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Abstract

In this article, an improved slime mould algorithm (SMA-CSA) is proposed for solving global

optimization and the capacitated vehicle routing problem (CVRP). This improvement is

based on the mixed-strategy optimization of Cauchy mutation and simulated annealing to

alleviate the lack of global optimization capability of the SMA. By introducing the Cauchy

mutation strategy, the optimal solution is perturbed to increase the probability of escaping

from the local extreme value; in addition, the annealing strategy is introduced, and the

Metropolis sampling criterion is used as the acceptance criterion to expand the global

search space to enhance the exploration phase to achieve optimal solutions. The perfor-

mance of the proposed SMA-CSA algorithm is evaluated using the CEC 2013 benchmark

functions and the capacitated vehicle routing problem. In all experiments, SMA-CSA is com-

pared with ten other state-of-the-art metaheuristics. The results are also analyzed by Fried-

man and the Wilcoxon rank-sum test. The experimental results and statistical tests

demonstrate that the SMA-CSA algorithm is very competitive and often superior compared

to the algorithms used in the experiments. The results of the proposed algorithm on the

capacitated vehicle routing problem demonstrate its efficiency and discrete solving ability.

Introduction

Establishing a mathematical model to solve practical problems and realizing faster and better

solutions to the model is one of the goals pursued by current academic research, and the way

to achieve it depends on intelligent optimization algorithms with different strategies. The solu-

tion performance of intelligent optimization algorithms under different optimization strategies

is different [1]. The intelligent optimization algorithm is a kind of optimization method based

on mathematics that is generated by simulating the behavior of natural biological clusters or

natural phenomena and is used to solve various practical optimization problems. It is widely

used in signal processing, production scheduling, medical applications, image processing, path

planning, and other fields [2].
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Throughout the development of intelligent optimization algorithms, the shortfalls of classi-

cal optimization strategies have been the starting point for the creation of new algorithms,

such as the time-out of Newton’s method in the face of complex mathematical processes, so

people are paying attention to optimization algorithms inspired by nature. For examples, see

the genetic algorithm (GA) [3], the differential evolution algorithm (DE) [4], the immune

algorithm (IA) [5], the ant colony algorithm (ACO) [6], the particle swarm algorithm (PSO)

[7], the simulated annealing algorithm (SA) [8], etc. In addition, due to the increase in the

actual needs of the current society and the improvement of computer computing power, in

order to improve the accuracy of the solution, more and more scholars are committed to

developing new algorithms based on the existing algorithm solution strategies and extending

them to many problems in multidisciplinary optimization. Some of these methods are

described below: Water Strider Algorithm (WSA) [9], Fitness-Distance Balance (FDB) [10],

Hybrid Invasive Weed Optimization-Shuffled Frog-Leaping Algorithm (SFLA-IWO) [11],

Algorithm of the Innovative Gunner (AIG) [12], Red Deer Algorithm (RDA) [13], and Drag-

onfly Algorithm (DA) [14], Whale Optimization Algorithm (WOA) [15], Harry Hawk Algo-

rithm (HHO) [16], Gray Wolf Optimization Algorithm (GWO) [17], and Slime Mold

Algorithm (SMA) [18], Mountain Gazelle Optimizer (MGO) [19], Starling Murmuration

Optimizer (SMO) [20], Stochastic Paint Optimizer (SPO) [21], etc., and these algorithms are

also satisfactory in the existing practical problem tests.

It is precisely because the slime mold algorithm (SMA) has the advantages of a simple struc-

ture, high applicability, and strong optimization ability that the improvement of the slime

mold algorithm and its application to the capacitated vehicle routing problems are the main

research contents of this paper. The original SMA is a new algorithm proposed by simulating

the foraging process of slime mold, the changes in the vein structure of slime mold, and the

three forms formed by positive feedback and negative feedback generated by biological oscilla-

tors [18]. But unfortunately, since the slime mould algorithm has the defect that it is easy to

fall into the local optimal solution in the process of finding the optimal solution, how can we

develop or improve a new algorithm to make it faster and more accurate to obtain the global

optimal solution has become one of the goals pursued by researchers [22]. The main purpose

of this paper is to optimize and improve the slime mould algorithm by introducing the anneal-

ing operator(SA) and the Cauchy mutation strategy (CM), so as to ensure that the improved

algorithm has greater population diversity in the local optimization and can escape the local

extreme value smoothly. At the same time, accelerate the convergence speed at which the pop-

ulation approaches the optimal position and enhance the solving ability and accuracy of its

global optimal solution.

The main contributions of this study are as follows:

1. The global optimization accuracy of the slime mould algorithm is improved, the annealing

link is introduced into the process of updating the position of the slime mould algorithm,

and the Cauchy mutation strategy is used to perturb the optimal local solution to reduce

the probability of falling into the optimal local solution, and then An improved slime

mould algorithm (SMA-CSA) based on mixed strategy optimization of Cauchy mutation

and simulated annealing is proposed.

2. The paper employs the CEC2013 standard functions and the Wilcoxon rank-sum test to

compare the development and exploration performance differences between SMA,

SMA-CSA, and other comparative algorithms.

3. The proponents of the slime mould algorithm and many improvers lack the solution verifi-

cation of discrete problems such as the vehicle routing problem with capacity constraints.
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Therefore, this paper applies SMA and SMA-CSA to two CVRP standard example pack-

ages, respectively, and further analyzes the experimental results to obtain the performance

difference under different optimization strategies and the supplementary research of the

algorithm on such problems.

The rest of the paper is organized as follows: Section II presents existing strategies for

improving the slime mould algorithm and application areas. The third section introduces the

mathematical description of the slime mould algorithm, as well as the improvement ideas for

the slime mould algorithm, the description and expression of the mathematical formula, and

the pseudo-code of the improved algorithm. In the fourth section, the CEC2013 and CVRP

examples are simulated for SMA and SMA-CSA, and the differences between the calculation

results and the comparison algorithms are tested. Finally, Section V introduces the main con-

clusions and limitations of this study.

Related work

Improvement of slime mould algorithm

Previous studies have fully demonstrated the superiority of metaheuristic optimization algo-

rithms in solving large-scale search and optimization problems [23]. In the last year of

research, the slime mold algorithm has fully demonstrated its applicability in engineering opti-

mization problems as a new meta-heuristic optimization method. However, in the in-depth

understanding of the slime mould algorithm, it is found that it has the defects of slow conver-

gence speed, weak global search ability, and easy falling into the optimal local solution. More-

over, when solving specific practical optimization problems, the improvement of the optimal

results of the slime mould algorithm is still limited, so how to improve the performance of

SMA has become a direction of future research. Table 1 lists the existing optimization ideas for

the SMA algorithm.

Like other metaheuristic algorithms, solving the balance between exploration and develop-

ment in SMA can effectively improve the global search performance of the algorithm. There-

fore, methods such as self-adaptive improvement of fixed parameters or the introduction of

self-adaptive weight factors to balance the development and exploration performance of SMA

have gradually become effective measures for many researchers. For example, ASMA [24] is

proposed by adopting a suitable mechanism for adaptively selecting SMA control parameters

and introducing an adversarial learning operator; DTSMA [25] uses adaptive t-distribution

variation balance to enhance the ability to explore and exploit; and AOSMA uses an adaptive

approach to decide whether opposition-based learning (OBL) will be used or not [26]. More-

over, from the experimental results, it can be seen that the global optimization results have sig-

nificantly improved with the adaptive optimization of the slime mould algorithm compared

with the original algorithm.

Similar to the adaptive improvement algorithm, many researchers also tend to use the cha-

otic map to optimize and improve the meta-heuristic optimization algorithm, and past

research has confirmed that the use of the chaotic map can improve the solution performance

of the optimization algorithm. The chaotic SMA (CSMA) proposed by reference [27] also con-

firmed the applicability of the chaotic mapping method to the performance improvement of

the SMA algorithm in the test of 62 benchmark functions. In addition, other scholars have

achieved similar results by improving SMA based on chaos mappings, such as the chaos-oppo-

sition-enhanced slime mould algorithm (CO-SMA) [28] and the Chaotic slime mould algo-

rithm (CSMA) [29–31].
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In addition, borrowing the traditional algorithm position update strategy to optimize the orig-

inal SMA algorithm and improve the solution performance of the original algorithm is also one

of many research schemes. For example, borrowing the location update behavior of the Whale

Optimization Algorithm (WOA) can enhance the global search behavior of the original slime

mould algorithm [32, 33]. Similarly, the two equations of the Sine-Cosine Algorithm (SCA) bor-

rowed by reference [34] to update the optimal solution position also achieved similar improve-

ments. In addition, the introduction of the adaptive β-hill-climbing algorithm mechanism has

also been proved to have the ability to strengthen the local search of SMA, which can well balance

the algorithm development and exploration performance [35]. Some researchers have integrated

and optimized the differential evolution algorithm and the slime mould algorithm, and the solu-

tion ability of the resulting hybrid algorithm has also been greatly improved [36, 37].

Table 1. A summary of some improved variants of the slime mold algorithm, including their names, improvement ideas, and the source of the algorithms.

Intelligent optimization algorithm Improvement ideas Sources

Adaptive

Optimization

Adaptive opposition slime mould algorithm

(AOSMA)

An adaptive method to decide whether to use opposition-based learning

(OBL). Sometimes OBL is used to further increase exploration.

Furthermore, it maximizes utilization by replacing one random search

agent with the best one in location updates

Naik, 2021

Adaptive slime mould algorithm (ASMA) Introduce an adaptive selection mechanism to achieve control over the

appropriate parameters of the original SMA, and introduce an

opposition-based learning operator to improve the optimal solution.

Lin, 2022

Dominant Swarm with Adaptive T-distribution

Mutation-based Slime Mould Algorithm

(DTSMA)

Using an adaptive t-distribution mutation balances to enhance the

exploration and exploitation ability of the original SMA, and a new

exploitation mechanism is hybridized to increase the diversity of

populations, forming Dominant Swarm with Adaptive T-distribution

Mutation-based Slime Mould Algorithm (DTSMA).

Yin, 2022

Chaotic

Optimization

Chaotic slime mould optimization algorithm

(CSMA)

Apply ten different chaotic maps to generate chaotic values to replace

random values in SMA. Using a Chaos Map aims to increase the speed at

which the SMA converges globally and prevent it from falling into a local

solution.

Altay, 2022

Chaos-opposition-enhanced slime mould

algorithm (CO-SMA)

The Chaotic Search Strategy (CSS) and crossover-opposition strategy

(COS) are introduced to the original SMA to improve the global search

performance.

Rizk-Allah, 2022

Chaotic slime mould algorithm (CSMA) The chaotic search strategy is introduced to replace the random value of

the original SMA. Moreover, the ergodicity of the chaotic value is used to

replace the randomness, which is used to jump out of the optimal local

solution.

Singh, 2022; Abid,

2022; Chen, 2020

Hybrid

Optimization

Hybrid SMA-WOA (HSMA-WOA) Apply the WOA algorithm within the first half of the iteration and use its

exploration capabilities to explore the search space. After reaching a

certain value, WOA will stop. Subsequently, HSMA-WOA started using

SMA to search for a better solution.

Abdel-Basset, 2020;

Hybrid improved slime mould algorithm with

adaptive β hill climbing

Brownian motion and tournament selection mechanisms are introduced

into the original SMA to improve the exploration ability. In addition, the

adaptive β-hill climbing and AβHC local search algorithms are

introduced to form the Hybrid improved slime mould algorithm with

adaptive β-hill climbing.

Sun, 2020

SMA combined to Adaptive Guided Differential

Evolution Algorithm (AGDE) (SMA-AGDE)

A solution for updating the SMA using AGDE’s mutation and crossover

process. Use the gradient method to escape subregions before updating

the solution. Component notation (r−CR) controls exploration and

development direction.

Houssein, 2021

Improved Slime Mould Algorithm (ISMA) Two equations were borrowed from the Sine Cosine Algorithm (SCA) to

update the position of the solution to obtain the best solution, forming

the Improved Slime Mould Algorithm.

Hassan, 2021

A hybrid Slime mould algorithm with whale

optimization algorithm

Borrowing the position updating behaviour of the Whale Optimization

Algorithm (WOA) to enhance the searching behaviour of the slime

mould algorithm (SMA).

Bhandakkar, 2022

https://doi.org/10.1371/journal.pone.0280512.t001
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Application of slime mould algorithm

By reviewing the literature, it appears that the current slime mould algorithm is widely

used. Researchers have applied the slime mould algorithm and its variants to engineering

optimization problems and other research fields. For example, solving single- and du-al-

objective economic and emission scheduling (EED) problems considering valve point

effects [34]; determining the best operating rules for complex hydropower multi-reservoir

prediction problems [38]; distributed generation (DG) solution of distribution network

reconfiguration (DNR) problem [39]; photovoltaic model optimization design (Lin, 2022);

demand estimation of urban water resources problem [40]; feature selection [41]; Reliabil-

ity optimization of micro-milling cutting parameters [42]; Opti-mal Power Flow Problem

[43]; A Cost-Effective Solution for Non-Convex Economic Load Dispatch Problems in

Power Systems [44]; path planning and obstacle avoidance problem in mobile robots [45],

optimal load-shedding in distribution system problem [30], etc.

Referring to the application scenarios of other optimization algorithms, the slime mold

algorithm can also do a lot. For example, an improved whale optimization algorithm for

COVID-19 medical feature selection [46]; a dynamic arithmetic optimization algorithm for

Tesla optimization under natural frequency constraints [47]; Dynamic Water Strider Algo-

rithm for optimal design of bone structure [48]; A Quantum-Based Avian Navigation Opti-

mizer for feature selection of high-dimensional medical data [49]; Multi-trial vector

differential evolution algorithm for non-decomposition large-scale global optimization

[50]; An Advanced Dipper-Throated Meta-Heuristic Optimization Algorithm for Digital

Image Watermarking [51]; A Multi-Search Arithmetic Optimization Algorithm for Effi-

cient Text Document Clustering [52]; An Effective Whale Optimization Algorithm to Solve

the Optimal Power Flow Problem [53], etc.

It can be seen from the literature results that the slime mould algorithm has applicability in

solving optimization problems, and with the improvement of the original algorithm, the solu-

tion accuracy and convergence speed of the improved slime mould algorithm have been

improved. Among the many problems solved, there is still a lack of verification solutions for

vehicle routing problems such as CVRP, VRPTD, VRPTW, and GVRP, as well as discrete

problems such as warehouse routing problems (LRP). Therefore, in the fourth section, this

paper solves the CVRP problem discretely and uses two CVRP calculation examples to expand

the application research of the slime mould algorithm and its variants.

Methodology

Because the original slime mould algorithm is easy to fall into the optimal local solution; there-

fore, in the algorithm design process, we need to introduce a new mechanism to improve the

global optimization ability of the original slime mould algorithm and S1 Algorithm shows the

pseudo-code of SMA.

Slime mould algorithm

Approach food. The slime mould spontaneously approaches the food according to the

smell of the food, and the following mathematical expression can express its expansion pattern.

Fig 1 shows how the slime mold search searches for the optimal solution and the solution to

the CVRP problem.

X t þ 1ð Þ
�����!

¼
Xb tð Þ
���!

þ vb
�!
� W�! � XA tð Þ

���!
� XB tð Þ
���!� �

; r < p

vc!� X tð Þ
��!

; r � p
ð1Þ

8
<

:
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vb
�!
¼ � a; a½ � ð2Þ

Where vb
�!

is a parameter in the range of [-a, a], and the formula is shown in Eq (2); where the

value of t represents the current number of iterations, and max_t represents the maximum

iterations as shown in Eq (3); vc! is a linear decreasing process, and the absolute value takes val-

ues from 1 to 0; Xb
�!

represents the current individual location with the highest food odour; X!

represents the position of slime mould; XA
�!

and XB
�!

represent two individuals randomly

selected from all slime mould; W�! represents the specific weight of slime mould.

a ¼ arctan h �
t

max t

� �

þ 1

� �

ð3Þ

p ¼ tanhjSðiÞ� DFj ð4Þ

W smell lndex ið Þð Þ
������������!

¼

1þ r � log
bF � S ið Þ
bF � wF

þ 1

� �

; condition

1 � r � log
bF � S ið Þ
bF � wF

þ 1

� �

; others
ð5Þ

8
>>><

>>>:

Smell lndex ¼ sort Sð Þ ð6Þ

The Eq (4) denote the P-value, where S(i) represents the fitness of the mucilaginous individ-

ual, i 2 (1,2,3,. . .. . ., n); DF represents the best fitness obtained by the slime mould individual

in all iterations. The Eq (5) simulates the relationship between food odour concentration and

mucor vein width; where the condition represents the S(i) value in the first half of the optimal

solution ordering, this condition serves to simulate the search pattern chosen by the mucor

Fig 1. Slime mold search optimal solution and the CVRP solution path. The nodes in the graph represent the possible optimal solutions in the slime mould search

process; the nodes in the b graph represent the client nodes in the CVRP problem.

https://doi.org/10.1371/journal.pone.0280512.g001
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based on food concentration; the r is used to simulate the uncertainty in the form of mucor

vein contraction, and the value is a random value in the interval [0,1]; the log contributes to

reduce the rate of change of the numerical contraction. The bF value represents the optimal

iteration value in the current iteration process; wF value is the worst value in the current itera-

tion process; Smelllndex is the ranking of all iterations.

Wrap food. The Eq (7) simulates the process of slime mould searching for food and

updating its position after searching for food based on Eq (1) and combines Eq (5) to simulate

the shrinkage of the tissue structure of slime mould veins. In the process of searching for food,

the slime mould determines the search weight of the area by judging the concentration of the

food odour between the areas. The higher the concentration of food, the stronger the bio-

vibration of the bio-vibrator, the faster the flow of cytoplasm, and the thicker the intercellular

venous route, the greater the search weight of the area; otherwise, it will turn to search other

areas.

X t þ 1ð Þ
�����!

¼

rand � UB � LBð Þ þ LB; rand < z

Xb tð Þ
���!

þ vb
�!
� W�! � XA tð Þ

���!
� XB tð Þ
���!� �

; r < p

vc!� X tð Þ
��!

; r � p

ð7Þ

8
>>><

>>>:

Where LB and UB represent the size of the upper and lower boundaries of the slime search

process; rand denotes a random value in the interval [0,1], and how to determine the parame-

ter z value need to be discussed according to specific experiments.

Oscillation. The slime mold controls the thickness of their own venous network by their

own oscillation fluctuations, the simulation process is shown in Eq (5). And the exploration

process is realized by changing parameters such as W�!, vb
�!

, vc! according to the size of food

concentration.

The values of vb
�!

and vc! oscillate randomly between the intervals [-a, a] and [–1,1], and

eventually converge to zero. In addition, when the slime mold explores the food based on the

food concentration, some of the slime will still be separated to explore other unknown areas. It

is worth mentioning that the harsh environments encountered during exploration are infor-

mative for simulating real situations, such as strong sunlight and dryness.

Proposed SMA-CSA

Cauchy mutation strategy. In the original slime mould algorithm, the generation of the

optimal position depends on the concentration of food odor when the slime mould searches

the unknown area. When the population of individuals tends to aggregate due to the increas-

ing number of iterations, the optimal individual will lack the ability to quickly jump out of the

optimal local solution, which makes the algorithm prone to the premature phenomenon.

Therefore, to strengthen the ability of SMA to jump out of the optimal local solution, this

paper introduces the fusion Cauchy mutation strategy to perturb the current optimal solution

to ensure that the algorithm has greater population diversity during local optimization.

The Cauchy variation originates from the Cauchy distribution. According to the Cauchy

distribution mechanism, the two ends of the Cauchy distribution function curve are longer,

indicating that it can make it easier for individuals to escape from local extremes, and a smaller

peak will guide individuals to spend less time searching for the optimal location. Therefore,

the Cauchy mutation operator is introduced into the slime mould algorithm to fully use its
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strong perturbation ability to control the current optimal solution. The formula is as follows:

X�best t þ 1ð Þ ¼ Xbest tð Þ þ Xbest tð Þ � Cauchy 0; 1ð Þ ð8Þ

Xbest t þ 1ð Þ ¼
Xbest tð Þ þ Xbest tð Þ � Cauchy 0; 1ð Þ; rand1 > 0:5

Xbest tð Þ; rand1 < 0:5
ð9Þ

(

Among them, rand1 is a random probability number that obeys the normal distribution.

When rand1>0.5, the algorithm uses the Cauchy operator to mutate the optimal solution, and

its powerful perturbation ability can greatly improve the diversity of the population around

the optimal solution. When the optimal individual of the local extreme value is found, it can

help it escape quickly to ensure the robust optimization of the algorithm; when rand1<0.5, the

algorithm retains the current optimal solution.

Annealing mechanism. The SMA-CSA algorithm proposed in this section is derived

from the original SMA, and S2 Algorithm shows the pseudo-code of SMA-CSA. The annealing

mechanism is introduced into the original SMA to improve the algorithm’s search and global

optimization capabilities, the Metropolis sampling criteria as acceptance criteria, and control

the annealing rate and minimum temperature, which form the algorithm’s structure in this

paper. Compared with SMA, adding the annealing operator strengthens the robustness of the

algorithm and reduces the probability of the algorithm falling into a local optimal solution dur-

ing the search process. This method has also been extensively validated in solving problems

such as TSP problems and 3D/2D fixed-outline floor planning [54, 55].

In SMA-CSA, whether to accept the current solution is determined by Eq (10):

PA að Þ ¼ e� F að Þ=Tc ð10Þ

Tn ¼ Tc � ε ð11Þ

Tn ¼ Tp � Tc

� �
� oþ Tc ð12Þ

In Eq (10), Tc represents the current temperature, and the Metropolis sampling criterion

PA(a) represents the possible probability that solution a is accepted. Each time a new solution

is constructed, the current temperature is updated with Eq (11); where ε is a parameter that

controls the rate of decrease of the current temperature, and Tn represents the temperature of

the next iteration. It should be noted that in order to prevent the temperature from converging

too fast to affect the quality of the solution, we need to introduce Eq (12) to adjust the current

temperature; in Eq (12), Tp denotes the temperature at the last time when a feasible solution

generated by SMA is accepted, where ω is a control parameter for the convergence rate, which

is set to 0.998 in this paper.

The improved algorithm structure and steps are shown in Fig 2.

Simulation results

CEC2013 benchmark functions

In this section, SMA-CSA is tested and compared with other algorithms using 23 standard test

functions (Tables 2 and 3) from the CEC 2013. The average and standard deviation (STD) of

the fitness function values are used as evaluation metrics to compare the algorithms’ merits.

The description of the parameters for the CEC2013 benchmark algorithm is presented in

Tables 2 and 3. F1-F7 are single-modal benchmark functions, which can effectively test the
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convergence rate and local search ability of the algorithm and have only one global optimal

solution; F8-F13 are multimodal benchmark functions with multiple locally optimal solutions

and one optimal global solution, which can effectively test the global search ability of the algo-

rithm; and F14-F23 are composite benchmark functions, which can effectively test the algo-

rithm exploitation ability and the balance search between the performance of the algorithm.

Fig 2. Flowchart of SMA-CSA. The annealing mechanism is in the red dotted box.

https://doi.org/10.1371/journal.pone.0280512.g002

Table 2. Single-modal benchmark functions.

Functions dim range

1 f1 xð Þ ¼
Pn

i¼1
x2
i 30 [-100,100]

2 f2 xð Þ ¼
Pn

i¼1
jxij þ

Qn
i¼1
jxij 30 [-10,10]

3 f3 xð Þ ¼
Pn

i¼1

Pi
j� 1

xj

� �2 30 [-100,100]

4 f4 xð Þ ¼ maxi jxij; 1 � i � nf g 30 [-100,100]

5 f5 xð Þ ¼
Pn� 1

i¼1
100 xiþ1 � x2

i

� �2
þ � 1ð Þ

2
h i

30 [-30,30]

6 f6 xð Þ ¼
Pn

i¼1
xi þ 0:5½ �ð Þ

2 30 [-100,100]

7 f7 xð Þ ¼
Pn

i¼1
ix4

i þ random 0; 1½ � 30 [-128,128]

https://doi.org/10.1371/journal.pone.0280512.t002
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Result of benchmark functions during 1000 iterations

In this paper, the algorithms used for comparison include the traditional algorithms HHO

[16], EO [56], TSA [57], GWO [17], SMA [18], and the improved algorithms SMA-CSA,

ESMA [58], L-SHADE [59], CMA-ES [60], CSMA-1 [27], and CSMA-2 [27]. The software

used for testing is MATLAB 2020b, and the hardware is a laptop computer with a 2.5GHz Intel

(R) Core i5-7200U processor and 4GB memory. Each algorithm performs 20 independent

operations to overcome randomness.

As shown in Table 4, in all experiments, the parameters of the comparative algorithms were

the same as the recommended settings in their original works.

Comparison of benchmark function results between traditional algorithms. The

results of the fitness test between SMA-CSA and the traditional algorithm are shown in

Table 5, where the bolded experimental data are the best results for the selected data.

Among them, for SMA-CSA, F1-F4 and F7 can achieve the best results and show excellent

global convergence performance. For F5, SMA-CSA is second only to HHO; the

Table 3. Multimodal benchmark function.

Name Functions dim range

8 minf8 xð Þ ¼
Pn

i¼1
� xisin

ffiffiffiffiffiffi
jxij

p� �
n [-500,500]

9 minf9 xð Þ ¼
Pn

i¼1
x2
i � 10cos 2pxið Þ þ 10

� �
n [-5.12,5.12]

10 minf10 xð Þ ¼ � 20 exp � 0:2 1

n

Pn
i¼1

x2
i

� �0:5
� �

� exp ð1n
Pn

i¼1
cos 2pxið ÞÞ þ 20þ e n [-32,32]

11 minf11 xð Þ ¼ 1

4000

Pn
i¼1

x2
i �

Qn
i¼1

cosð xiffiip Þ þ 1 n [-600,600]

12 minf12 xð Þ ¼
p

n
10sin py1ð Þ þ

Xn� 1

i¼1
yi � 1ð Þ

2
1þ 10sin2 pyiþ1

� �� �
þ yn � 1ð Þ

2
n o

þ

Pn
i¼1

u xi; 10; 100; 4ð Þ; yi ¼ 1þ
xi þ 1

4

u xi; a; k;mð Þ ¼

k xi � að Þ
mxi > a

0 � a < xi < a

k � xi � að Þ
mxi < a

8
>><

>>:

n [-50,50]

13 minf13 xð Þ ¼ 0:1 sin2 3px1ð Þ þ
Pn

i¼1
xi � 1ð Þ

2
1þ sin2 3pxi þ 1ð Þ½ � þ xn � 1ð Þ

2
1þ sin2 2pxnð Þ½ �

� �
þ
Pn

i¼1
u xi; 5; 100; 4ð Þ n [-50,50]

14
F14 xð Þ ¼ ð 1

500
þ
P25

j¼1

1

jþ
P2

i¼1
xi � aijð Þ

6Þ
� 1 2 [-65,65]

15
F15 xð Þ ¼

P11

i¼1

ai �
x1 b2

i þb1x2ð Þ
b2
i þb1x3þx4

� �2 4 [-5,5]

16 F16 xð Þ ¼ 4x2
1
� 2:1x4

1
þ 1

3
x6

1
þ x1x2 � 4x2

2
þ 4x4

2
2 [-5,5]

17 F17 xð Þ ¼ ðx2 �
5:1

4p2 x2
1
þ 5

p
x1 � 6Þ

2
þ 10ð1 � 1

8p
Þcos x1 þ 10 2 [-5,5]

18 F18 xð Þ ¼ 1þ x1 þ x2 þ 1ð Þ
2

19 � 14x1 þ 3x2
1
� 14x2 þ 6x1x2 þ 3x2

2

� �� �

� 30þ 2x1 � 3x2ð Þ
2
� 18 � 32x1 þ 12x2

1
þ 48x2 � 36x1x2 þ 27x2

2

� �� �

2 [-2,2]

19
F19 xð Þ ¼ �

P4

i¼1

ciexpð�
P3

j¼1

aijðxj � pijÞ
2
Þ

3 [1,3]

20
F20 xð Þ ¼ �

P4

i¼1

ciexpð�
P6

j¼1

aijðxj � pijÞ
2
Þ

6 [0,1]

21
F21 xð Þ ¼ �

P5

i¼1

X � aið Þ X � aið Þ
T
þ ci

� �� 1 4 [0,10]

22
F22 xð Þ ¼ �

P7

i¼1

X � aið Þ X � aið Þ
T
þ ci

� �� 1 4 [0,10]

23
F23 xð Þ ¼ �

P10

i¼1

X � aið Þ X � aið Þ
T
þ ci

� �� 1 4 [0,10]

https://doi.org/10.1371/journal.pone.0280512.t003
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performance is close. And F6 is worse than EO and HHO, but the result is still satisfactory,

so it can be ranked third.

Overall, SMA-CSA can obtain the global optimal solution in most cases and exhibits excel-

lent convergence speed and local search capability.

For F9–F11 and F14, SMA-CSA can achieve optimal global convergence with the smallest

standard deviation; for F12, it is worse than EO and HHO, can be ranked third; for F13, the

global convergence performance is slightly inferior to HHO, ranking second and showing a

better global search capability than the original SMA.

In addition, F15-F17 also can achieve optimal global solution, and have the smallest stan-

dard deviation and show excellent stability. For F21-F23, the average performance of

SMA-CSA and SMA is equivalent, but SMA-CSA has the smallest standard deviation. Which

also fully proves that SMA-CSA can significantly improve the equilibrium exploration ability

and global search ability after adding the strategy of Cauchy mutation and simulated anneal-

ing. And Fig 3 shows the convergence curve of the traditional algorithm for some CEC2013

benchmark functions.

Comparison of benchmark function results between traditional algorithms with 60

dimensions. In order to highlight the high-dimensional optimization performance of

SMA-CSA, this paper further tests 23 benchmark functions in 60 dimensions, and the results

are shown in Table 6. SMA-CSA achieves the number one global value in most cases, such as

F1-F5, F7, F8, F10, F11, F15, F16, and F18, and the variance stabilizes. However, SMA-CSA is

inferior to HHO in F6 and F13. SMA-CSA still has excellent solution accuracy and global opti-

mization capabilities, even in high-dimensional tests.

Comparison of benchmark function results between improved algorithms. In order to

compare the comprehensive performance of SMA-CSA more fairly, other improved algo-

rithms are compared in this paper, and the results are shown in Table 7. Among the 23 test

functions, SMA-CSA can obtain the optimal global value in most cases, such as F1-F3, F7-F11,

F14-F19, and F21-F23. Moreover, the variance tends to be stable. However, SMA-CSA is

slightly inferior to L-SHADE in the F6, F12, and F13 test functions. Overall, even with the

improved algorithm, SMA-CSA still has excellent solution accuracy and global optimization

ability.

Wilcoxon rank sum test and Friedman’s ranking test

In order to compare the performance differences between the algorithms more clearly, we

adopted the literature recommendation reference [61] and performed the nonparametric Wil-

coxon rank sum test on the experiment at the p = 0.05 significant level [62]. The experimental

Table 4. Algorithms-specific parameter settings.

Algorithm Parameter settings

SMA N = 30, z = 0.03

GWO N = 30, a = [2, 0]

TSA R = 1, Pmin = 1, Pmin = 4

HHO N = 30, beta = 1.5

ESMA N = 30, z = 0.03

L-SHADE N = 18D, H = 6, p = 0.11 and Arc rate = 2.6

CMA-ES N = 4 + 3 log (D), μ = N/2

EO λ = [0,1], a1 = 2, a2 = 1, GP = 0.5

CSMA N = 30, z = 0.03

https://doi.org/10.1371/journal.pone.0280512.t004
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Table 5. Comparison results on benchmark functions with traditional algorithms.

Function SMA-CSA SMA HHO EO GWO TSA

F1 AVG 0.000000E+00 0.000000E+00 2.579614E-180 7.673746E-41 2.768645E-59 4.950208E-45

STD 0.000000E+00 0.000000E+00 0.000000E+00 1.892294E-40 1.509283E-59 1.428727E-44

F2 AVG 1.605563E-230 3.341937E-228 8.411917E-97 8.200993E-23 1.152787E-33 5.709024E-29

STD 0.000000E+00 0.000000E+00 1.969686E-96 1.081512E-22 1.710975E-33 7.080953E-29

F3 AVG 0.000000E+00 0.000000E+00 6.970295E-19 3.237446E-09 1.396782E-13 6.447270E-13

STD 0.000000E+00 0.000000E+00 3.038281E-18 8.633206E-09 2.430992E-13 2.351925E-12

F4 AVG 1.211135E-231 7.540322E-193 1.902468E-89 4.443137E-10 1.383964E-13 3.072869E-03

STD 0.000000E+00 0.000000E+00 8.228673E-89 5.696233E-10 2.132990E-13 4.628653E-03

F5 AVG 3.228899E-01 4.569646E-01 1.354207E-03 2.536489E+01 2.626128E+01 2.876574E+01

STD 1.471756E-01 1.462580E-01 1.769134E-03 2.292356E-01 7.833016E-01 2.022235E-01

F6 AVG 3.896839E-04 1.326758E-03 3.430780E-05 8.566418E-06 5.088489E-01 4.104490E+00

STD 3.738961E-04 8.219303E-04 3.653300E-05 4.027177E-06 2.953591E-01 8.608806E-01

F7 AVG 2.153370E-05 2.095878E-04 1.426068E-04 1.279508E-03 5.921268E-04 5.948308E-03

STD 2.492702E-05 1.122627E-04 1.371302E-04 6.453354E-04 6.839246E-04 1.784391E-03

F8 AVG -1.256940E+04 -1.256930E+04 -1.256920E+04 -8.809971E+03 -6.331787E+03 -6.234268E+03

STD 5.695252E-02 1.360116E-01 2.401963E-01 5.559641E+02 9.978054E+02 6.639617E+02

F9 AVG 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 1.136868E-14 1.776554E+02

STD 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 2.898457E-14 3.519182E+01

F10 AVG 8.881784E-16 8.881784E-16 8.881784E-16 8.348877E-15 1.652012E-14 1.570259E+00

STD 0.000000E+00 0.000000E+00 0.000000E+00 1.548592E-15 2.842171E-15 1.215018E+00

F11 AVG 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 8.020254E-04 9.561414E-03

STD 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 3.495948E-03 9.628837E-03

F12 AVG 1.942059E-04 1.265078E-03 6.626789E-07 5.010153E-07 3.474556E-02 8.613683E+00

STD 2.875634E-04 7.434486E-04 6.667809E-07 3.745496E-07 1.650382E-02 1.689106E+00

F13 AVG 2.646654E-04 1.442929E-03 5.258811E-05 3.754184E-02 4.326672E-01 2.644201E+00

STD 2.993505E-04 1.712270E-03 3.652454E-05 5.153452E-02 2.458081E-01 3.866198E-01

F14 AVG 9.980038E-01 9.980038E-01 1.047705E+00 9.980038E-01 1.978449E+00 5.254263E+00

STD 2.626252E-13 2.329119E-14 2.166432E-01 1.359740E-16 2.576514E+00 4.380613E+00

F15 AVG 2.835498E-04 5.184759E-04 3.344348E-04 2.368814E-03 6.263507E-03 1.445361E-02

STD 1.367368E-04 1.848918E-04 1.329292E-05 6.001443E-03 8.601985E-03 1.205828E-02

F16 AVG -1.031628E+00 -1.031628E+00 -1.031628E+00 -1.031628E+00 -1.031628E+00 -1.030047E+00

STD 3.543574E-11 1.179538E-09 3.914943E-11 6.164821E-16 2.767956E-08 6.893330E-03

F17 AVG 3.978874E-01 3.978874E-01 3.978880E-01 3.978874E-01 3.979093E-01 3.979168E-01

STD 8.579928E-09 2.482701E-08 7.744872E-07 0.000000E+00 9.425006E-05 3.591852E-05

F18 AVG 3.000000E+00 3.000000E+00 3.000000E+00 3.000000E+00 3.000005E+00 2.869328E+01

STD 7.166682E-12 7.251322E-13 1.815263E-07 9.721058E-16 1.029706E-05 3.676483E+01

F19 AVG -3.862782E+00 -3.862782E+00 -3.862118E+00 -3.862388E+00 -3.861328E+00 -3.862369E+00

STD 9.993385E-08 1.732100E-07 1.309203E-03 1.576306E-03 2.584704E-03 1.592744E-03

F20 AVG -3.243908E+00 -3.221876E+00 -3.174149E+00 -3.283054E+00 -3.246269E+00 -3.268992E+00

STD 5.611659E-02 4.080885E-02 7.312254E-02 6.096561E-02 7.175137E-02 5.762411E-02

F21 AVG -1.015315E+01 -1.015308E+01 -5.807154E+00 -8.391108E+00 -1.015269E+01 -5.516240E+00

STD 5.116685E-05 8.257390E-05 1.791615E+00 2.761756E+00 2.471429E-04 3.331850E+00

F22 AVG -1.040288E+01 -1.040278E+01 -4.903478E+00 -8.340148E+00 -1.040186E+01 -6.948757E+00

STD 3.969636E-05 7.966234E-05 1.669066E+00 2.839746E+00 4.540332E-03 3.146890E+00

F23 AVG -1.053633E+01 -1.053621E+01 -5.947181E+00 -1.053641E+01 -1.053594E+01 -4.547859E+00

STD 7.035456E-05 2.144832E-04 1.926396E+00 6.782330E-09 2.088163E-04 3.424523E+00

Note: The data in bold is the minimum value of all comparison algorithms.

https://doi.org/10.1371/journal.pone.0280512.t005
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results used to verify SMA-CSA, SMA, and other comparison algorithms are statistically differ-

ent. Finally, the Friedman ranking test is performed on all test results, aiming to show the algo-

rithmic computing performance gap more intuitively. The results of the Wilcoxon rank-sum

test are shown in Table 8.

Fig 3. The convergence behavior of the comparative methods using CEC2013 problems. F1-F7 are single-modal benchmark functions; F8-F13 are

multimodal benchmark functions; and F14-F23 are composite benchmark functions.

https://doi.org/10.1371/journal.pone.0280512.g003
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The test results show that, in most cases, there are performance differences between

SMA-CSA and other algorithms. There are five benchmark functions with the same results for

the test results of the SMA-CSA and SMA algorithms, and the ideal and optimal results are

achieved. The null hypothesis cannot be accepted for F4, F5, F6, F7, F12, F13, F15, F18, F21,

F22, and F23 benchmark function test results at the p = 0.05 significant level. That is, the global

performance of SMA-CSA and SMA is significantly different. However, for F2, F8, F14, F16,

F17, F19, and F20 functions, at the p = 0.05 significant level, the null hypothesis is not rejected,

so the performance of SMA-CSA is similar to the original SMA.

In addition, only discussing the results of the Wilcoxon test lacks intuitive feelings, so the

Friedman ranking test is added for comprehensive ranking [63]. In addition, separate rankings

are performed according to the types of different benchmark functions, and finally, the mean

ranking of all benchmark functions is given. As shown in Tables 9–11, for the single-peak and

multi-peak test functions F1-F13, the mean ranking of SMA-CSA is 1.8462, ranking it first ahead

of other algorithms, and its performance is 27.27% higher than that of SMA. HHO and SMA are

in SMA-SA, followed in second and third place, respectively. It can be seen that SMA-CSA has

better optimization performance for unimodal and multimodal benchmark functions.

Table 6. Comparison of benchmark function results between traditional algorithms with 60 dimensions.

Functions SMA-CSA SMA HHO GWO EO TSA

F1 AVG 0.0000E+00 0.0000E+00 2.7476E-185 2.2659E-39 4.3300E-33 7.0864E-33

STD 0.0000E+00 0.0000E+00 0.0000E+00 2.9668E-39 4.7600E-33 9.3181E-33

F2 AVG 4.8216E-241 4.4603E-172 5.8549E-99 1.3184E-23 1.8600E-18 2.0148E-21

STD 0.0000E+00 0.0000E+00 8.0418E-99 6.2153E-24 2.4400E-18 1.2492E-21

F3 AVG 0.0000E+00 0.0000E+00 3.2064E-124 7.5613E-05 1.0452E-02 2.2634E+00

STD 0.0000E+00 0.0000E+00 6.4127E-124 7.1374E-05 2.9743E-02 2.4793E+00

F4 AVG 5.1209E-239 3.3472E-201 3.9765E-97 9.3922E-09 8.5800E-06 8.0505E+00

STD 0.0000E+00 0.0000E+00 7.3080E-97 4.9794E-09 2.8900E-05 4.0839E+00

F5 AVG 3.8655E-02 1.0757E+00 4.3459E-01 5.7049E+01 5.5587E+01 5.7829E+01

STD 2.8166E-02 1.3489E+00 8.6011E-01 5.5307E-01 2.5392E-01 9.2755E-01

F6 AVG 1.7824E-02 3.5875E-02 1.2866E-04 3.2820E+00 3.4352E-01 6.9340E+00

STD 1.2313E-02 1.6473E-02 1.8968E-04 9.8583E-01 2.9113E-01 4.1761E-01

F7 AVG 2.5926E-05 9.7826E-05 6.2958E-05 1.3287E-03 2.1980E-03 1.0142E-02

STD 1.5130E-05 3.0592E-05 2.6627E-05 7.6195E-04 8.3800E-04 2.6394E-03

F8 AVG -2.5138E+04 -2.5138E+04 -2.5134E+04 -1.0990E+04 -1.6752E+04 -1.0306E+04

STD 4.2073E-01 5.6854E-01 8.4896E+00 6.3730E+02 7.9045E+02 6.6013E+02

F10 AVG 8.8818E-16 8.8818E-16 8.8818E-16 4.1389E-14 1.8800E-14 6.1292E-01

STD 0.0000E+00 0.0000E+00 0.0000E+00 1.7405E-15 4.2300E-15 1.2258E+00

F11 AVG 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.6300E-04 8.5266E-03

STD 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.8610E-03 7.0650E-03

F13 AVG 3.3577E-03 1.2580E-02 2.8216E-05 2.8281E+00 1.2131E+00 6.7418E+00

STD 2.7792E-03 9.7061E-03 1.8206E-05 5.3487E-01 4.3662E-01 6.6120E-01

F15 AVG 3.2199E-04 5.6040E-04 3.3568E-04 7.3770E-03 4.3720E-03 1.2808E-02

STD 2.3822E-05 3.3762E-04 2.8769E-05 8.7710E-03 8.2060E-03 9.4954E-03

F16 AVG -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00

STD 7.5976E-11 3.0601E-11 6.7319E-11 3.7888E-09 1.9700E-16 8.3828E-08

F18 AVG 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00

STD 3.7685E-14 8.1038E-13 1.0004E-09 7.8673E-06 1.1100E-15 5.1321E-05

Note: The data in bold is the minimum value of all comparison algorithms.

https://doi.org/10.1371/journal.pone.0280512.t006
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Table 7. Comparison of benchmark function results between improved algorithms.

function SMA-CSA SMA ESMA L-SHADE CMA-ES CSMA-1 CSMA-2

F1 AVG 0.00E+00 0.00E+00 0.00E+00 1.10E-27 8.24E-11 0.00E+00 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 1.77E-27 4.27E-11 0.00E+00 0.00E+00

F2 AVG 1.61E-230 2.85E-156 2.34E-184 2.95E-14 1.44E-05 5.11E-225 7.58E-210

STD 0.00E+00 0.00E+00 0.00E+00 1.75E-14 4.58E-06 0.00E+00 0.00E+00

F3 AVG 0.00E+00 0.00E+00 0.00E+00 1.86E-13 2.29E+00 0.00E+00 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 4.51E-13 3.06E+00 0.00E+00 0.00E+00

F4 AVG 1.21E-231 2.30E-197 6.64E-238 2.75E-06 1.89E-04 2.15E-237 8.43E-236

STD 0.00E+00 0.00E+00 0.00E+00 2.36E-06 6.40E-05 0.00E+00 0.00E+00

F5 AVG 3.23E-01 7.81E+00 3.76E+00 1.41E+01 6.50E+01 1.48E-01 1.78E-01

STD 1.47E-01 6.37E-01 8.44E+00 8.50E-01 1.68E+02 1.19E-01 9.57E-02

F6 AVG 3.90E-04 6.13E-03 2.02E-03 4.62E-27 7.06E-11 9.59E-04 9.78E-04

STD 3.74E-04 4.15E-04 8.36E-04 2.20E-26 3.67E-11 3.07E-04 6.18E-04

F7 AVG 2.15E-05 1.75E-04 1.50E-04 1.34E-03 5.23E-03 4.67E-05 5.16E-05

STD 2.49E-05 7.12E-04 1.29E-04 3.64E-04 1.96E-03 3.32E-05 2.69E-05

F8 AVG -1.26E+04 -1.26E+04 -1.26E+04 -3.26E+03 -inf -1.26E+04 -1.26E+04

STD 5.70E-02 3.36E-01 1.58E-01 4.15E+02 NaN 9.56E-02 6.65E-02

F9 AVG 0.00E+00 0.00E+00 0.00E+00 6.43E+00 1.62E+02 0.00E+00 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 1.46E+00 9.41E+00 0.00E+00 0.00E+00

F10 AVG 8.88E-16 8.88E-16 8.88E-16 4.20E-14 2.56E-06 8.88E-16 8.88E-16

STD 0.00E+00 0.00E+00 0.00E+00 2.36E-14 6.98E-07 0.00E+00 0.00E+00

F11 AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.57E-10 0.00E+00 0.00E+00

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.28E-10 0.00E+00 0.00E+00

F12 AVG 1.94E-04 2.99E-03 3.31E-03 2.96E-16 5.35E-12 3.19E-04 3.09E-04

STD 2.88E-04 3.92E-03 4.86E-03 1.54E-16 2.83E-12 2.89E-04 2.30E-04

F13 AVG 2.65E-04 6.52E-03 3.60E-03 9.67E-15 5.27E-11 6.16E-04 4.41E-04

STD 2.99E-04 6.83E-03 5.39E-03 5.93E-15 3.32E-11 3.22E-04 2.42E-04

F14 AVG 9.98E-01 9.98E-01 9.98E-01 8.63E+00 5.25E+00 9.98E-01 9.98E-02

STD 2.63E-13 4.11E-13 4.11E-13 3.18E+00 3.57E+00 4.71E-14 1.26E-13

F15 AVG 2.84E-04 5.58E-04 5.61E-04 3.08E-04 3.79E-04 3.33E-04 3.45E-04

STD 1.37E-04 2.50E-04 2.18E-04 3.03E-19 7.39E-05 3.99E-05 3.72E-05

F16 AVG -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00

STD 3.54E-11 2.34E-09 1.77E-09 2.61E-16 2.24E-16 1.76E-11 6.59E-11

F17 AVG 3.98E-01 3.98E-01 3.98E-01 7.79E+00 4.89E+00 3.98E-01 3.98E-01

STD 8.58E-09 1.24E-07 1.15E-07 3.44E-01 6.50E-01 1.79E-08 1.37E-08

F18 AVG 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

STD 7.17E-12 1.41E-10 3.19E-11 2.22E-15 3.60E-15 9.55E-12 1.17E-11

F19 AVG -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00

STD 9.99E-08 3.21E-07 3.05E-06 3.14E-15 3.14E-15 1.55E-08 3.04E-08

F20 AVG -3.24E+00 -3.25E+00 -3.25E+00 -3.29E+00 -3.26E+00 -3.23E+00 -3.24E+00

STD 5.61E-02 6.00E-02 5.96E-02 5.09E-02 6.00E-02 4.85E-02 5.70E-02

F21 AVG -1.02E+01 -1.02E+01 -1.02E+01 -5.06E+00 -8.30E+00 -1.02E+01 -1.02E+01

STD 5.12E-05 2.52E-04 2.20E-04 5.63E-07 3.21E+00 8.16E-05 1.15E-04

F22 AVG -1.04E+01 -1.04E+01 -1.04E+01 -5.09E+00 -1.04E+01 -1.04E+01 -1.04E+01

STD 3.97E-05 2.73E-04 2.45E-04 1.25E-06 8.97E-15 8.53E-05 5.15E-05

F23 AVG -1.05E+01 -1.05E+01 -1.05E+01 -5.26E+00 -1.02E+01 -1.05E+01 -1.05E+01

STD 7.04E-05 3.23E-04 2.13E-04 6.32E-01 1.59E+00 7.01E-05 6.47E-05

Note: The data in bold is the minimum value of all comparison algorithms.

https://doi.org/10.1371/journal.pone.0280512.t007

PLOS ONE Improved Slime Mould Algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0280512 January 25, 2023 15 / 30

https://doi.org/10.1371/journal.pone.0280512.t007
https://doi.org/10.1371/journal.pone.0280512


For the composite benchmark function F14-F23, the mean ranking of SMA-CSA is 2.00,

ranking it first, which is significantly better than SMA and other algorithms, and the perfor-

mance is improved by 16.67% compared with SMA. It shows that for the composite bench-

mark function, the global optimization performance of the original SMA can be improved by

introducing a mixed strategy of annealing and Cauchy mutation. And the results in Table 10

show that in the benchmark function measurement under 60 dimensions, the performance

improvement of SMA-CSA is still obvious. From the perspective of average ranking, compared

with the original SMA, the optimization performance is up 28.35%.

Table 8. Comparison results on Wilcoxon rank sum test with algorithms.

Function SMA HHO EO GWO TSA

F1 NaN 8.01E-09 8.01E-09 8.01E-09 8.01E-09

F2 2.97E-01 6.70E-08 6.70E-08 6.70E-08 6.70E-08

F3 NaN 8.01E-09 8.01E-09 8.01E-09 8.01E-09

F4 9.73E-05 6.76E-08 6.76E-08 6.76E-08 6.76E-08

F5 8.40E-03 6.80E-08 6.80E-08 6.80E-08 6.78E-08

F6 7.41E-05 2.96E-07 6.80E-08 6.80E-08 6.80E-08

F7 3.66E-07 1.41E-05 6.80E-08 2.21E-07 6.80E-08

F8 8.17E-02 3.40E-03 4.94E-08 4.94E-08 4.94E-08

F9 NaN NaN NaN 8.06E-02 7.96E-09

F10 NaN NaN 7.43E-10 2.04E-09 7.99E-09

F11 NaN NaN NaN 3.42E-01 9.43E-06

F12 5.25E-05 2.69E-06 1.04E-06 6.77E-08 6.77E-08

F13 9.74E-06 1.14E-02 8.10E-02 6.80E-08 6.80E-08

F14 1.97E-01 1.59E-05 7.95E-09 6.46E-08 6.07E-08

F15 1.43E-04 2.75E-02 3.94E-01 1.33E-01 8.59E-06

F16 1.02E-01 5.34E-01 8.01E-09 6.80E-08 1.61E-04

F17 9.68E-01 9.79E-03 8.01E-09 8.36E-04 1.17E-05

F18 1.94E-02 5.51E-03 1.58E-03 6.36E-08 6.44E-08

F19 5.61E-01 2.78E-07 6.22E-04 1.43E-07 1.20E-06

F20 1.07E-01 3.33E-03 6.37E-05 4.73E-01 7.35E-01

F21 9.05E-03 6.80E-08 4.89E-01 3.50E-06 6.79E-08

F22 2.59E-05 6.79E-08 1.01E-01 3.29E-05 6.79E-08

F23 7.11E-03 1.14E-07 3.53E-07 6.92E-07 6.80E-08

Note: Wilcoxon rank-sum test at the p = 0.05 significant level.

NaN: represents the same test value.

https://doi.org/10.1371/journal.pone.0280512.t008

Table 9. Comparison results on Friedman’s ranking test with traditional algorithms.

Test problems Metric Optimization algorithms

SMA-CSA SMA HHO EO GWO TSA

Scalable test problems Mean rank 1.8462 2.5385 2.3077 3.9231 4.6154 5.7692

F1-F13 Rank 1 3 2 4 5 6

Non-scalable test problems Mean rank 2 2.4 4.1 2.9 4.3 5.3

F14-F23 Rank 1 2 4 3 5 6

Total test problems Total Mean rank 1.913 2.4783 3.087 3.4783 4.4783 5.5652

F1-F23 Total Rank 1 2 3 4 5 6

https://doi.org/10.1371/journal.pone.0280512.t009
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Looking at the 23 benchmark functions in general, compared with the traditional algo-

rithm, the mean ranking of SMA-CSA is 1.913, which is better than other algorithms and

ranks first. Compared with the original SMA, the performance is improved by 22.81%; the

mean ranking of the SMA is 2.4783, ranking it in second place.

Secondly, compared with the advanced algorithms, the mean ranking of SMA-CSA is

3.1304, ranking first, which is 25.77% higher than that of the original SMA. Moreover, the

mean ranking of CSMA-1 is 3.4130, ranking it second, and the performance of SMA-CSA is

slightly better than that of CSMA-1, an increase of 8.3%. And the performance of SMA-CSA is

20.00% higher than that of ESMA. The test results once again prove the effectiveness of the

optimization performance improvement introduced by introducing the annealing and Cauchy

mutation hybrid strategy.

Impact analyses of SA and CM

In this experiment, the impact of the Cauchy mutation search strategy and simulated anneal-

ing operator on the performance of the SMA algorithm is analyzed. The results of these analy-

ses are shown in Fig 4. Four functions (F4, F7, F13, and F15) are selected, and each function is

from CEC 2013. In order to analyze the impact of different strategies on SMA, four algorithms

SMA, SMA+SA, SMA+CM, and SMA-CSA were developed and compared. Fig 4 shows the

slime mold algorithm in different dimensions of CEC 2013 (D = 30; D = 60) and the best fit-

ness of each iteration of the partially selected function. As the curves shown in this figure

show, for the functions F4, F7, F13, and F15, the solutions obtained by SMA+SA and SMA

+CM are all better than those obtained by SMA, which shows the influence of SA and CM in

development and exploration. There is more benefit to using both SA and CM than the solu-

tions obtained by SMA + SA and SMA + CM because the solutions obtained by SMA-CSA are

always better than those obtained by SMA + SA and SMA + CM. In addition, for functions F4,

F7, F13, and F15, the solution of SMA+SA is better than that of SMA+CM, indicating that the

SA strategy contributes more to improving the optimization accuracy.

Experiments on CVRP

Problem description. A mathematical model can describe the capacitated vehicle routing

problem (CVRP): A distribution center O provides logistics services for N customers, where

the number of logistics vehicles is M and the maximum load capacity of each vehicle is Q.

M ¼ kf g; k ¼ 1; 2; � � � ;m

Table 11. Comparison results on Friedman’s ranking test with advanced algorithms.

Test problems Metric Optimization algorithms

SMA-CSA SMA ESMA L-SHADE CMA-ES CSMA-1 CSMA-2

Scalable test problems Total Mean rank 3.1304 4.2174 3.9130 4.8478 5.0652 3.4130 3.4130

F1-F23 Total Rank 1 5 4 6 7 2 3

https://doi.org/10.1371/journal.pone.0280512.t011

Table 10. Comparison results on Friedman’s ranking test with traditional algorithms with 60 dimensions.

Test problems Metric Optimization algorithms

SMA-CSA SMA HHO GWO EO TSA

Scalable test problems Total Mean rank 1.82 2.54 2.39 4.25 4.43 5.57

F1-F18 Total Rank 1 3 2 4 5 6

https://doi.org/10.1371/journal.pone.0280512.t010
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Fig 4. Fitness values obtained by SMA, SMA+SA, SMA+CM and SMA-CSA.

https://doi.org/10.1371/journal.pone.0280512.g004
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The logistics vehicles must provide logistics services for customers from the distribution

center and return to the center after completing their tasks.

V ¼ if g; i ¼ 1; 2; � � � ; n

All logistics vehicles must serve customers at all nodes within their capacity Q limits, with

no omissions.

Qk � Q; k 2 M; Q � max qi;which i 2 Vf g

The final capacity of the vehicle is linked to the number of goods to be delivered at each

node and the number of nodes (customers) to be served by the vehicle on the route.

Building the CVRP mathematical model:

m ¼
P

q1

Q

� �

ð13Þ

f1 ¼ min
XK

k¼1

XV

i¼0

XV

j¼0

cijxijk

f2 ¼ max
XK

k¼1

XV

i¼0

XV

j¼0

cijyik

( ) !

ð14Þ

fitness ¼ f ¼ w1 � f1 þ w2 �m � f2 ð15Þ

Xn

j¼0

xijk ¼ yki;
Xn

i¼0

xijk ¼ ykj ð16Þ

Xn

i¼1

qiyki � Q; k 2 M ð17Þ

Xm

k¼1

yk0 ¼ m ð18Þ

X

k2M

yik ¼ 1; i 2 V ð19Þ

X

i;j2S�S

xijk � jSj � 1; S 2 1; 2; � � � ; nf g ð20Þ

xijk 2 0; 1½ �; yik 2 0; 1½ � ð21Þ

F ¼ min f1f g ð22Þ

Where m is the number of vehicles; qi represents the quantity demanded by the customer, i 2
V; (q0 represent the warehouse); cij represents the distance from customer i to customer j; c0j

indicates the distance from the warehouse to customer j; ci0 represents the distance from
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customer i to the warehouse; If vehicle k visits client i, let yik = 1, otherwise yik = 0; If vehicle k
continues to visit customer j after visiting customer i, let xijk = 1, otherwise xijk = 0.

And f1 is the desired objective function, that is, the shortest total distribution path length; f2
is the longest path for a single vehicle; f is the individual fitness; the constraint (4.4) indicates

that there is one and only one vehicle from one node to another; (Eq 17) indicates that the

transportation capacity of a vehicle must not exceed its own maximum carrying capacity; Eq

(18) indicates that the starting point of a vehicle and the ending point of a vehicle are ware-

houses; Eq (19) ensures that each vehicle is visited (except warehouses); Eq (20) is used to elim-

inate subloops; Eq (21) is a range of parameter values; and finally Eq (22) is the problem of the

minimum path we need to solve.

Hybrid SMA-CSA for CVRP. The main content of this section is to design the applica-

tion idea of SMA-CSA for the capacitated vehicle routing problem, and the algorithm structure

and the steps are shown in Fig 5. Two standard benchmark datasets of CVRP are selected ref-

erence [64] and [65], and the results are compared with other algorithms to analyze the advan-

tages and disadvantages of different algorithms for solving the problem. The first of these data

sets has the number of instance nodes between 50–199; the second is distributed between 200–

483. The distances between customer and customer nodes and between customer and ware-

house nodes are measured using Euclidean distance.

1) Initialization. First, the algorithm initialization parameters are defined, including popu-

lation size, maximum iterations, and crossover (C-R), and then the algorithm randomly gener-

ates the initial population of slime mould.

Fig 5. Flowchart of SMA-CSA for CVRP.

https://doi.org/10.1371/journal.pone.0280512.g005
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The formation of the optimal solution (Xi) for each individual slime mould is based on the

following steps:

(Step1). Create a path that uses the warehouse as the starting point (zero points);

(Step2). select a customer from the customer list in a random non-replacement form;

(Step3). Add the selected customer to the route;

(Step4). Determine whether the total demand of all customers on the path is less than the vehi-

cle capacity;

(Step5). Repeat step2 and step3, otherwise add the warehouse to the route;

(Step6). Add a route;

(Step7). Repeat steps 1–6 until all customers have been traversed;

So far, each individual’s solution (Xi) has been calculated, sorting the solution Xi of all slime

mould, and calculating the weight of the corresponding solution, finally updating the opti-

mal solution.

2) Crossover. When using the SMA-CSA algorithm to solve CVRP, introduce crossover

(C-R) in the process of position updating to improve the quality of the solution. In the cross-

over, an individual is selected first, and then new positions P1 and P2 are randomly generated

between the solution set, and the positions of the newly generated solutions are positioned

between P1 and P2.

3) Local search. In order to expand the range of the solutions, three local search strategies

are used, including point-swap, 2-opt, and 3-opt.

(1) Point swap strategy. As shown in Fig 6, in the current solution, two customers at differ-

ent locations are randomly selected and swapped to generate a new domain solution.

(2) 2-opt search. As shown in Fig 7, similar to the point swap strategy, randomly generate

two customer points at different locations, flip the path between the two customer points, and

Fig 6. Swap example diagram.

https://doi.org/10.1371/journal.pone.0280512.g006
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add their numbers to the new path; the path number before and after the two customer points

remains unchanged.

(3) 3-opt search. As shown in Fig 8, Similarly, the 3-opt search strategy is similar to the

2-opt search strategy, in which three location client points are randomly selected for the path

and swapped and flipped in turn.

Fig 7. 2-opt example diagram.

https://doi.org/10.1371/journal.pone.0280512.g007

Fig 8. 3-opt example diagram.

https://doi.org/10.1371/journal.pone.0280512.g008
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4) Mutation. In order to ensure the global search ability of the algorithm, this paper uses

three mutation operators with different selection probabilities to improve the diversity of the

solutions. The first mutation randomly selects two customers in the CVRP solution with two

paths and swaps the two customers in each of the two paths. The second mutation randomly

selects two routes in the CVRP solution and swaps the customers within the two paths to form

a new path. The third mutation is the 2-h-opt mutation and is one of the most effective muta-

tions for complex problems [66].

First, the multi-vehicle path is converted into a single-vehicle path problem using the prede-

fined probability M-R. Then, the 2-h-opt operator is used to find the twisted connections in

the original path and reopen them to generate a new multi-vehicle problem.

Result of CVRP. This section discusses the results of solving CVRP using SMA-CSA and

analyzes its performance. Two standard benchmark datasets of CVRP are selected, and the

results are compared with other algorithms to analyze the advantages and disadvantages of dif-

ferent algorithms for solving the problem. The algorithms used for comparison include

SMA-CSA, ISOS, EACO [67], LNS-ACO [68], ILS–RVND [69, 70], GRELS [71], AGES [72],

and HGPSO [73].

The test results of the selected cases are shown in Tables 13 and 14. In order to make the

final results converge to the optimal value, two stopping criteria are designed in this paper.

The first is that the result of the cases is equal to the optimal result BKS (best known), and the

second is that the maximum iteration value of the algorithm is reached.

Secondly, the parameters related to SMA-CSA and the comparison algorithm are set, as

shown in Table 12. Each case is executed ten times, respectively, and the optimal value is taken

for comparison. The average gap between the actual value and the optimal value of the cases is

then calculated.

In Table 13, only in the C1, C12, and C14 cases do the solutions of all variants obtain results

consistent with the optimal values. In the C3, C6, and C8 cases, all the algorithms obtain results

consistent with BKS, except for ILS-RVND. In C2 and C7, SMA-CSA, EACO, and LNS-ACO

outperform ISOS and ILS-RVND. In terms of average solutions, among all algorithms, the

average gap of SMA-CSA is significantly smaller than that of other algorithms, showing a bet-

ter and more stable global search capability than other algorithms.

It can be seen from Table 14 that only in the GWKC5 example does SMA-CSA achieve the

best results. In the cases of GWKC3, GWKC6, GWKC9, and GWKC17, actual results that are

close to optimal results were obtained. In addition, it can be seen from the table that it seems

that when the number of nodes n is large, the actual result of SMA-CSA is not particularly ideal;

when n is small, it is close to the optimal result. In terms of average solution, among all algo-

rithms, the average gap size of SMA-CSA is second only to AGES, and its performance is good.

In order to observe the results of SMA and SMA-CSA in multiple operations more intui-

tively, Fig 9 draws the boxplots of the C5 and GWKC4 examples. In 10 operations, SMA-CSA

has better optimization results and a more robust mean than other algorithms.

Table 12. Algorithms-specific parameter settings.

Algorithm Parameter settings

SMA-CSA MI = 2000, n = 30, C-R = 0.95, M-R = 0.1, Pop-size = 30, z = 0.03

ILS-RVND MI = 2000, a = 0.05, b = 0.005, N = 150, A = 11

ISOS MI = 1000, eco_size = 25, 50, 75, T0 = 15, 25,35, pf = 0.7, 0.8, 0.9

EACO MI = 2000, r1 = 0.5, r2 = 0.3, r3 = 0.2, α = 1, β = 1, p = 6

LNS-ACO MI = 5000, r1 = 0.5, r2 = 0.3, r3 = 0.2, α = 1, β = 1, q = 4� randi()�min(100,0.4n), p = 6

https://doi.org/10.1371/journal.pone.0280512.t012

PLOS ONE Improved Slime Mould Algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0280512 January 25, 2023 23 / 30

https://doi.org/10.1371/journal.pone.0280512.t012
https://doi.org/10.1371/journal.pone.0280512


In order to verify the effect of the article search strategy, the article calculates the results

when SMA-CSA does not apply a local search strategy or crossover mutation strategy. It can

be seen from Fig 10 that when the crossover and mutation operations are not applied, the

Table 14. Comparison results on Golden’s benchmark datasets of CVRP with advanced algorithms.

Instance BKS (Best known) GRELS AGES EACO HGPSO SMA-CSA

Name n

GWKC1 240 5623.47 5644.52 5627.54 5627.54 5670.38 5627.54

GWKC2 320 8404.61 8447.92 8447.92 8496.68 8459.73 8426.73

GWKC3 400 11036.20 11036.22 11036.22 11175.30 11101.12 11036.22

GWKC4 480 13590.00 13624.52 13624.52 14244.60 13698.17 13634.01

GWKC5 200 6460.98 6460.98 6460.98 6512.27 6460.98 6460.98

GWKC6 280 8412.80 8412.9 8412.88 8412.80 8470.64 8412.82

GWKC7 360 10102.70 10195.59 10195.56 10420.80 10215.14 10201.3

GWKC8 440 11635.30 11643.9 11663.55 12233.80 11750.38 11683.17

GWKC9 255 579.71 586.23 583.39 583.39 586.87 579.8

GWKC10 323 735.66 744.36 741.56 766.55 746.56 744.36

GWKC11 399 912.03 922.4 918.45 946.61 925.52 922.73

GWKC12 483 1101.50 1116.12 1107.19 1152.68 1114.31 1123.63

GWKC13 252 857.19 862.32 859.11 875.71 865.19 859.11

GWKC14 320 1080.55 1089.35 1081.31 1106.41 1089.21 1080.9

GWKC15 396 1337.87 1352.39 1345.23 1373.40 1355.28 1352.39

GWKC16 480 1611.56 1634.27 1622.69 1682.88 1632.21 1629.17

GWKC17 240 707.76 708.85 707.79 707.79 712.18 707.79

GWKC18 300 995.13 1002.15 998.73 1024.51 1006.31 995.82

GWKC19 360 1365.60 1371.67 1366.86 1399.95 1373.24 1371.31

GWKC20 420 1817.59 1830.98 1820.09 1821.15 1831.17 1839.68

Avg.Gap 0.64% 0.34% 2.35% 0.92% 0.53%

https://doi.org/10.1371/journal.pone.0280512.t014

Table 13. Comparison results on Christofides’s benchmark datasets of CVRP with advanced algorithms.

Instance BKS (Best known) ILS–RVND ISOS EACO LNS-ACO SMA-CSA

Name n

C1 50 524.61 524.61 524.61 524.61 524.61 524.61

C2 75 835.26 839.75 835.74 835.26 835.26 835.26

C3 100 826.14 827.63 826.14 826.14 826.14 826.14

C4 150 1028.42 1030.65 1028.42 1041.83 1046.9 1028.42

C5 199 1291.29 1306.63 1305.49 1338.48 1341.4 1302.103

C6 50 555.43 557.56 555.43 555.43 555.43 555.43

C7 75 909.68 914.56 914.68 909.68 909.68 909.68

C8 100 865.94 869.61 865.94 865.94 865.94 865.94

C9 150 1162.55 1170.76 1162.55 1168.81 1164.93 1162.78

C10 199 1395.85 1405.83 1417.9 1413.69 1419.7 1412.44

C11 120 1042.11 1042.11 1042.11 1045.5 1042.11 1040.36

C12 100 819.56 819.56 819.56 819.56 819.56 819.56

C13 120 1541.14 1547.39 1541.14 1554.93 1547.1 1542.21

C14 100 866.37 866.37 866.53 866.37 866.38 866.37

Avg.Gap 0.45% 0.24% 0.57% 0.57% 0.14%

https://doi.org/10.1371/journal.pone.0280512.t013
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difference in the algorithm optimization results is the most obvious; in the local search strat-

egy, when 2-opt is not used, the algorithm optimization results are greatly affected.

Conclusion

Metaheuristic algorithms show that they are able to arrive at optimal solution sets for global

optimization and discrete problems in a reasonable amount of time. Some of the most repre-

sentative metaheuristic algorithms include: Moth Search (MS) [74], Earthworm Optimization

Algorithm (EWA) [75], Harris Hawk Optimization (HHO) [16], Slime Mold Algorithm

(SMA) [18], Runge Kutta Optimizer (RUN) [76], Crowd Predation Algorithm (CPA) [77],

and so on. However, the complexity of different algorithms is inconsistent, the difficulty of dis-

crete coding is different, and most of them lack group diversity and good search strategies,

which leads to premature convergence of the local optimum, so introducing a suitable search

mutation strategy is an improvement idea for most algorithms.

It was the main inspiration of this study to propose an improved slime mold algorithm

named SMA-CSA based on Cauchy mutation and simulated annealing hybrid strategy optimi-

zation and then recoded to solve two CVRP data sets. To address the SMA’s shortcomings, the

Fig 9. Comparison of results between SMA and SMA-CSA in C5 and GWKC4 examples.

https://doi.org/10.1371/journal.pone.0280512.g009

Fig 10. Results when one of the local search or mutation strategies is unused on C5 and GWKC4.

https://doi.org/10.1371/journal.pone.0280512.g010
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SMA-CSA implemented the Cauchy mutation operator, random perturbation, and the

Metropolis sampling criterion acceptance strategy.

The proposed SMA-CSA algorithm is evaluated on global optimization problems using

CEC 2013, and its performance is compared to that of SMA and other algorithms such as

HHO, SMA, EO, TSA, GWO, ESMA, and L-SHADE, CMA-ES, and CSMA.

Different mathematical and structural examples are considered for evaluating the perfor-

mance of the new algorithm. The good results of SMA-CSA in benchmark functions (F1–F7)

show the performance of the SMA-CSA algorithm in terms of exploitation and local optimum

avoidance. Moreover, the algorithm is applied to the capacitated vehicle routing problem

(CVRP) and compared to other algorithms such as ISOS, EACO [67], LNS-ACO [68], ILS–

RVND [69, 70], GRELS [71], AGES [72], and HGPSO [73], the results prove SMA-CSA has

better optimization results and a more robust mean than other algorithms.

Although the research results of the article confirm the feasibility of annealing and Cauchy

mutation mixed strategy coordination optimization, there are still some limitations in the

overall research. For example, although the convergence speed and global accuracy of the

improved SMA are significantly improved, the calculation time is increased by 57% on average

compared with the SMA due to the introduction of the annealing process, which requires lon-

ger computation time. Secondly, the improved algorithm does not further calculate the test

results of different benchmark functions in more dimensions and does not verify the impact of

dimensional changes on the algorithm simulation results. Thirdly, the amount of data analysis

in the CVRP example used in this article is relatively small, and there is a lack of solution anal-

ysis for large-scale node data, so the conclusion about algorithm performance has limitations.

Finally, the use of CVRP problems to test the discrete solution performance of the SMA-SA

algorithm is still not convincing, and the ability of SMA-SA to solve discrete problems should

be further tested in more practical optimization problems (like scheduling, image processing,

medical applications, etc.).

In addition, future researchers can further optimize the slime mold algorithm from other

perspectives, such as by introducing a reverse learning mechanism while adaptively controlling

algorithm parameters, which may lead to better results. In addition, applying the SMA-SA

algorithm to VRPTD, VRPTW, GVRP, and other similar vehicle routing problems and real-

case applications to further verify the performance of the algorithm is an effective research

idea.
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