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Abstract

Transient receptor potential (TRP) channels are activated by various extracellular and intra-
cellular stimuli and are involved in many physiological events. Because compounds that act
on TRP channels are potential candidates for therapeutic agents, a simple method for evalu-
ating TRP channel activation is needed. In this study, we demonstrated that a transforming
growth factor alpha (TGFa) shedding assay, previously developed for detecting G-protein—
coupled receptor (GPCR) activation, can also detect TRP channel activation. This assay is
a low-cost, easily accessible method that requires only an absorbance microplate reader.
Mechanistically, TRP-channel-triggered TGFa shedding is achieved by both of a disintegrin
and metalloproteinase domain-containing protein 10 (ADAM10) and 17 (ADAM17), whereas
the GPCR-induced TGFa shedding response depends solely on ADAM17. This difference
may be the result of qualitative or quantitative differences in intracellular Ca®* kinetics
between TRP channels and GPCRs. Use of epidermal growth factor (EGF) and betacellulin
(BTC), substrates of ADAM10, improved the specificity of the shedding assay by reducing
background responses mediated by endogenously expressed GPCRs. This assay for TRP
channel measurement will not only facilitate the high-throughput screening of TRP channel
ligands but also contribute to understanding the roles played by TRP channels as regulators
of membrane protein ectodomain shedding.

Introduction

Transient receptor potential (TRP) channels comprise the largest cation-channel family and
are regulated by various types of stimuli. In humans, 28 TRP channel subtypes have been iden-
tified, divided into seven subfamilies: TRPA, TRPC, TRPM, TRPML, TRPN, TRPP, and TRPV
[1]. TRPV1, TRPA1, and TRPMS are canonical members that were first identified as nocicep-
tive receptors for capsaicin, allyl isothiocyanate (AITC), and menthol, respectively [2-5], com-
pounds that act on nerve cells expressing TRP channels found in the oral mucosa, resulting in
the respective perceptions of heat, pungent irritation, and coolness [6, 7]. In addition to nerve
cells, TRP channels are expressed in many cell types, such as keratinocytes and immune cells,
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and are involved in various functions, including hair follicle formation and inflammation [8-
11], making them attractive targets for drug discovery [12, 13].

Compounds acting on TRP channels can be evaluated by detecting the activation of TRP
channel-induced intracellular signaling pathways. In most cases, TRP channel activation is
assessed by measuring increases in intracellular Ca®" concentrations using calcium mobiliza-
tion assays or patch-clamp techniques; however, these experiments require expensive, special-
ized equipment (e.g., fluorescence measurement devices with liquid handling and patch-clamp
amplifiers, respectively). Therefore, the development of a low-cost and easy-to-access method
for evaluating TRP channel activation will be useful for researchers, especially those who have
limited access to specialized equipment, and may broaden the TRP channel field.

We hypothesized that a transforming growth factor alpha (TGFa) shedding assay, which
we have previously developed for detecting G-protein-coupled receptor (GPCR) activation
[14], has the potential to detect TRP channel activation. The TGFo-shedding assay is based on
the ectodomain shedding of the membrane-bound proform of alkaline phosphatase—tagged
TGFo. (pro-AP-TGFa). The activation of Gq-coupled or G12-coupled GPCRs induces TGFa.
ectodomain shedding via a disintegrin and metalloproteinase domain-containing protein 17
(ADAM17), which cleaves pro-TGFo. and other membrane proteins. ADAM17 is activated by
protein kinase C (PKC) and intracellular Ca®" elevation [14-17]. Because TRP channels also
trigger intracellular Ca** influx, we examined whether TRP channel activation can be detected
using the TGFo-shedding assay.

In addition to ADAM17, ADAMI0 also cleaves pro-TGFa, but the upstream mechanism
associated with ADAMIO activation reportedly differs from that associated with ADAM17
activation. ADAM10 induces a TGFa-shedding response upon stimulation with calcium iono-
phores but is insensitive to the PKC activator tetradecanoyl phorbol acetate (TPA) that stimu-
lates ADAM17 [17]. Our previous study showed that ADAM17 knockdown greatly suppressed
the GPCR-induced TGFo-shedding response, suggesting that this response is independent of
ADAMIO0 [14]. Activation of ADAMI10 requires an increase in Ca®* concentration, such as
that induced by calcium ionophores, but the upstream physiological factors that lead to
ADAMIO activation are poorly understood. Therefore, we examined whether TRP channels
are upstream factors that activate ADAM10.

Here we demonstrate the ability of the TGFa-shedding assay to detect the activation of
canonical, representative members of the TRP channel family. Interestingly, TRP channels
induce not only the ADAM17-dependent but also the ADAM10-dependent TGFa-shedding
response. We took advantage of this difference to minimize nonspecific responses mediated by
endogenously expressed GPCRs by using epidermal growth factor (EGF) and betacellulin
(BTC), substrates of ADAMI10, as reporters in place of TGFa.

Materials and methods
Reagents and plasmids

Chemicals and reagents were purchased from Wako Pure Chemical Industries unless other-
wise noted. Stealth small interfering RNA (siRNA) duplexes against mRNA encoding
ADAMIO (target sequences are listed in Supplementary Information) and Stealth negative
control siRNAs were purchased from Invitrogen. All TRP channels and GPCRs used in this
study were of human origin and did not contain epitope tags. The sequences for TRP channels
and GPCRs were cloned into mammalian expression vectors pcDNA3.1 (Invitrogen) and
PCAGGS (gift from J. Miyazaki, Osaka University), respectively. A plasmid encoding alkaline
phosphatase (AP)-TGFa was described previously [18]. Plasmids encoding AP-epidermal
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growth factor (EGF) and AP-betacellulin (BTC) were gifts from Shigeki Higashiyama, Ehime
University [19].

Cell culture and transfection

Parent and ADAM17-deficient HEK293 cells were maintained in Dulbecco’s modified Eagle
medium (DMEM, Nissui Pharmaceutical) supplemented with 10% fetal bovine serum
(Gibco), 100 U/ml penicillin (Sigma-Aldrich), and 100 pug/ml streptomycin (Gibco) (complete
DMEM) in a 37°C incubator with 5% CO,. Transfection of plasmid DNAs was performed by
lipofection reagent, polyethylenimine solution (PEI Max, Polysciences). Typically, cells were
seeded in each well of a 12-well culture plate at a cell density ranging from 2 x 10° to 3 x 10°
cells/mL in 1 mL complete DMEM and cultured for 1 day in a 37°C incubator with 5% CO,.
For transfection, plasmid solution (see each assay condition below) was diluted in 50 pL Opti-
MEM (Gibco) and mixed with 2.5 pL of 1 mg/mL PEI solution in 50 pL Opti-MEM. Cells were
incubated for 1 day after transfection before performing any assays. Transfection of siRNA
was performed using Lipofectamine RNAIMAX (Invitrogen). Cells were seeded in each well of
a 12-well culture plate at a cell density of 1 x 10° cells/mL in 1 mL complete DMEM and cul-
tured for 1 day in a 37°C incubator with 5% CO,. For transfection, 1.2 uL of 10 uM siRNA was
diluted in 100 uL Opti-MEM and mixed with 2 pL RNAIMAX in 100 pL Opti-MEM. Cells
were incubated for 1 day before performing plasmid transfection. Immediately prior to plas-
mid transfection, the cell supernatant was removed by aspiration, and fresh complete DMEM
was added. Transfection then proceeded as described above.

TGFa-shedding assay

The TGFa-shedding assay was performed as described previously, with minor modifications
[14]. Plasmid transfection was performed in a 12-well plate using a mixture of 250 ng plasmid
encoding AP-TGFa. (or AP-EGF or AP-BTC) and 100 ng plasmid encoding the receptor. After
1 day of culture, transfected cells were harvested by trypsinization, pelleted by centrifugation
at 190 x g for 5 min, and suspended in 3.5 mL Hank’s Balanced Salt Solution (HBSS) contain-
ing 5 mM HEPES (pH 7.4). After incubation for 15 min at room temperature, cells were cen-
trifuged at 190 x g for 5 min, and cell pellets were suspended in 3.5 mL HBSS. The
resuspended cells were plated in a 96-well plate at 90 ul per well (typically 24 total wells [8 x 3])
and placed in a 37°C incubator with 5% CO, for 30 min. After incubation, 10 pul of 10x com-
pounds were added to each well and incubated for 1 h at 37°C in 5% CO,. Plates were centri-
fuged at 190 x g for 2 min. After centrifugation, 80 pl of supernatant from each well was
transferred to a clean well in a new 96-well plate, leaving attached cells and 20 pl supernatant
in the original well. An 80 pl volume of para-nitrophenyl phosphate (p-NPP) solution (10 mM
p-NPP; 40 mM Tris-HCI, pH 9.5; 40 mM NaCl; 10 mM MgCl,) was then added to each well of
both the supernatant plate and the cell plate. Absorbance at 405 nm (Abs,s) was obtained for
both plates before (background) and after 1-h incubation at 37°C using a microplate reader
(SpectraMax 340 PC384, Molecular Devices). TGFa release was calculated as described in the
Results. To evaluate TRPV1 antagonism, cells (plated in 80 UL per well) were pretreated with
various concentrations of compounds 10 min before stimulation with capsaicin (100 nM). To
evaluate TRPV1 inverse agonism, cells were incubated with capsazepine in the absence of
capsaicin.

Generation of ADAM17-deficient cells

CRISPR-based targeted gene depletion was performed as described previously, with minor
modifications [20]. In detail, ADAM17-deficient HEK293 cells were generated by the
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CRISPR/Cas9 system to mutate the gene encoding ADAM17 in parent HEK293 cells. An
sgRNA construct targeting the gene encoding ADAM17 was designed using a CRISPR design
tool (http://crispr.mit.edu) such that an SpCas9-mediated DNA cleavage site (3-bp upstream
of the protospacer adjacent motif [PAM] sequence [NGG]) encompassed a restriction enzyme
recognition site. The designed sgRNA sequence for ADAM17, including the SpCas9 PAM
sequence, was 5'~GACCATTGAAAGTAAGGCCC-3' (the Hae III restriction enzyme site is
underlined). The designed sgRNA sequence was inserted into the Bbs I site of the pSpCas9
(BB)-2A-GFP (PX458) vector (a gift from Feng Zhang at the Broad Institute; Addgene plasmid
No. 48138). The correct insertion of the sgRNA sequence was verified by Sanger sequencing
(Fasmac). To generate ADAM17-deficient cells, HEK293 cells were seeded into a 10-cm cul-
ture dish and incubated for 24 h before transfection. The PX458 plasmid encoding the sgRNA
and SpCas9-2A-GFP was transfected into cells using Lipofectamine 2000 (Thermo Fisher Sci-
entific). After 3 days, the cells were harvested and processed for the isolation of GFP-positive
cells (~5% of cells) using a fluorescence-activated cell sorter (SH800; Sony). After the expan-
sion of clonal cell colonies using a limiting dilution method, clones were analyzed for the
incorporation of the mutation in the targeted gene by restriction enzyme digestion. Candidate
clones that harbored restriction enzyme-resistant PCR fragments were further assessed for
genomic DNA alterations by TA cloning [21]. The PCR primers used to amplify the sgRNA-
targeted sites were as follows: 5'~CCATAACTCCAGGGTGGCTC-3’ and 5'-GAGAGACTCCT
CACCTGCAC-3'.

Data analysis

Concentration-response curves were fitted for all data using the Nonlinear Regression: Vari-
able slope (four parameters) function in the GraphPad Prism 9 software (GraphPad), with the
setting of absolute Hill Slope values less than 2. Sigmoid maximum effect (E,.x), the negative
log of the half-maximal excitation concentration (pECs, a parameter for agonism), and the
negative log of the half-maximal inhibitory concentration (pICs, a parameter for antagonism
and inverse agonism) were obtained. The details regarding normalization and replicates for
each experiment are described in the figure legends.

Results
TRP channel activation is indicated by TGFo ectodomain shedding

First, we tested whether TRP channel activation triggers TGFa-shedding responses. We trans-
fected plasmids encoding the AP-TGFa. reporter with or without TRPV1-encoding plasmids
in HEK293 cells (Fig 1A and 1B). After 24 h, we reseeded the transfected cells and stimulated
them for 1 h with capsaicin, a prototypical TRPV1 agonist. If TRPV1 activation by capsaicin
induces ectodomain shedding of AP-TGFo, we would expect to detect AP in the supernatant
(Fig 1A and 1B). We isolated the supernatant and added p-NPP, a substrate for AP, to both the
supernatant and the cells. AP activity can be evaluated by measuring para-nitrophenol (p-NP)
production at Abs,ys using an absorbance microplate reader (Fig 1B). Released AP-TGFo. (%)
can be determined by calculating the ratio of AP activity in the supernatant to the total AP
activity (Fig 1B). We observed a TGFo.-shedding response in a capsaicin concentration-
dependent manner in TRPV1-transfected cells but not in mock-transfected cells (Fig 1C). The
PECs, value calculated from this concentration-response curve (Fig 1C) was 7.99 + 0.05. We
then expressed three other TRP channels, namely TRPA1, TRPMS, and TRPV3, and measured
activation upon stimulation by their respective ligands, AITC, menthol, and 2-aminoethoxydi-
phenyl borate (2-APB). TGFo-shedding responses were observed under all tested receptor-
transfected conditions (Fig 1D-1F). At high concentrations of AITC and 2-APB, the TGFo.-
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Fig 1. TGFa-shedding assay can evaluate TRP channel activation. (A) Schematic representation of the TGFa.-shedding assay for detecting transient receptor
potential (TRP) channel activation. TRPV1 is activated upon capsaicin stimulation, inducing AP-TGFa ectodomain shedding. Released AP-TGFa can be
quantified by measuring AP activity in the supernatant based on the production of para-nitrophenol (p-NP) from para-nitrophenyl phosphate (p-NPP). (B)
Schematic of the assay protocol: HEK293 cells transiently expressing AP-TGFo. with or without TRP channel expression are reseeded onto 96-well plates and
stimulated with a ligand. After the supernatant (sup) is transferred to a blank plate, AP-TGFo: release is quantified by a colorimetric reaction to measure AP
activity, using p-NPP as a substrate. AP-TGFa release (%) is calculated as the ratio of AP activity in the supernatant to the total AP activity. AAbsygs was
calculated by subtracting the absorbance at 405 nm measured at 0 h [Abs,s (o n)] from the absorbance at 405 nm measured at 1 h [Abs,gs (1 n)], using 1.25as a
correction factor for the amount of supernatant transferred (80 of 100 uL). See Methods for details. (C) Concentration-response curve for the TGFa-shedding
responses induced by TRPV 1 activation upon capsaicin stimulation. The vehicle-treated condition is set as the baseline. Mock-transfected cells expressing only
the AP-TGFo. reporter were used as a control. (D-F) Concentration-response curves for the TGFa-shedding responses induced by TRPA1 (C), TRPMS (D),
and TRPV3 (E) activation upon AITC, menthol, and 2-APB stimulation, respectively. (G, H) Evaluation of antagonist activity (G) and inverse agonist activity
(H) for capsazepine (CPZ). CPZ antagonism was examined in the presence of 100 nM capsaicin. Note that inverse agonism is shown without subtracting the
vehicle-treated basal responses. In all panels, the symbols and error bars represent the mean and SEM, respectively, for three independent experiments
performed in triplicate. For many data points, the vertical error bars are smaller than the symbols and, thus, are not visible.

https://doi.org/10.1371/journal.pone.0280448.9001
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shedding response was observed in mock-transfected cells, suggesting that these chemicals
have off-target activities in HEK293 cells. However, the TGFo-shedding responses in TRPA1-
and TRPV3-expressing cells were higher than those in mock-transfected cells. We evaluated
the TRP channel-dependence of signals by subtracting the response in mock-transfected cells
from the response in TRP channel-expressing cells (Fig 1D and 1F). The pECs, values in
TRPA1-, TRPMS8-, and TRPV3-expressing cells were 5.17 + 0.34, 3.58 + 0.13, and 5.14 £ 0.22,
respectively. The pEC50 values for all four types of channels were equivalent to or one order of
magnitude greater than the values reported using other established methods [22-26]. These
results demonstrate that the TGFo-shedding assay sensitively detects agonist-induced activa-
tion of TRP channels.

Next, we attempted to assess whether antagonist activity is measurable. We measured the
antagonist activity of capsazepine, a TRPV1 antagonist, in the presence of 100 nM of capsaicin
[27]. The capsaicin-induced TGFa-shedding response was inhibited by increasing concentra-
tions of capsazepine in TRPV1-transfected cells (Fig 1G). In mock-transfected cells, the shed-
ding response was not observed at any tested concentration. The pICs, value calculated from
this concentration-response curve (Fig 1G) was 6.14 + 0.064, which is consistent with a previ-
ous report [28], indicating that this assay can be used to evaluate antagonist activity.

Finally, we evaluated the inverse agonist activity of capsazepine, which refers to the inhibi-
tory effect of capsazepine against spontaneous TRPV1 activation. Many TRP channels exhibit
spontaneous activity that is observed just by expressing them in cultured cells, which is caused
by constitutive activation of upstream factors of TRP channels [29]. This spontaneous activity
causes chronic pain and degeneration in nerves and other cells, making it an important thera-
peutic target [30, 31]. We incubated TRPV 1-expressing or mock-transfected cells with increas-
ing concentrations of capsazepine for 1 h and measured the TGFo-shedding response.
TRPV1-expressing cells showed a TGFa-shedding response without ligand stimulation, and
the addition of capsazepine suppressed this response to a level similar to the level observed for
mock-transfected cells (Fig 1H, the TGFo-shedding response is shown without subtracting the
basal response). This result indicates that the TGFa-shedding assay can be used to evaluate the
spontaneous activation of TRP channels and the inverse agonist activity of ligands. Therefore,
the TGFo.-shedding assay is useful for evaluating TRP channel activity.

TGFa-shedding response induced by TRPV1 activation depends on
ADAM10 and ADAM17

We next investigated whether TRP channels and GPCRs induce the TGFo-shedding response
through a shared sheddase. In a previous study, the GPCR-induced TGFo.-shedding response
was greatly suppressed by the siRNA-mediated knockdown of ADAM17 [14]. In the present
study, the elimination of ADAM17 from HEK293 cells (AADAM17 cells; S1 Fig) completely
abolished the TGFo-shedding response induced by the activation of the Gq-coupled histamine
H1 receptor (H1R; Fig 2A), indicating that the GPCR-induced TGFa-shedding response is
totally dependent on ADAMI17. Stimulation of PKC by TPA induced a robust TGFo-shedding
response, which was silenced in AADAM17 cells, suggesting that GPCR-induced TGFa. shed-
ding solely depends on the Gq-PKC-ADAM17 axis (Fig 2B).

We then examined whether TRPV1-induced TGFo. shedding is mediated by ADAM17.
Unlike H1R or TPA stimulation, capsaicin-induced TRPV1 stimulation remained capable of
inducing a TGFa-shedding response in the AADAM17 cells, although the potency of capsaicin
was lower in AADAM17 cells than in parent HEK293 cells (Fig 2C). This result indicates that
other sheddases are involved in the TRPV1-induced TGFo.-shedding response. Potent TGFao.
cleavage activity is also characteristic of ADAM10 [16, 32]. The TRPV1-induced TGFa-
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Fig 2. TRP channel activation induces ectodomain shedding of EGFR ligands via both ADAM10 and ADAM17. (A-C) Concentration-response curves
showing the TGFo-shedding response in ADAM17-deficient HEK293 cells (AADAM17 cells). HIR (A) and TRPV1 (C) were evaluated as representatives of
Gq-coupled GPCRs and TRP channels, respectively. TPA-induced shedding responses (B) were evaluated in cells expressing only AP-TGFo. without receptors.
(D) Concentration-response curve of TGFa-shedding responses induced by TRPV1 activation in ADAM10-siRNA-transfected parent cells or AADAM17
cells. (E-G) Comparisons of shedding responses induced by TRPV1 (E) and HIR (F) activation using AP-EGF and AP-BTC as reporters. The TPA-induced
shedding response (G) was evaluated in cells expressing only AP-TGFo, AP-EGF, or AP-BTC, without receptors. (H, I) Concentration-response curves for the
EGF- and BTC-shedding responses induced by TRPA1 (H) and TRPV3 (I) activation. In all figures, the symbols and error bars represent the mean and SEM,
respectively, for three independent experiments performed in triplicate. For many data points, the vertical error bars are smaller than the symbols and, thus, are
not visible.

https://doi.org/10.1371/journal.pone.0280448.9002

shedding response was evaluated in parent and AADAM17 cells transfected with ADAM10--
siRNA or non-target siRNA. The TGFo-shedding response was not suppressed in ADAM10--
siRNA-transfected parent cells but was greatly suppressed in ADAM10-siRNA-transfected
AADAM17 cells (Fig 2D). These results indicate that TGFo-shedding response induced by
TRP channels involves both the ADAM17 and ADAM10 (and possibly other ADAMs) path-
ways, whereas the GPCR-induced response depends solely on ADAM17.

Membrane protein substrates with high ADAM10 selectivity may be useful for measuring
TRP channel ligands that induce non-specific responses, which may be mediated by endoge-
nously expressed GPCRs, PKCs, or their signaling axes. EGF and BTC are known ADAM10
substrates [19, 33]. In parent cells, we expressed AP-tagged EGF (AP-EGF) or BTC (AP-BTC)
in place of AP-TGFo. and evaluated their shedding responses. TRPV1 activation induced both
shedding responses, whereas HIR and PKC activation induced neither (Fig 2E-2G). Although
the pECsg and E,, ., values for AP-BTC and AP-EGF were both lower than those for
AP-TGFo, AP-BTC and AP-EGF are useful for selectively detecting TRP channel-induced
responses. We next examined whether the AP-EGF and the AP-BTC reporters lower the back-
ground signals observed for the TRPA1 and TRPV3 ligands. As shown in Fig 1C and 1E,
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AITC and 2-APB induced a TGFa-shedding response in mock-transfected cells. In TRPA1-
and TRPV3-expressing cells, AITC and 2-APB, respectively, induced AP-EGF- and AP-BTC-
shedding responses in concentration-dependent manners, whereas no shedding responses
were observed in mock-transfected cells (Fig 2H and 2I). These results indicate that AP-EGF
and AP-BTC are useful for TRP-selective measurements, with potentially low background
responses. Therefore, unlike GPCRs, TRP channels can activate ADAM10, and this different
ectodomain shedding mechanism allows for shedding assay improvements that facilitate the
selective detection of TRP channel activation.

Discussion

In this study, we showed that the TGFa-shedding assay detects TRP channel activation and
can be used to evaluate the agonist, antagonist, and inverse agonist activities of compounds.
This assay has several advantages. First, it detects amplified signals based on the accumulation
of pro-AP-TGFa in the supernatant and, thus, can detect the basal activity of TRP channels.
The conventional Ca®* mobilization assay is unsuitable for evaluating inverse agonistic activity
because it captures a transient intracellular event. Second, the TGFa-shedding assay is less
costly than traditional Ca** mobilization assay and patch-clamp method and can be performed
with an easy-to-access absorbance microplate reader, a simple transient expression system,
and low-cost reagents (p-NPP). One disadvantage of the TGFa-shedding assay includes the
requirement for high exogenous AP-TGFa reporter expression, making this assay unsuitable
for the analysis of primary cultured cells, in which the induction of exogenous expression can
be challenging. We also recommend using AP-EGF and AP-BTC in place of AP-TGFa as
reporters for measurements of TRP channel-ligand pairs to eliminate nonspecific responses.

Interestingly, ADAMI0 is uniquely activated by TRP channels, despite both TRP channels
and GPCRs inducing intracellular Ca®" influx (Fig 2A-2D). This was evidenced by ectodo-
main shedding of EGF and BTC, substrates of ADAM10, which was triggered only by the
downstream signal of TRP channels (Fig 2E-21). The increase in intracellular Ca*>* concentra-
tion induced by TRP channel activation is high and long-lasting, whereas that induced by
GPCRs is oscillatory and transient [34-36]. Previous reports showed that Ca**-induced
ADAMI0 activation is totally dependent on anoctamin 6 (ANO6), a Ca>*-sensitive phosphati-
dylserine scramblase [37, 38]. Based on these studies, we speculate that TRP channels activate
ADAMI10 via ANO6. The lack of GPCR-induced ADAM10 activation (Fig 2A) indicates no
involvement of ANO6. ANO6 activation requires a high intracellular Ca>* concentration ([Ca®
li > 1 uM) [39-41], and the increase in Ca®* concentration or the duration of increased Ca>*
induced by GPCR activation is likely insufficient to activate ANO6. Although ADAM17 is acti-
vated by ANOG6 [37], GPCR-triggered ADAMI17 activation depends solely on PKC [14]. Thus,
the distinct kinetics of intracellular Ca®* concentrations associated with TRP channel and
GPCR activation likely underlie their different signaling outcomes (Fig 3).

ADAMI10 and ADAM17 activation induced by the TRP channels may occur under both
physiological and pathological conditions. A previous report showed that TRPV3 induces a
TGFa-shedding response via activation of ADAM17, promoting hair follicle formation [9];
however, the physiological relationship between ADAM10 and TRP channels remains
unknown. ADAM10 is associated with Alzheimer’s disease (AD) and is a potential therapeutic
target [42-44]. ADAMI10 has a-secretase activity, which prevents amyloid-f formation [45,
46], and loss-of-function mutations in ADAMI10 have been reported in AD patients, indicating
that ADAM10 activation may be useful for the treatment of AD [47]. TRP channels, as well as
ADAMIO, are expressed in central nervous system neurons and are associated with psychiatric
disorders [48, 49]. We believe that testing whether ADAM10 is activated by TRP channels
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Fig 3. Possible mechanisms underlying ectodomain shedding of EGFR ligands by TRP channel and GPCR activation. Putative molecular mechanisms for
ectodomain shedding of EGFR ligands by TRP channels and Gq-coupled GPCRs activation. ADAM, a disintegrin and metalloproteinase domain-containing
protein; ANO6, anoctamin 6; BTC, betacellulin; EGF, epidermal growth factor; GPCR, G protein-coupled receptor; PKC, protein kinase C; PS,
phosphatidylserine; TGFo, transforming growth factor alpha; TRP, transient receptor potential.

https://doi.org/10.1371/journal.pone.0280448.9003

under physiological conditions is worthwhile, in addition to determining whether targeting
TRP channels to activate ADAM10 is potentially useful for the treatment of AD.

Supporting information

S1 Fig. Genomic sequences of ADAM17-deficient HEK293 cell line. The sgRNA-target
sequence is underlined. The arrow indicates a putative double-stranded break site. The restric-
tion enzyme site (Hae III) is highlighted in red.

(TIF)

S1 Data. The numerical values underlying Figs 1 and 2.
(XLSX)
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