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Abstract

Feline hypertrophic cardiomyopathy (HCM) is a common heart disease affecting 10–15% of

all cats. Cats with HCM exhibit breathing difficulties, lethargy, and heart murmur; further-

more, feline HCM can also result in sudden death. Among various methods and indices,

radiography and ultrasound are the gold standards in the diagnosis of feline HCM. However,

only 75% accuracy has been achieved using radiography alone. Therefore, we trained five

residual architectures (ResNet50V2, ResNet152, InceptionResNetV2, MobileNetV2, and

Xception) using 231 ventrodorsal radiographic images of cats (143 HCM and 88 normal)

and investigated the optimal architecture for diagnosing feline HCM through radiography.

To ensure the generalizability of the data, the x-ray images were obtained from 5 indepen-

dent institutions. In addition, 42 images were used in the test. The test data were divided

into two; 22 radiographic images were used in prediction analysis and 20 radiographic

images of cats were used in the evaluation of the peeking phenomenon and the voting strat-

egy. As a result, all models showed > 90% accuracy; Resnet50V2: 95.45%; Resnet152:

95.45; InceptionResNetV2: 95.45%; MobileNetV2: 95.45% and Xception: 95.45. In addition,

two voting strategies were applied to the five CNN models; softmax and majority voting. As

a result, the softmax voting strategy achieved 95% accuracy in combined test data. Our find-

ings demonstrate that an automated deep-learning system using a residual architecture can

assist veterinary radiologists in screening HCM.

Introduction

Feline hypertrophic cardiomyopathy (HCM) is a common, chronic, and life-threatening heart

disorder that affects 14.7% of cats aged> 7 months [1]. Unlike humans, the most frequent,

predominant cardiac disease is the HCM. In 306 primary cardiac disorders from 1998 to 2005,

252 cases were cardiomyopathy (82%) and 48 cases (16%) were congenital heart disease [2, 3].

It is also among the ten most common causes of death in cats [4]. Feline HCM causes heart

enlargement, with prominent ventricular wall hypertrophy and interventricular septum.
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Consequently, the left ventricular cavity is narrowed and the left atrium is dilated, in the heart

of the affected cats [5]. Clinical signs of HCM include hyperventilation, syncope, and arterial

thromboembolism [1]. Moreover, 25% of cats aged> 9 years are asymptomatic [4]. However,

the most ominous sign of HCM is sudden death, which may occur within seconds and without

any notable symptoms [6].

Various diagnostic tools for HCM include physical examination, electrocardiography,

ultrasound examination, X-ray imaging, and blood analysis [7]. Initially, incidental findings

on physical examination showing murmur, gallop sound, or arrhythmia can be considered.

Additionally, evaluating the levels of N-terminal-pro brain-type natriuretic peptide (NT-

proBNP) may be performed; however, radiology and echocardiography are considered the

gold standard for diagnosing HCM. Specifically, a radiographic thoracic ventrodorsal (VD)

image of a cat with feline HCM shows a specific cardiac silhouette known as the valentine

heart. Several methods for radiographical measurement of heart enlargement are prevalent,

including vertebral heart size, modified vertebral heart size, and cardiothoracic ratio. Although

quantitative, VHS shows only 51% accuracy in feline radiography, indicating that many exami-

nations should be combined to confirm the HCM [8].

Machine learning (ML) is a dominant paradigm in radiologic and histological analyses. By

combining computer science and statistics, ML allows self-learning and improves performance

by learning from experience. Deep learning (DL) is an ML class involving learning through

neural networks with multiple representation levels corresponding to different abstraction lev-

els [9]. Owing to its high accuracy, there are various approaches regarding the application of

DL in veterinary diagnostics, including cytology [10], fecal parasite detection [11], histopathol-

ogy [12], and radiology [13]. Tommaso et al. attempted to classify canine radiographic findings

on thoracic lateral (LL) images and observed a sensitivity > 90% [11]. However, few studies

have investigated DL-based feline radiographic findings analyses. Here, we investigated the

DL-based classification of feline HCM in 275 thoracic VD radiographic images from Chung-

nam National University Veterinary Hospital and local veterinary hospitals using five deep

neural networks, with validation through diagnosis by a radiology specialist, and to determine

the most optimal deep neural network model.

Materials and methods

Dataset

Image quality, proper positioning, and exposure were considered by a veterinary radiology

specialist, and only fine images were selected. For the generalizability of the dataset, we

obtained 273 feline thoracic VD X-ray images obtained from independent 5 institutions;

Chungnam National University Veterinary Medical Teaching Hospital and four local animal

hospitals. The institutions providing radiographic images are enlisted in Table 1. For personal

reasons, the name of the institution is sealed. All radiographic images were obtained during a

routine examination or follow-up. Owner consent was obtained to use these images for the

study. Only images and disease states (normal or HCM) were provided to the researcher. All

images were anonymized and diagnosed by a veterinary radiology specialist and approved for

Table 1. The information of the dataset used in the experiment.

Animal Hospital

Case

A B C D E (revision) Total

Normal 32 30 27 10 10 109

HCM 55 50 34 15 10 164

https://doi.org/10.1371/journal.pone.0280438.t001
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research use. Among the 273 radiographic images, 164 and 109 were diagnosed as HCM and

normal, respectively. 143 and 88 HCM and normal images were used for the learning process.

Further, 21 images determined as HCM and 21 images of normal were sorted into test images

for evaluation of models. In order to avoid the peeking phenomenon, we used 11 normal and

11 HCM images to analyze the accuracy of the model. Then, 20 images were additionally

added to evaluate the peeking phenomenon and the voting strategy. S1 Table presents detailed

information.

Image mask production

Various open-source libraries were used for image processing and the learning process. A

library operating system (OS) was imported to process the directory and files. Images were

processed into arrays using NumPy and Matplotlib. TensorFlow, Keras, OpenCV, Pillow, and

Scikit images were imported to deal with the deep neural network model and model. After

learning, we used an open-source Pyplot to plot the graphs and confusion metrics. Fig 1 shows

the detailed process of the image analysis. The image mask comprised one channel constitut-

ing 0 and 1 per pixel. Specifically, the heart was indicated by 1 while the other pixels were

expressed as 0, which allowed the computer to recognize the heart’s location. To maximize the

accuracy, Unet was implemented for image mask production. Unet is a network architecture

used for precise image segmentation. First, X-ray images were resized to 256 × 256 and con-

verted into arrays with three numbers expressing red, green, and blue intensities in each pixel

(three channels). The shape of the image array was expressed as height, width, and channels,

while the status of the converted image was expressed as (256, 256, 3). To train the Unet, previ-

ously marked masks were prepared and processed together. Consequently, an image mask was

produced, indicating the heart location (256, 256, 1). Mask images were further processed

using a Binary threshold and Otsu threshold to enhance accuracy.

Fig 1. Schematic illustration of the learning process.

https://doi.org/10.1371/journal.pone.0280438.g001

PLOS ONE Diagnosis of feline hypertrophic cardiomyopathy using novel algorithms and enemble

PLOS ONE | https://doi.org/10.1371/journal.pone.0280438 February 2, 2023 3 / 16

https://doi.org/10.1371/journal.pone.0280438.g001
https://doi.org/10.1371/journal.pone.0280438


Pre-processing procedures

X-ray images for training were resized to 233 × 233 and converted to arrays (233, 233, 3), fol-

lowed by pre-processing to enhance accuracy. Regarding pre-processing, we implemented

Contrast-stretch and Overlay using a previously produced image mask. Contrast stretching

extends a specific contrast range to enhance image distinction. Overlay with an image mask

indicating the heart area improved heart detection and diagnosis. During the overlay process,

the image mask was resized to 233 × 233 to fit the original images.

Data augmentation

The pre-processed images were amplified by data augmentation, which is a valuable tool to

increase the diversity of a training set by applying random transformations. It is useful when

there is insufficient data or a low detection rate. In our dataset, the original training dataset

images were randomly rotated in 5-degree intervals, sheared in the range of 0.2, and zoomed

in the range of 0.2, respectively, to obtain the final training dataset images, which are 2958

images of normal and 2860 images of HCM.

Image classification

After pre-processing, five deep neural network models (Resnet50V2, Resnet152, InceptionRes-

netV2, MobilenetV2, and Xception) were compared to investigate the optimal engine for

HCM diagnosis from feline VD X-ray images. Application of the deep neural network model

was performed using Opensource library TensorFlow and Keras. The learning rate was set to

start from 0.000001 and increase linearly to 0.001 until the 13 epoch. From the 14th epoch, the

learning rate decreased by an exponential decay. The repetition of learning was set to 45 times,

i.e., epochs, and designed to stop whenever there was an improvement in the loss function,

which prevented the overfitting of the learning. The learning process of five architectures

began from imagenet pretrained weight. In each pre-trained model without a classifier, we

built additional classifier layers constituting a flattening layer and four fully-connected dense

layers. Between the dense layers, we used a dropout probability of 0.5 to prevent overfitting.

After the learning process, we analyzed the accuracy and loss graphs; additionally, the model

was tested using 22 X-ray images (11 normal and 11 HCM) not used in the learning process.

Based on the test results, we drew a confusion matrix and receiver operating characteristic

(ROC) curve, followed by a comparison of the accuracy for each deep neural network model.

The weight h5 file and Colab files are included in supplementary files.

Metrics to compare neural network architectures

Based on the learning process of five neural networks, we analyzed various factors including

accuracy, precision, recall, F1 score, sensitivity, specificity, and area under the curve (AUC)

score. The definitions for the comparison metrics are as follows:

Accuracy = Number of correct predictions/total number of predictions.

Precision = True positive/(true positive + false positive)

Recall (sensitivity) = True positive/(true positive + false negative)

Specificity = True negative/(true negative + false positive)

The F1 score represents the harmonic mean of precision and recall. The AUC score refers

to the two-dimensional area underneath the entire receiver operating characteristic (ROC)

curve.
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Ensemble strategy

Based on the request for the revision, we applied an ensemble strategy to enhance the model

accuracy, prevent peeking, and minimize the misdiagnosis arising from a single architecture.

We employed two strategies in the ensemble: majority voting and softmax voting [14]. Each

model prediction, softmax output, is converted to 0 (HCM) or 1 (NORMAL) using the Arg-

max function. Majority voting is performed based on the sum of the odd number of binary

prediction outputs. If the number of outputs is 5 and the sum is greater than or equal to 3, the

diagnosis is NORMAL; otherwise, the diagnosis is HCM. In contrast, softmax voting adds any

number of softmax outputs that are the two weight values for NORMAL and HCM. Then, the

Argmax function is applied to the sum of softmax outputs to decide which is more significant

between NORMAL weight sum and HCM weight sum. The diagnosis is performed using a

larger value of summed weights in the softmax strategy.

t-distributed stochastic neighbor embedding (t-SNE) visualization

The CNN model has high-dimensional feature data that cannot be visualized and plotted in a

three-dimensional world. To visualize how the model distinguishes radiographic image data,

t-distributed stochastic neighbor embedding was applied to the test datasets whose corre-

sponding feature data in the model are converted and visualized into 2-d feature points. The

TSNE in the Scikit Learn library was implied to the test data and plotted in Fig 7. The feature

data used in t-SNE is gained before passing the flattening layer of each model.

Hardware and software

For modeling and coding, Anaconda3 and Jupyter Notebook were operated on a workstation

with an AMD Ryzen 9 3900x 12core processor, 64 GB RAM, and Geforce RTX 3080.

Results

Learning process analysis

Fig 2 presents the results of the learning process. Epochs refer to cycles of repeated learn-

ing. The number of cycles positively and negatively correlated with the training accuracy

and loss rate, respectively. There was a gradual increase in the accuracy of all training

models, as evident from the accuracy and loss graphs. However, regarding the validation

accuracy of the ResNet50V2 model, an irregular peak in the 10th epoch was observed. Fur-

ther, the validation accuracy of the ResNet152 showed three and two irregular peaks in the

accuracy and loss graphs, respectively. The validation accuracy of the inceptionResNetV2

model showed two and three irregular peaks in the accuracy and loss graphs, respectively.

Moreover, MobilenetV2 demonstrated two peaks in the accuracy and loss graphs, while

Xception rarely showed irregular peaks in the graphs.

Model test and evaluation

After the learning process, each model predicted the diagnosis of the previously sorted

images. Figs 3 and 4 show the prediction results. The MobilenetV2 showed 90.91% of accu-

racy. The Resnet50V2, Resnet152, InceptionResNetV2, and Xception showed 95.45% accu-

racy respectively. Although the same accuracy, the misdiagnosed image of each model

differed from each other (Figs 2 and 3) in 22 test images, except the Resnet50V2 and

Resnet152 (Figs 2 and 3).

To analyze model performance, the ROC curve was analyzed (Fig 5), which shows the per-

formance of the classification model at all classification thresholds. We calculated the accuracy,

PLOS ONE Diagnosis of feline hypertrophic cardiomyopathy using novel algorithms and enemble

PLOS ONE | https://doi.org/10.1371/journal.pone.0280438 February 2, 2023 5 / 16

https://doi.org/10.1371/journal.pone.0280438


precision, recall, F1 score, and area under curve (AUC) score (Table 2). ResNet50V2 showed

95.45% accuracy, 100% precision, 91% recall, 95% F1 score, and 75.2% AUC score. ResNet152

showed 95.45% accuracy, 100% precision, 91% recall, 95% F1 score, and 80.57% AUC score.

InceptionResNetV2 showed 95.45% accuracy, 100% precision, 91% recall, 95% F1 score, and

87.6% AUC score. MobileNetV2 showed 91.91% accuracy, 100% precision, 82% recall, 90% F1

score, and 87.6% AUC score. Finally, Xception showed 95.45% accuracy, 92% precision, 100%

recall, 96% F1 score, and 91.63% AUC score.

Fig 2. Accuracy and loss graphs after training the architectures to detect feline HCM using VD X-ray images. Five

DL architectures were used: ResNet50V2, ResNet152, InceptionResNetV2, MobileNetV2, and Xception. Epochs refer

to the repetition of learning.

https://doi.org/10.1371/journal.pone.0280438.g002
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Testing on additional data

One of the biggest concerns in Deep learning is “peeking.” Peeking is a severe problem in

which the learning process influences the test data, consequently showing high accuracy in test

data but erroneous outcomes in the unseen data. Peeking is inevitable, yet we tried to avoid it.

To evaluate peeking in the study, we obtained normal and HCM-affected radiograph

images (10 each) from an uninvolved vet hospital. We evaluated the model from the new data

and compared it to the previous data (Fig 6). The test result of accuracy in new data showed

75% in Resnet50V2, 70% in Resnet152, 85% in InceptionResNetV2, 55% in MobilenetV2, and

80% in Xception respectively. The combined results were 86% in Resnet50V2, 83% in

Resnet152, 90% in InceptionResNetV2, 76% in MobilenetV2, and 86% in reception

respectively.

To evaluate whether the model distinguishes the test dataset, we plotted the t-SNE of each

model in Fig 7. As a result, the plotted test data in InceptionResnetv2, Resnet152, and Xception

Fig 4. Confusion matrix obtained from the deep learning process of detecting feline HCM using VD X-ray images

(ResNet50V2, ResNet152, and InceptionResNetV2). Cont’d. Twenty-two X-ray images were tested. X-ray images on

the right indicate original images that the architecture could not classify.

https://doi.org/10.1371/journal.pone.0280438.g004

Fig 4. Confusion matrix obtained from the deep learning process of detecting feline HCM using VD X-ray images

(ResNet50V2, ResNet152, and InceptionResNetV2). Cont’d. Twenty-two X-ray images were tested. X-ray images on

the right indicate original images that the architecture could not classify.

https://doi.org/10.1371/journal.pone.0280438.g004
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showed a distinct separation between normal and HCM. The accuracy and loss results are

enlisted in S2 Table.

Ensemble strategy

To enhance the accuracy, minimize the misdiagnosis of a single model, and prevent peeking,

we ensembled the results from each model in two ways: Majority voting and Softmax. We first

tested in all test sets, including old and new data (Fig 8A). Interestingly, majority voting and

softmax voting achieved 100% accuracy in old data. In the new data, however, the accuracy of

majority voting achieved only 85%, whereas softmax voting achieved 90%. In combined

results, the accuracy of majority voting achieved 93% and softmax 95%, respectively. The con-

fusion matrix of the softmax voting strategy on combined test data is plotted in Fig 8B.

Fig 5. ROC curve of DL results in detecting feline HCM using VD X-ray images. Five DL architectures were used and compared (ResNet50V2, ResNet152,

InceptionResNetV2, MobileNetV2, and Xception). The AUC was calculated and presented.

https://doi.org/10.1371/journal.pone.0280438.g005

Table 2. Evaluating parameters of each deep neural network model (%)—accuracy, precision, recall, F1 score, AUC score, sensitivity, and specificity.

Architecture Accuracy Precision Recall (sensitivity) F1 Score AUC score Specificity

ResNet50V2 95.45 100 91 95 75.20 100

ResNet152 95.45 100 91 95 80.57 100

InceptionResNetV2 95.45 100 91 95 87.60 100

MobileNetV2 90.91 100 82 90 87.60 100

Xception 95.45 92 100 96 91.73 90.91

https://doi.org/10.1371/journal.pone.0280438.t002
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Discussion

Recently, there has been a tremendous advancement in visual recognition in ML owing to the

implementation of neuron architecture similar to the response of a neuron in the visual cortex,

called a convolutional neural network (CNN) [15]. The Recent CNN architecture comprises

the optimized setting of the convolutional structure. Although many architectures are avail-

able, we trained five residual learning frameworks (Resnet50V2, ResNet152, InceptionRes-

NetV2, MobileNetV2, and Xception) using 231 images of feline VD X-ray images and

determined the most optimal engine for diagnosing feline HCM. The accuracy of all engines

was> 90%, with Xception being the ideal architecture.

ResNet152 (deep residual networks) comprises 152 depth layers but has lower complexity

[16]. The ResNet, developed by Microsoft, is deeper than VGG nets, developed in 2014 by the

Visual Geometry Group at Oxford University. Resnet152 has achieved excellent recognition

tasks in ImageNet and Ms. COCO competitions. Specifically, ResNet152 has markedly lowered

the top five errors encountered compared with the previous neural network. In our study,

ResNet demonstrated > 90% accuracy; however, it showed several fluctuating patterns during

the learning phase, as illustrated in the accuracy and loss graphs (Fig 2). ResNet50V2 is a

50-layered deep residual network developed by the inventors of ResNet 152. It has a two-layer

block in a 34-layer net, with a three-layer bottleneck block.

InceptionResNetV2 was incepted in conjunction with ResNet [17]. It introduced residual

connection with traditional architecture and demonstrated high performance in the 2015 Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC). Inception is a convolutional net-

work that was introduced by Google in the 2014 ILSVRC. It was subsequently modified into

Fig 6. Comparison of accuracy of five DL models in old test data, new data, and combined results. Five DL architectures were used and compared

(ResNet50V2, ResNet152, InceptionResNetV2, MobileNetV2, and Xception).

https://doi.org/10.1371/journal.pone.0280438.g006
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version 4 (Inception V4). InceptionResNetV2 is a combination of InceptionV4 and ResNet. By

conjugating both architectures and the correction process, there was a significant error reduc-

tion of 4.9%. In our study, InceptionResNetV2 showed 95.45% accuracy in the test; however, it

fluctuated in the validation accuracy and validation loss graph.

MobileNet was designed in 2017 by Google for mobile environments; the architecture is

focused on lightening the weight and enhancing efficiency [18]. To achieve efficiency, depthwise

separable convolution was applied, which uses a single filter for each input channel, reducing

Fig 7. t-SNE plotting of five deep learning models in all test data.

https://doi.org/10.1371/journal.pone.0280438.g007
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computation and model size. MobileNet uses linear bottlenecks, which have lower information

loss and computation than ReLU. In our study, MobileNet showed an accuracy of 0.91.

Xception was introduced in 2017 by Google. Inspired by Inception, Xception applied Fran-

cois Chollet-modified depthwise separable convolution to independently calculate cross-chan-

nel correlations and spatial correlation, termed extreme inception [19]. Xception is composed

of 14 modules and 36 convolutional layers. Specifically, the absence of a nonlinearity activation

function increases the accuracy, including ReLU and ELU. In our study, Xception showed the

smoothest accuracy, loss graphs, and the highest ROC curve. Based on the results, the most

optimal architecture for diagnosing feline HCM was deduced to be Xception.

With the increase in computer capacity and processing ability, there has been extensive

research on the application of DL in various veterinary diagnostic fields. Hattel et al. developed

a two-staged algorithm that distinguished normal findings from several pathological diagnoses

in the bovine liver, lung, spleen, and kidney stained using hematoxylin and eosin (H&E) [20].

Fig 8. Comparison of the accuracy of Majority voting strategy and Softmax strategy in old data, new data, and

combined results (A) and Confusion matrix of Softmax voting strategy and misdiagnosed images (B).

https://doi.org/10.1371/journal.pone.0280438.g008
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The algorithm was based on a support vector machine (SVM), among the algorithms used in

Ml through classification and regression analysis. Several rat studies have focused on evaluat-

ing H&E-stained bone marrow. Kozlowski et al. developed an automated algorithm for quanti-

fying bone marrow cell density [12]. They suggested that automated measures of bone marrow

cellular depletion were more accurate than manual scoring by pathologists. This algorithm

was extended to quantify the myeloid, erythroid, lymphoid, and megakaryocyte cell density.

With the improvement in digital pathology, Kartasalo et al. investigated the three-dimensional

reconstruction of H&E-stained slides [21]. Specifically, they reconstructed the prostate and

liver by annotating 2448 landmarks in the slides. In addition to histology, the Vetscan algo-

rithm detects feline fecal parasites, including Toxocara, Trichuris, Ancylostoma, and taeniid

eggs [11]. Additionally, hemosiderophages in equine bronchoalveolar lavage fluid were quanti-

fied based on a DL algorithm [10]. Regarding veterinary radiography, Banzato et al. developed

an algorithm using DenseNet 121 and ResNet50 to detect radiographic findings in canine lat-

eral (LL) X-ray images [13]. The findings were classified as cardiomegaly, alveolar, bronchial,

interstitial, mass, pleural effusion, pneumothorax, and megaesophagus. Although some find-

ings showed an accuracy of< 70%, some datasets detected cardiomegaly with a 98% accuracy.

Feline HCM is a multifactorial disease with various diagnostic protocols, including physical

examination, genetic testing, NT-proBNP and troponin-I levels, blood pressure measurement,

radiography, and ultrasound examination [7]. Recently, numerous biomarkers have been

explored to diagnose feline HCM, including AIA, APOM, CPN1, prothrombin, etc. [22]. The

gold standard for diagnosing HCM in cats is radiography and ultrasound analysis. Radiogra-

phy of cats can identify HCM through symptoms, including cardiomegaly, auricular bulge,

and silhouette changes [7]. Thoracic radiography allows the identification of mild or moderate

cardiac changes in cardiomyopathy. For objective diagnosis of cardiomegaly in dogs and cats,

radiologists implement a vertebral heart scale (VHS) [23]. By calculating the relative ratio of

the long and short axis of the heart to vertebral size, a radiologist can determine whether the

heart is enlarged. In addition, a modified VHS method enables the measurement of left atrial

size in the lateral view of thoracic radiography. However, the combination of these indexes

yielded an accuracy of only 75% [8]; therefore, various diagnostic protocols are recommended

for confirming feline HCM. In our study, the diagnostic accuracy of thoracic radiography for

feline HCM was 95%. Although sole dependence on thoracic radiography to diagnose feline

HCM is risky, the model can suggest the possibility of feline HCM with at least 95% accuracy.

Another importance of the detection of HCM in a radiographic image is that it could save

cost and increase the detection rate during the routine examination. As the only specialized

veterinarian can perform the echocardiogram examination and high-cost equipment is

required, an x-ray and auscultation are the most frequent tool to detect the HCM of the cat in

the local animal hospital. By advising the vet whether the cat could be affected HCM by radio-

graphic images, local vets can consider whether the animal should be transferred to the

specialist.

This study has some limitations including the limited number of samples and the error

rate. Because the subject of the study is specified into feline cardiomyopathy and the ventro-

dorsal (VD) radiographic images, comparatively low number of the datasets were available.

However, we overcame the limited number of datasets by implementing the data augmenta-

tion and the voting strategy. Further investigation is required to obtain the more dataset to

update the study and enhance the accuracy. Although the voting strategy of 5 models achieved

95% in the test data, the models misdiagnosed 2 images of HCM data as normal (Fig 8). To

avoid those errors, the diagnosis should not only rely on a single examination.

A good CNN model for diagnosing HCM must distinguish HCM from normal heart distinc-

tively. To visualize how the model deals with test data, we plotted the two-dimensional graph of
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how the model recognizes test data. As the model is composed of high dimensions that cannot

be plotted, the t-SNE function in the scikit learn library was implemented [24]. The accuracy of

Mobilenet was only 76% because the model did not separate HCM from normal data. Further

research is required to improve the separation of the HCM data from normal.

Peeking is one of the most challenging problems encountered by all DL scientists. Peeking

is associated with overfitting in which the repeated modification of model weights based on

test data causes grave outcomes in new data. Many computer scientists tried several attempts

to overcome the peeking phenomenon [25, 26]. In this study, we tried to prevent the peeking

phenomenon by 1) dividing the training dataset, validation dataset, and training dataset, 2)

using the dropout function on each deep layer, and 3) evaluating new data that had never been

used in training, validating and testing process. Despite all the precautions, we experienced the

peeking phenomenon in every model. To improve the accuracy and reduce misdiagnosis of a

single model, we tried the voting strategy as advised by the reviewer. As a result, we improved

the accuracy by 95% in all test data combined.

Conclusion

Our findings demonstrated that the five DL architectures provided 95% accuracy in all test

data. Due to the peeking phenomenon, all models showed lower accuracy in the new test data

and Mobilenet even showed 55% of accuracy in the new data. However, by implementing a

softmax voting strategy using all 5 models, 95% accuracy in combined test data has been

achieved. In conclusion, The automated DL system achieved high performance and could help

local veterinarians screen HCM radiographically.
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