.062

International normalized ratio 1.4 ± 0.5 1.4 ± 0.4 0.500

Length of hospital, days 7.4 (4.3, 12.1) 6.9 (4.1, 11.7) 0.012

Length of ICU, days 2.0 (1.1, 4.0) 2.1 (1.1, 4.0) 0.490

Death, n (%) 653 (24.8) 523 (21.7) 0.010

https://doi.org/10.1371/journal.pone.0280606.t001

Table 2. Performance of the prediction models using all features.

Model Accuracy Recall F1 score AUC

Training cohort

Logistic regression 0.83 0.68 0.71 0.83

Decision tree 0.85 0.73 0.75 0.86

Random forest 0.84 0.70 0.78 0.89

XGBoost 0.86 0.77 0.79 0.90

LightGBM 0.88 0.80 0.81 0.91

Ensemble model 0.89 0.80 0.82 0.92

Validation cohort

Logistic regression 0.79 0.79 0.70 0.60

Decision tree 0.86 0.74 0.75 0.85

Random forest 0.84 0.84 0.80 0.92

XGBoost 0.87 0.87 0.77 0.91

LightGBM 0.88 0.80 0.82 0.92

Ensemble model 0.89 0.89 0.88 0.93

https://doi.org/10.1371/journal.pone.0280606.t002
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model predicted for this patient is -1.23, which is less than 0, thus successfully predicting the

survival patient.

Discussion

In this retrospective study, we developed and validated machine learning algorithms based on

clinical features based on largely public database MIMIC-IV and eICU-CRD, to predict in-

hospital mortality of critically ill lung cancer patients. The lightGBM model exhibited the best

performance for single model prediction, whereas the RF + ensemble model an ensemble

model was constructed, which applied staking strategy using random forest, LightGBM and

XGBoost exhibited the greatest AUC among the models we tested. Using advanced machine

learning techniques, we could identify some important clinical features associated with in-hos-

pital mortality such as SOFA score, anion gap, albumin, OASIS score and acute respiratory

failure. These results have some implications and require further consideration.

ICU-related in-hospital mortality for lung cancer is ranked highest among the solid tumors

and the in-hospital mortality in lung cancer patients admitted to ICU is discrepancy according

to the lung cancer stage. Previous studies reported that the ICU mortality of extensive or

advanced lung cancer patients over 50%. Park et al. investigated patients in Korea who had

been newly diagnosed with lung cancer between 2008 and 2010 and indicated that the in-hos-

pital mortality was 58.3% in those advanced critically ill lung cancer patients [21]. In addition,

Song et al. analyzed the advanced lung cancer patients, including stage IIIB or IV non-small

cell lung cancer and extensive-stage small cell lung cancer, admitted to the ICU and found

before and after 2011, the in-hospital mortality was 82.4% and 65.9% [22]. In this study, our

result manifested a similar result to Adam et al. [23] report a 20% in-hospital mortality rate in

stage I non-small cell lung cancer. This maybe due to the vast majority of the type of the lung

cancer were primary but not metastatic, so the in-hospital mortality in the present study is

lower than those with advanced critically ill lung cancer patients. Unfortunately, it is difficult

for clinicians to identify patients at high risk of in-hospital death in the ICU. Therefore, devel-

oping and promoting reliable prediction models is particularly urgent for identifying these

patients and providing them with timely and effective interventions to improve their

prognosis.

Currently, given the increasing applicability and effectiveness of supervised machine

learning algorithms in predictive disease modeling, the breadth of research seems to progress

Fig 2. The performance of the six in-hospital mortality predictive models. ROC curves of the six prediction models using all features

for predicting in-hospital mortality (A) in training cohort and (B) in the validation cohort.

https://doi.org/10.1371/journal.pone.0280606.g002
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Fig 3. The important features of different models. The top 15 features derived from (A) random forest, (B)

lightGBM, and (C) XGBoost model.

https://doi.org/10.1371/journal.pone.0280606.g003

Fig 4. SHAP summary plot of the features of the XGBoost model. The higher the SHAP value of a feature, the higher the probability of

in-hospital mortality development. A dot is created for each feature attribution value for the model of each patient, and thus one patient is

allocated one dot on the line for each feature. Dots are colored according to the values of features for the respective patient and accumulate

vertically to depict density. Red represents higher feature values, and blue represents lower feature values.

https://doi.org/10.1371/journal.pone.0280606.g004
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[24, 25]. The well-known supervised learning classifiers, including support vector machine,

random forest, convolutional neural network, and decision tree, have been gradually applied

to clinical practice [26, 27]. With the help of machine learning classification, it showed that the

machine learning-assisted decision-support model has more advantages than the traditional

linear regression model. In this study, we used six different machine learning methods (logistic

regression, decision tree, random forest, LightGBM, XGBoost, and ensemble models) to build

predictive models. Four popular metrics (ROC, F1 score, accuracy and recall) were used to

evaluate the performance of these algorithms. There is no doubt that the results showed that

the ensemble model (which combined random forest, LightGBM and XGBoost) achieved the

best performance and predictive stability, which was consistent with previous reported [18].

Apart from this, lightGBM model achieved the best predictive performance. The lightGBM

modeling is a novel technique that has been widely adopted in tumors survival prediction but

not been widely adopted in critical care research [28, 29]. Otaguro et al. evaluated data from

patients who underwent intubation for respiratory failure and received mechanical ventilation

in ICU and use three learning algorithms (Random Forest, XGBoost, and LightGBM) to pre-

dict successful extubation, the result demonstrated that lightGBM exhibited the best overall

performance [30]. Moreover, Yang et al. adopted nine machine learning models to predict in-

hospital mortality in critically ill patients with hypertension and found that among nine

machine learning models, the lightGBM model had the best predictive ability [31].

We employed visualization function in SHAP to find the effect of the specific value of each

variable on model output. There are some factors contributing most including SOFA score,

anion gap, albumin and so on. SOFA score is an useful tool to quantify the degree of organ

dysfunction or failure present on ICU admission which has been widely used for in-hospital

mortality prediction in the ICU settings [32–35]. And SOFA score was reported to exhibit bet-

ter performance than other score systems in predicting infection-related in-hospital mortality

in ICU patients, the higher the SOFA score, the higher the risk of in-hospital mortality [36].

Anion gap (AG) is commonly used to classify acid-base disorders and to diagnose various con-

ditions. Recently, AG has been reported to associated with in-hospital mortality in ICU

patients. Hu et al. indicated that AG was related to in-hospital mortality in intensive care

patients with sepsis [37]. Moreover, Chen et al. demonstrated that AG could significantly

Fig 5. The SHAP force plots. The two representative SHAP force plots of a (A) dead and (B) survival patient. SHAP force plots are

effective in interpreting the prediction value of the model in critical instances. The contribution of each feature to the output predicted

value is shown with arrows with their force associated with the shapley values. Red arrows indicate features increasing the prediction

results (i.e., yield values) to reach the predicted value (output value). Blue arrows show features decreasing the prediction values to reach

the same output value. The arrows with positive and negative effects on yield values compensate on a point which is the prediction

(output) value.

https://doi.org/10.1371/journal.pone.0280606.g005
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predict ICU mortality for aortic aneurysm patients [38]. Hypoalbuminemia is almost associ-

ated with worse prognosis. And low albumin level was usually related to higher risk of in-hos-

pital mortality in ICU settings [39]. Moreover, SHAP force plots of a dead and a survival

patient (Fig 5) were selected to further verify the effect of features on the prediction ability and

the results further confirmed the SOFA score, anion gap, albumin, etc. features have positive

or negative effect on the output of these predictive models.

We should acknowledge some limitations of this research. First, the retrospective and

observational nature of our study may lead to inevitable selection bias. Second, the data used

in this study were based on public databases MIMIC-IV and eICU-CRD, an external valida-

tion is required to prevent overfitting. Third, the data did not include any information on the

pathologic and radiologic finding of lung cancer. We could not differentiate between small cell

carcinoma and non-small cell carcinoma, the algorithm model is skewed because important

medical information about molecular diagnosis.

Conclusions

In the present study, we applied six machine learning methods to predict in-hospital mortality

in critically ill lung cancer patients. We demonstrated that the ensemble model achieved the

best predictive performance and the lightGBM model exhibited the best performance for sin-

gle model prediction. And the SOFA score, anion gap and albumin are the most important fac-

tors which impacted on the output of the machine learning models in predicting in-hospital

mortality of critically ill patients with lung cancer. Our study obtained clinical feature interpre-

tations to provide clinicians in ICU with some information for reference in clinical prognosis

prediction.
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