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Abstract

In this study, we propose a generalized Marshall-Olkin exponentiated exponential distribu-

tion as a submodel of the family of generalized Marshall-Olkin distribution. Some statistical

properties of the proposed distribution are examined such as moments, the moment-gener-

ating function, incomplete moment, and Lorenz and Bonferroni curves. We give five estima-

tors for the unknown parameters of the proposed distribution based on maximum likelihood,

least squares, weighted least squares, and the Anderson-Darling and Cramer-von Mises

methods of estimation. To investigate the finite sample properties of the estimators, a com-

prehensive Monte Carlo simulation study is conducted for the models with three sets of ran-

domly selected parameter values. Finally, four different real data applications are presented

to demonstrate the usefulness of the proposed distribution in real life.

1. Introduction

Statistical distributions are widely used to model data including survival analysis. Exponential,

Weibull, Rayleigh, gamma, and lognormal distributions have central importance in the litera-

ture as they are among the most flexible distributions used in survival analysis. However, con-

sidering the unlimited number of data generation processes, these distributions alone may be

insufficient for modeling. Thus, new distributions and distribution families have been derived

in recent years by utilizing existing distributions with derivation methods including transfor-

mation, compounding, and exponentiation. The LBeta-G family [1], Kumaraswamy-G family

[2], Topp-Leone G family [3], modified beta transmuted-G family [4], exponentiated Weibull

distribution [5], Odd-Lidney half-logistic distribution [6], and extended Gumbel distribution

[7] are examples of these types of derived distributions. Among others, the weighted exponen-

tial [8], Nadarajah-Haghighi exponential [9], exponentiated generalized linear exponential

[10], exponentiated Weibull (EW) [11], exponentiated Weibull-Poisson (EWP) [12], extended

exponential [13], α-power transformed generalized exponential [14], odd exponentiated half-

logistic exponential [15], exponentiated additive Weibull [16], exponentiated Weibull-expo-

nential [17], extended odd Weibull exponential (EOWEx) [18], and bimodal exponential [19]

distributions are extensions of the exponential distribution frequently used in survival analysis.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0280349 January 18, 2023 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ozkan E, Golbasi Simsek G (2023)

Generalized Marshall-Olkin exponentiated

exponential distribution: Properties and

applications. PLoS ONE 18(1): e0280349. https://

doi.org/10.1371/journal.pone.0280349

Editor: Nadia Hashim Al-Noor, Mustansiriyah

University - College of Science, IRAQ

Received: October 12, 2022

Accepted: December 27, 2022

Published: January 18, 2023

Copyright: © 2023 Ozkan, Simsek. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-3218-2868
https://orcid.org/0000-0002-8790-295X
https://doi.org/10.1371/journal.pone.0280349
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280349&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280349&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280349&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280349&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280349&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0280349&domain=pdf&date_stamp=2023-01-18
https://doi.org/10.1371/journal.pone.0280349
https://doi.org/10.1371/journal.pone.0280349
http://creativecommons.org/licenses/by/4.0/


Exponentiated distributions are obtained by exponentiating existing distributions. Because

they have more parameters, their model fits are better compared to baseline distributions. The

idea of exponentiated distributions was first introduced by Lehmann [20]. Exponentiated

gamma, exponentiated Weibull, exponentiated Gumbel, and exponentiated Frechet distribu-

tions are members of the class of distributions obtained by exponentiation [21]. One of the

widely used exponentiated distributions is the exponentiated exponential (EE) distribution. It

was introduced by Verhulst [22] following the definition of the general form by Ahuja and

Nash [23] and subsequently named by Gupta et al. [24]. The EE distribution with θ and β
parameters is shown by EE(θ, β). The probability density function (pdf) and cumulative distri-

bution function (cdf) of this distribution are given as follows:

f ðxÞ ¼ byexp � yxð Þ 1 � exp � yxð Þ½ �
b� 1

ð1Þ

and

F xð Þ ¼ 1 � exp � yxð Þ½ �
b
; ð2Þ

where θ> 0, β> 0, and x> 0. The EE distribution has a flexible structure in data modeling as

it is able to have a decreasing or increasing hazard function depending on the shape parameter.

The EE distribution is used in applications such as forecasting precipitation data, software reli-

ability growth models for vital quality metrics, estimating the average life of power system

equipment, and recovery rate modeling [25].

Marshall and Olkin [26] discovered a new way to add parameters to a distribution family

and they proposed the Marshall-Olkin (MO) distribution family. Sankaran and Jayakumar

[27] indicated that the MO family has an odds ratio function. Subsequently, Gillariose et al.

[28] described the basic motivations of this distribution family as obtaining models that have

more flexible skewness than symmetric distributions and acquiring heavy-tailed distributions

relative to the baseline distributions. Finally, the most important motivation was said to be

deriving more flexible models by providing various forms of hazard rate functions (HRFs)

compared to the baseline distributions. Moreover, the MO family has an explicit interpretation

with comprehensive ordering properties, including the pdf and HRF. There are many lifetime

distributions in the literature obtained by means of the MO distribution family, such as the

MO Frechet distribution [29], beta MO distribution family [30], MO generalized exponential

distribution [31], MO alpha power distribution [32], and Weibull MO family [33]. Chesneau

et al. [34] proposed a generalization of the MO family, which they called the generalized Mar-

shall-Olkin (GMO) distribution. It is remarkable that their obtained model is more flexible

than the original MO distribution family. The pdf and cdf of the GMO distribution family are

as follows:

g xð Þ ¼
1 � að Þ 1 � lð Þ F xð Þ½ �

2
þ 2a 1 � lð ÞF xð Þ þ al

aþ 1 � að ÞF xð Þð Þ
2

f xð Þ; x 2 R; ð3Þ

G xð Þ ¼
lF xð Þ þ 1 � lð Þ F xð Þ½ �

2

aþ 1 � að ÞF xð Þð Þ
; x 2 R; ð4Þ

where α, λ 2 (0,1], and F(x) and f(x) are the cdf and pdf functions of the baseline distribution,

respectively. When λ = 1 is placed in Eq 4, the standard MO distribution family is obtained

[26]. This study aims to propose a GMO exponentiated exponential distribution with EE base-

line distribution, derived from the GMO family. We represent this GMO exponentiated expo-

nential distribution as GMO–EE (α, λ, θ, β) with parameters α, λ, θ, and β hereafter. There are
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two main reasons for choosing the EE as the baseline distribution. First, the EE is more effec-

tive than the two-parameter Weibull and two-parameter gamma distributions in data analysis.

Second, as mentioned before, the EE has both increasing and decreasing HRFs [25]. The first

motivation for our new model arises from the easy acquisition of the reliability function and

HRF, as the cdf is quite simple. The second motivation is that its decreasing, increasing,

upside-down bathtub, bathtub-shaped, constant, and increasing-decreasing-increasing HRFs

can be used effectively for data modeling, especially in reliability analysis, hydrological, biolog-

ical, and engineering applications. The most important motivation for our model is that it can

be used as an alternative to the Weibull, gamma, EE, and EWP models in the literature.

In this study, a submodel GMO-EE distribution is introduced, benefiting from the GMO

distribution family. In Section 2, the survival function, HRF, quantile function, moment-gen-

erating function, and moments are obtained. Section 3 provides the maximum likelihood esti-

mator (MLE), least squares estimator (LSE), weighted least squares estimator (WLSE),

Cramer-von Mises estimator (CVME), and Anderson-Darling estimator (ADE) for unknown

parameters of the GMO-EE distribution. In Section 4, a Monte Carlo simulation study is con-

ducted to compare the performances of the estimators in terms of biases and mean square

errors (MSEs) for each parameter. In Section 5, four real data applications are presented to

show the applicability of the GMO-EE model in real life. The final section concludes the study.

2. GMO-EE distribution and its properties

In this section, we introduce a submodel GMO-EE survival distribution. Suppose that X is a

random variable from the GMO-EE distribution. In this case, the pdf and cdf of X are given by

the following:

g x; ηð Þ ¼
1 � að Þ 1 � lð Þ 1 � exp � yxð Þ½ �

2b
þ 2a 1 � lð Þ 1 � exp � yxð Þ½ �

b
þ al

aþ 1 � að Þ 1 � exp � yxð Þð Þ
b

h i2

0

B
@

1

C
A�

byexp � yxð Þ 1 � exp � yxð Þ½ �
b� 1

ð5Þ

and

G x; ηð Þ ¼
l 1 � exp � yxð Þð Þ

b
þ 1 � lð Þ 1 � exp � yxð Þ½ �

2b

aþ 1 � að Þ 1 � exp � yxð Þð Þ
b

; ð6Þ

where η = (α, λ, θ, β) is the parameter vector and α, λ 2 [0, 1), θ, β 2 R+ are the parameters.

The GMO-EE distribution is reduced to the MO-EE distribution for λ = 1. The pdf plots for

the various values of each parameter are shown in Fig 1 while the other parameters in the

model are held constant.

The survival function and HRF for the GMO-EE distribution are respectively given as fol-

lows:

S x; ηð Þ ¼
aþ 1 � lð Þ 1 � exp � yxð Þð Þ

b
h i

1 � 1 � exp � yxð Þð Þ
b

h i

aþ 1 � að Þ 1 � exp � yxð Þð Þ
b

ð7Þ
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and

h x; ηð Þ ¼
1 � að Þ 1 � lð Þ 1 � exp � yxð Þð Þ

2b
þ 2a 1 � lð Þ 1 � exp � yxð Þð Þ

b
h i

ybexp � yxð Þ 1 � exp � yxð Þð Þ
b� 1

aþ 1 � lð Þ 1 � exp � yxð Þð Þ
b

h i
aþ 1 � að Þ 1 � exp � yxð Þð Þ

b
h i

1 � 1 � exp � yxð Þð Þ
b

h i :ð8Þ

Fig 2 shows the HRF plots for different values of parameters α, λ, θ, and β while the other

parameters in the model are held constant.

2.1. Moment-generating function

In this subsection, the moment-generating function of the GMO-EE distribution is obtained.

Let X be a random variable having distribution GMO–EE(α, λ, θ, β).

Theorem 1:

For any x and α provided that (1 – α)[1 –F(x)] 2 (0,1), the pdf can be expanded to the series

by using the following:

g xð Þ ¼ f0 xð Þ þ
X1

l¼0

Xlþ1

s¼0

ul;sfs xð Þ; ð9Þ

where fs(x) = (s + 1)f(x) (F(x))s and ul;s ¼ l � að Þ
lþ 1

s

 !

1 � að Þ
l
� 1ð Þ

s
[35].

The moment-generating function for the GMO-EE via Theorem 1 is given by the follow-

ing:

M0

x tð Þ ¼ M�

x;0 tð Þ þ
X1

l¼0

Xlþ1

s¼0

ul;sM
�

x;s tð Þ; ð10Þ

Fig 1. The pdf plots for selected parameter values.

https://doi.org/10.1371/journal.pone.0280349.g001
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where M�
x;0 tð Þ ¼

Z1

0

exp txð Þf0 xð Þdx and M�
x;s tð Þ ¼

Z1

0

exp txð Þfs xð Þdx are calculated as follows:

M�

x;0 tð Þ ¼ E etxð Þ ¼ yb
Z1

0

exp t x � yð Þð Þ 1 � exp � xyð Þð Þ
b� 1dx; ð11Þ

M�

x;s tð Þ ¼ E etXð Þ ¼ sþ 1ð Þyb

Z1

0

exp t x � yð Þð Þ 1 � exp � xyð Þð Þ
b sþ1ð Þ� 1dx: ð12Þ

By using the transformation of u = exp(-θx) in Eqs 11 and 12, the following equations are

respectively obtained:

M�

x;0 tð Þ ¼ b
Z1

0

u� t
y 1 � uð Þ

b� 1du ¼
G 1 � t

y

� �
G bþ 1ð Þ

G bþ 1 � t
y

� � ; ð13Þ

M�

x;s tð Þ ¼ sþ 1ð Þb

Z1

0

u� t
y 1 � uð Þ

b sþ1ð Þ� 1du ¼ sþ 1ð Þ
G 1 � t

y

� �
G b sþ 1ð Þ þ 1ð Þ

G b sþ 1ð Þ þ 1 � t
y

� � ; ð14Þ

where G að Þ ¼

Z1

0

xa� 1exp � xð Þdx is defined. Accordingly, the moment-generating function is

Fig 2. The HRF plots for selected parameter values.

https://doi.org/10.1371/journal.pone.0280349.g002
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expressed as

M0

x tð Þ ¼ G 1 �
t
y

� �
G bþ 1ð Þ

G bþ 1 � t
y

� �þ
X1

l¼0

Xlþ1

s¼0

sþ 1ð Þ l � að Þ
lþ 1

s

 !

1 � að Þ
l
� 1ð Þ

s G b sþ 1ð Þ � 1ð Þ

G b sþ 1ð Þ þ 1 � t
y

� �

 !

:ð15Þ

2.2. Moments and incomplete moment

Lemma 1:

Binomial series expansion for any n> 0 is given by the following:

a � xð Þ
n
¼
Xn

i¼1

n

i

 !

� 1ð Þ
i að Þn� i xð Þi; ð16Þ

where
n

i

 !

¼
n n� 1ð Þ n� 2ð Þ:::: n� i� 1ð Þ

i! ; i ¼ 1; 2; 3; . . .; n [35].

Let us now consider the rth moment of the GMO-EE distribution with parameters α, λ, θ,

and β. The rth moment is expressed as follows:

M0

r ¼ M�

r;0 þ
X1

l¼0

Xlþ1

s¼0

ul;rM
�

r;s; ð17Þ

where M�
r;0 ¼

Z1

0

xrf0 xð Þdx and M�
r;s ¼

Z1

0

xrfs xð Þdx are calculated as follows:

M�

r;0 ¼ yb

Z1

0

xr exp � yxð Þ 1 � exp � yxð Þð Þ
b� 1dx; ð18Þ

M�

r;s ¼ sþ 1ð Þyb

Z1

0

xr exp � yxð Þ 1 � exp � yxð Þð Þ
b sþ1ð Þ� 1dx: ð19Þ

Using the series expansion in Eq 16, the integrals of Eqs 18 and 19 can be computed as fol-

lows:

M�
r;0 ¼ yb

Z1

0

xr exp � yxð Þ
Xb� 1

i¼0

b � 1

i

 !

� 1ð Þ
i exp � yxð Þð Þ

i

¼ yb
Xb� 1

i¼0

b � 1

i

 !

� 1ð Þ
i
Z1

0

xr exp � yx iþ 1ð Þð Þ

¼ b
Xb� 1

i¼1

b � 1

i

 !

� 1ð Þ
i G r þ 1ð Þ

y
r iþ 1ð Þ

rþ1

ð20Þ
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and

M�
r;s ¼ sþ 1ð Þyb

Z1

0

xr exp � yxð Þ
Xb sþ1ð Þ� 1

i¼1

b sþ 1ð Þ � 1

i

 !

� 1ð Þ
i exp � yxð Þð Þ

idx

¼ sþ 1ð Þyb
Xb sþ1ð Þ� 1

i¼1

b sþ 1ð Þ � 1

i

 !

� 1ð Þ
i
Z1

0

xr exp � yx iþ 1ð Þð Þdx

¼ sþ 1ð Þb
Xb sþ1ð Þ� 1

i¼1

b sþ 1ð Þ � 1

i

 !

� 1ð Þ
i G r þ 1ð Þ

y
r iþ 1ð Þ

rþ1
:

ð21Þ

Thus, via Eqs 20 and 21, the rth moment is obtained by:

M0

r ¼
b G r þ 1ð Þ

y
r

Xb� 1

i¼0

b � 1

i

 !
� 1ð Þ

i

iþ 1ð Þ
rþ1
þ
b G r þ 1ð Þ

y
r

X1

l¼0

Xlþ1

s¼0

Xb sþ1ð Þ� 1

i¼1

sþ 1ð Þ�

l � að Þ
l þ 1

s

 !

1 � að Þ
l
� 1ð Þ

sþi
b sþ 1ð Þ � 1

i

 !
1

iþ 1ð Þ
rþ1
:

ð22Þ

If r = 1 and r = 2 are taken in Eq 22, the first two moments are obtained in the form of

E Xð Þ ¼ M0
1 and E X2ð Þ ¼ M0

2. The variance is calculated as Var Xð Þ ¼ M0
2; � M0

1ð Þ
2
through

the first and second moment.

The rth incomplete moment of random variable X having distribution GMO–EE(η) is given

by the following:

mr yð Þ ¼
Zy

0

xrg xð Þdx

¼
b

y
r

Xb� 1

i¼0

b � 1

i

 !

� 1ð Þ
i G r þ 1; yy iþ 1ð Þð Þ

iþ 1ð Þ
rþ1

þ
X1

l¼0

Xlþ1

s¼0

Xb sþ1ð Þ� 1

i¼0

l � að Þ
l þ 1

s

 !

1 � að Þ
l
�

b

y
r sþ 1ð Þ

b sþ 1ð Þ � 1

i

 !

� 1ð Þ
iþs G r þ 1; yy iþ 1ð Þð Þ

iþ 1ð Þ
rþ1

;

ð23Þ

where Γ(a, b) is an incomplete gamma function defined as G a; bð Þ ¼

Zx

0

ts� 1exp � tð Þdt:

2.3. Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves are basic methods used to analyze data in the areas of eco-

nomics and reliability. The Bonferroni and Lorenz curves for the GMO–EE(η) distribution are
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respectively given by the following:

B pð Þ ¼
1

pm

Zq

0

xf xð Þdx

¼
b

pym

Xb� 1

i¼1

b � 1

i

 !

� 1ð Þ
i G 2; qy iþ 1ð Þð Þ

iþ 1ð Þ
2

þ
b

pym

X1

l¼0

Xlþ1

s¼0

Xb sþ1ð Þ� 1

i¼0

l � að Þ
l þ 1

s

 !

1 � að Þ
l
�

sþ 1ð Þ
b sþ 1ð Þ � 1

i

 !

� 1ð Þ
sþi G 2; yq iþ 1ð Þð Þ

iþ 1ð Þ
2

ð24Þ

and

L pð Þ ¼
1

m

Zq

o

xg xð Þdx

¼
b

ym

Xb� 1

i¼0

b � 1

i

 !

� 1ð Þ
i G 2; qy iþ 1ð Þð Þ

iþ 1ð Þ
2

þ
b

ym

X1

l¼0

Xlþ1

s¼0

Xb sþ1ð Þ� 1

i¼0

l � að Þ
l þ 1

s

 !

1 � að Þ
l
�

sþ 1ð Þ
b sþ 1ð Þ � 1

i

 !

� 1ð Þ
sþi G 2; yq iþ 1ð Þð Þ

iþ 1ð Þ
2

;

ð25Þ

where μ is the first moment and q = Q(p) denotes the quantile function.

2.4. Quantile function

The quantile function for the distribution GMO–EE(x, η) = p, p 2 (0,1) is obtained as follows:

xp ¼ �

log � � lþp� paþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 2lpaþp2 � 2p2aþp2a2þ4pa
p

2 1� lð Þ

� �1
b

þ 1

 !

y
: ð26Þ

3. Point estimation

3.1. Maximum likelihood estimation method

Let X1, X2,. . ., Xn be a random sample from GMO–EE(x, η). The log-likelihood function is

given by the following:

ℓ ηð Þ ¼
Xn

i¼1

log 1 � að Þ 1 � lð Þ 1 � exp � yxið Þð Þ
2b
þ 2a 1 � lð Þ 1 � exp � yxið Þð Þ

b
þ al

� �

þnlog ybð Þ � y
Xn

i¼1

xi þ b � 1ð Þ
Xn

i¼1

log 1 � exp � yxið Þð Þ � 2
Xn

i¼1

log aþ 1 � að Þ 1 � exp � yxið Þð Þ
b

� �
:

ð27Þ
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Accordingly, the MLEs for the unknown parameters of η = (α, λ, θ, β) are obtained by solv-

ing the following equations:

ℓ Zð Þ
@a
¼
Xn

i¼1

2 1 � lð Þ 1 � exp � yxið Þð Þ
b
þ l � ð1 � lÞ 1 � exp � yxið Þð Þ

2b

1 � að Þ 1 � lð Þ 1 � exp � yxið Þð Þ
2b
þ 2a 1 � lð Þ 1 � exp � yxið Þð Þ

b
þ al

�
Xn

i¼1

1 � 1 � exp � yxið Þð Þ
b

� �

aþ 1 � að Þ 1 � exp � yxið Þð Þ
b
¼ 0;

ð28Þ

ℓ Zð Þ
@l
¼
Xn

i¼1

a � 1 � að Þ 1 � exp � yxið Þð Þ
2b
� 2a 1 � exp � yxið Þð Þ

b
þ a

1 � að Þ 1 � lð Þ 1 � exp � yxið Þð Þ
2b
þ 2a 1 � lð Þ 1 � exp � yxð Þð Þ

b
þ al

¼ 0; ð29Þ

ℓ Zð Þ
@y
¼
Xn

i¼1

2b 1 � lð Þxi exp � yxið Þ 1 � lð Þ 1 � exp � yxið Þð Þ
2b
þ a 1 � exp � yxið Þð Þ

b
h i

1 � exp � yxið Þð Þ 1 � að Þ 1 � lð Þ 1 � exp � yxið Þð Þ
2b
þ 2a 1 � lð Þ 1 � exp � yxið Þð Þ

b
þ al

h i

þ
n
y
þ
Xn

i¼1

xi þ
Xn

i¼1

b � 1ð Þx exp � yxð Þ

1 � exp � yxð Þ
�
Xn

i¼1

2 1 � að Þ 1 � exp � yxð Þð Þ
b
bx exp � yxð Þ

1 � exp � yxð Þð Þ aþ 1 � að Þ 1 � exp � yxð Þð Þ
b

� � ¼ 0;

ð30Þ

ℓ Zð Þ
@b
¼
Xn

i¼1

2 1 � lð Þlog 1 � exp � yxið Þð Þ 1 � að Þ 1 � exp � yxið Þð Þ
2b
þ a 1 � exp � yxið Þð Þ

b
h i

1 � að Þ 1 � lð Þ 1 � exp � yxið Þð Þ
2b
þ 2a 1 � lð Þ 1 � exp � yxið Þð Þ

b
þ al

þ
n
b
þ log 1 � exp � yxið Þð Þ �

Xn

i¼1

2 1 � að Þ 1 � exp � yxið Þð Þ
blog 1 � exp � yxið Þð Þ

aþ 1 � að Þ 1 � exp � yxð Þð Þ
b

¼ 0:

ð31Þ

3.2. Least square and weighted least square estimation

Let X1, X2, . . ., Xn be a random sample taken from GMO–EE(x, η). X1:n, X2:n, . . ., Xn:n are the

order statistics in this sample. The expected value and variance of the empirical distribution

function are as follows:

E G Xi:nð Þ½ � ¼
i

nþ 1
; i ¼ 1; 2; . . .; n; ð32Þ

Var G Xi:nð Þð Þ ¼
i n � iþ 1ð Þ

nþ 1ð Þ
2 nþ 2ð Þ

; i ¼ 1; 2; . . .; n: ð33Þ

Hence, the LSEs for the unknown parameters of distribution GMO–EE(α, λ, θ, β) are

obtained by minimizing the objective function given as follows:

C a; l; y;bð Þ ¼
Xn

i¼1

G xi:n; a; l; y;bð Þ �
i

nþ 1

� �2

: ð34Þ
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Thus, the LSEs for the parameters, âLSE; l̂LSE; ŷLSE, and b̂LSE, are obtained by solving the sys-

tems of equations given by Eqs 35–38:

@C a; l; y; bð Þ

@a
¼
Xn

i¼1

G0a xi:n; a; l; y;bð Þ G xi:n; a; l; y;bð Þ �
i

nþ 1

� �

¼ 0; ð35Þ

@C a; l; y; bð Þ

@l
¼
Xn

i¼1

G0l xi:n; a; l; y;bð Þ G xi:n; a; l; y;bð Þ �
i

nþ 1

� �

¼ 0; ð36Þ

@C a; l; y; bð Þ

@y
¼
Xn

i¼1

G0y xi:n; a; l; y;bð Þ G xi:n; a; l; y;bð Þ �
i

nþ 1

� �

¼ 0; ð37Þ

@C a; l; y; bð Þ

@b
¼
Xn

i¼1

G0b xi:n; a; l; y; bð Þ G xi:n; a; l; y; bð Þ �
i

nþ 1

� �

¼ 0: ð38Þ

The WLSEs of parameters α, λ, θ and β, âWLSE; l̂WLSE; ŷWLSE, and b̂WLSE, are obtained by mini-

mizing the objective function given by the following:

o a; l; y;bð Þ ¼
Xn

i¼1

wi G Xi:nð Þ �
i

nþ 1

� �2

; ð39Þ

where wi = (n + 1)2 (n + 1)/(i(n—i + 1)).

3.3. Anderson-Darling and Cramer-von Mises estimation

The Anderson-Darling method is based on the Anderson-Darling goodness-of-fit statistic pro-

posed by Anderson and Darling [36]. Accordingly, ADEs for unknown parameters of the

GMO-EE distribution are obtained by minimizing the following objective function:

A a; l; y; bð Þ ¼ � n �
1

n

Xn

i¼1

2i � 1ð Þ log G xi:n; a; l; y; bð Þð Þ þ log 1 � G xi:na; l; y; bð Þð Þ½ �: ð40Þ

The Cramer-von Mises method, like the LSE and WLSE, is based on goodness-of-fit for the

difference between the cdf and empirical distribution function. Thus, the Cramer-von Mises

estimators âCvME; l̂CvME; ŷCvME, and b̂CvME can be obtained by minimizing the following:

C a; l; y;bð Þ ¼
1

12n
þ
Xn

i¼1

G xi:n; a; l; y; bð Þ �
2i � 1

2n

� �2

: ð41Þ

4. Simulation study

In this section, performances for the MLE, LSE, WLSE, ADE, and CvME estimators of the

unknown parameters of the GMO-EE distribution are assessed according to mean biases

and MSEs. The data are randomly generated from three GMO-EE models with selected

parameter vectors η1 = (0.4,0.8,1,0.5), η2 = (0.5,0.7,3,0.9)0, and η3 = (0.2,0.5,2,0.75). The

mean biases and MSEs are obtained in 5000 replications with sample sizes of 50, 100, 150,

200, 250, 500, 750, and 1000 for each of the models. However, the estimators of the parame-

ters cannot be obtained in closed form. The BFGS, Nelder-Mead, CG, and L-BFGS-B [37]

algorithms, which are numerical methods in R software [38], can be used to obtain the esti-

mates of the parameters. The mean biases and MSEs in terms of the sample sizes and the

PLOS ONE Generalized Marshall-Olkin exponentiated exponential distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0280349 January 18, 2023 10 / 22

https://doi.org/10.1371/journal.pone.0280349


five aforementioned estimators for the three models with η1, η2, and η3 are given in Tables

1–3, respectively.

When Tables 1–3 are examined, it is seen that the mean biases and MSEs decrease steadily

as the number of samples increases. In addition, with the increase in sample size, the mean

Table 1. Mean bias and MSE for the model with α = 0.4, λ = 0.8, θ = 1, and β = 0.5.

Mean bias MSE
n α̂ λ̂ θ̂ β̂ α̂ λ̂ θ̂ β̂

50 MLE -0.28068 -0.21289 0.12878 0.32917 0.09439 0.07028 0.13230 0.15473

LSE -0.26870 -0.14047 -0.04713 0.33943 0.15730 0.07187 0.15674 0.17698

WLSE -0.26969 -0.16348 -0.03111 0.29744 0.09006 0.05760 0.12407 0.13903

CvME -0.27618 -0.17265 0.01921 0.30419 0.08906 0.05734 0.11549 0.13320

ADE -0.30248 -0.17779 0.07342 0.40718 0.10553 0.05781 0.17959 0.23130

100 MLE -0.23361 -0.18780 0.07709 0.20902 0.06971 0.05883 0.06699 0.06390

LSE -0.24670 -0.14643 -0.00722 0.25118 0.09513 0.06215 0.09679 0.09334

WLSE -0.23761 -0.15988 0.00178 0.21423 0.07112 0.05401 0.06952 0.06911

CvME -0.23717 -0.16180 0.01935 0.21035 0.06840 0.05206 0.06636 0.06327

ADE -0.26863 -0.17362 0.05957 0.28492 0.08600 0.05662 0.10442 0.11242

150 MLE -0.19717 -0.14995 0.04835 0.15931 0.05473 0.04512 0.04279 0.03820

LSE -0.22552 -0.13246 -0.00074 0.20328 0.06985 0.05001 0.07593 0.06115

WLSE -0.21098 -0.13784 0.00098 0.16955 0.05798 0.04559 0.05071 0.04308

CvME -0.20837 -0.13612 0.01048 0.16651 0.05527 0.04267 0.04758 0.04003

ADE -0.24208 -0.15394 0.04736 0.22584 0.07274 0.05052 0.07987 0.07129

200 MLE -0.18062 -0.11785 0.01368 0.13909 0.04630 0.03304 0.02856 0.02769

LSE -0.21446 -0.11487 -0.01862 0.17938 0.06220 0.04283 0.05886 0.04530

WLSE -0.19743 -0.11361 -0.01861 0.15163 0.05060 0.03504 0.03702 0.03232

CvME -0.19429 -0.11093 -0.01358 0.14822 0.04801 0.03305 0.03460 0.03009

ADE -0.22929 -0.13512 0.01914 0.19605 0.06402 0.04293 0.05951 0.05177

250 MLE -0.17093 -0.10282 0.00943 0.13084 0.04047 0.02705 0.02294 0.02325

LSE -0.20438 -0.10650 -0.01344 0.16533 0.05411 0.03756 0.04949 0.03730

WLSE -0.18725 -0.10235 -0.01433 0.14197 0.04483 0.02930 0.02994 0.02687

CvME -0.18377 -0.09893 -0.01115 0.13926 0.04256 0.02746 0.02820 0.02536

ADE -0.21639 -0.12336 0.01746 0.17859 0.05693 0.03840 0.04993 0.04200

500 MLE -0.13525 -0.08224 0.01692 0.10242 0.02754 0.02110 0.01410 0.01368

LSE -0.17353 -0.10339 0.01700 0.13296 0.04136 0.03339 0.02920 0.02328

WLSE -0.15569 -0.09385 0.01060 0.11435 0.03262 0.02460 0.01754 0.01672

CvME -0.15088 -0.08803 0.00957 0.11188 0.03081 0.02305 0.01690 0.01585

ADE -0.18185 -0.11441 0.03314 0.13973 0.04274 0.03379 0.03000 0.02516

750 MLE -0.11531 -0.05141 -0.00069 0.08952 0.02175 0.01582 0.00892 0.01017

LSE -0.15256 -0.07956 0.00652 0.11372 0.03301 0.02581 0.01997 0.01660

WLSE -0.13710 -0.06916 -0.00002 0.10003 0.02611 0.01852 0.01152 0.01239

CvME -0.13262 -0.06358 -0.00158 0.09813 0.02471 0.01736 0.01107 0.01187

ADE -0.15855 -0.08770 0.01764 0.11813 0.03414 0.02614 0.02019 0.01764

1000 MLE -0.09783 -0.02277 -0.01860 0.08534 0.01655 0.00958 0.00604 0.00883

LSE -0.13750 -0.05995 -0.00513 0.10715 0.02741 0.02043 0.01516 0.01440

WLSE -0.11941 -0.04202 -0.01577 0.09511 0.02066 0.01194 0.00841 0.01080

CvME -0.11557 -0.03711 -0.01717 0.09362 0.01959 0.01124 0.00818 0.01042

ADE -0.14216 -0.06537 0.00334 0.11094 0.02824 0.01933 0.01514 0.01507

https://doi.org/10.1371/journal.pone.0280349.t001
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biases and MSEs approach zero, as expected. For these models, smaller values of mean biases

and MSEs are mostly obtained with the MLE. When evaluated in general, the estimators give

similar results.

Table 2. Mean bias and MSE for the model with α = 0.5, λ = 0.7, θ = 3, and β = 0.9.

Mean bias MSE
n α̂ λ̂ θ̂ β̂ α̂ λ̂ θ̂ β̂

50 MLE -0.34566 -0.15146 0.00677 0.60609 0.14857 0.05449 0.48936 0.55477

LSE -0.36300 -0.07902 -0.41385 0.66166 0.16876 0.05246 0.81635 0.71067

WLSE -0.34991 -0.10611 -0.34523 0.55475 0.14735 0.05461 0.67605 0.52172

CvME -0.35018 -0.10466 -0.24528 0.56489 0.14420 0.04675 0.57542 0.47921

ADE -0.38821 -0.10309 -0.16052 0.81295 0.17133 0.04054 0.70152 0.95300

100 MLE -0.28198 -0.16552 0.01055 0.35475 0.11357 0.06027 0.25390 0.21713

LSE -0.30520 -0.09688 -0.23223 0.45754 0.13920 0.05504 0.45554 0.34850

WLSE -0.29544 -0.13430 -0.16808 0.37014 0.11764 0.05688 0.33056 0.24228

CvME -0.29324 -0.13391 -0.13084 0.36300 0.11356 0.05411 0.30408 0.21771

ADE -0.33244 -0.12564 -0.09339 0.53200 0.14016 0.04755 0.41361 0.43109

150 MLE -0.25939 -0.17702 0.00917 0.26147 0.09960 0.06560 0.17155 0.12454

LSE -0.27339 -0.11569 -0.16199 0.35557 0.13815 0.06708 0.30928 0.22372

WLSE -0.27616 -0.16345 -0.10978 0.28091 0.10530 0.06761 0.21463 0.15133

CvME -0.27159 -0.15454 -0.09228 0.27695 0.10064 0.06100 0.20430 0.13429

ADE -0.30060 -0.14182 -0.06659 0.40726 0.12446 0.05311 0.28670 0.26729

200 MLE -0.23332 -0.17000 0.01844 0.21561 0.08888 0.06180 0.14380 0.09068

LSE -0.26228 -0.13427 -0.09816 0.31242 0.11443 0.06088 0.25047 0.17801

WLSE -0.25505 -0.16757 -0.05999 0.24203 0.09671 0.06423 0.17111 0.11598

CvME -0.25206 -0.16278 -0.05239 0.23454 0.09204 0.06153 0.16711 0.10277

ADE -0.28314 -0.15357 -0.02653 0.35121 0.11633 0.05625 0.23947 0.20618

250 MLE -0.21808 -0.16684 0.01640 0.18197 0.08095 0.06031 0.11480 0.06843

LSE -0.24281 -0.13116 -0.08838 0.26619 0.11075 0.06333 0.20424 0.13449

WLSE -0.24005 -0.16742 -0.05158 0.20347 0.08805 0.06509 0.13894 0.08683

CvME -0.23587 -0.16003 -0.04570 0.19951 0.08367 0.06093 0.13661 0.07838

ADE -0.26466 -0.15044 -0.03014 0.29777 0.10647 0.05633 0.19496 0.15350

500 MLE -0.16942 -0.12682 -0.01680 0.11043 0.05671 0.04660 0.06194 0.02733

LSE -0.21021 -0.11818 -0.07219 0.18232 0.08936 0.05816 0.11738 0.06389

WLSE -0.20490 -0.14241 -0.04973 0.13510 0.06498 0.05245 0.07519 0.03752

CvME -0.19878 -0.13533 -0.05032 0.13111 0.06162 0.05004 0.07483 0.03419

ADE -0.22698 -0.13412 -0.04145 0.19813 0.08290 0.05187 0.11233 0.07027

750 MLE -0.14770 -0.10984 -0.01937 0.08707 0.04666 0.04131 0.04115 0.01616

LSE -0.20142 -0.11769 -0.05432 0.15270 0.07162 0.05238 0.08127 0.04145

WLSE -0.18389 -0.12805 -0.04020 0.10953 0.05453 0.04688 0.05070 0.02266

CvME -0.17827 -0.12248 -0.04130 0.10610 0.05171 0.04519 0.05080 0.02100

ADe -0.21514 -0.13144 -0.03313 0.16314 0.07093 0.05017 0.07837 0.04497

1000 MLE -0.13367 -0.10333 -0.01148 0.07330 0.04124 0.03964 0.03309 0.01146

LSE -0.18694 -0.11393 -0.03964 0.13289 0.06514 0.05035 0.06399 0.03101

WLSE -0.17228 -0.12460 -0.02598 0.09604 0.04921 0.04407 0.04057 0.01645

CvME -0.16716 -0.11969 -0.02762 0.09281 0.04670 0.04286 0.04062 0.01522

ADE -0.19835 -0.12500 -0.02329 0.14128 0.06489 0.04897 0.06266 0.03342

https://doi.org/10.1371/journal.pone.0280349.ct002
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5. Real data analysis

In this section, four real data applications are presented to compare the fits of the GMO-EE

distribution and competing distributions. For this purpose, some comparative statistics such

as the Cramer-von Mises (CvM), Kolmogorov-Smirnov (K-S), and Anderson-Darling (AD)

Table 3. Mean bias and MSE for the model with α ¼ 0:2;λ ¼ 0:5; θ ¼ 2, and β ¼ 0:75.

Mean bias MSE
n α̂ λ̂ θ̂ β̂ α̂ λ̂ θ̂ β̂

50 MLE -0.08729 0.01898 0.06158 0.36224 0.02545 0.02719 0.26641 0.22555

LSE -0.09775 0.07515 -0.18820 0.39060 0.02577 0.04029 0.40202 0.26906

WLSE -0.08453 0.05805 -0.16352 0.32183 0.02326 0.04197 0.32152 0.20409

CvME -0.08320 0.05372 -0.09287 0.32664 0.02219 0.03589 0.28176 0.18923

ADE -0.11314 0.05729 -0.01105 0.48436 0.02573 0.03096 0.39782 0.36162

100 MLE -0.05482 0.00727 0.00484 0.19660 0.01878 0.02785 0.11746 0.07994

LSE -0.07591 0.04537 -0.11243 0.25280 0.01872 0.03788 0.22379 0.11937

WLSE -0.06138 0.02784 -0.09547 0.19628 0.01690 0.03660 0.15953 0.08326

CvME -0.05925 0.02783 -0.07337 0.19329 0.01579 0.03382 0.14257 0.07503

ADE -0.08993 0.03053 -0.01675 0.30082 0.01796 0.03083 0.21762 0.14846

150 MLE -0.03255 0.01638 -0.01078 0.13770 0.01746 0.02615 0.08852 0.04673

LSE -0.05002 0.04803 -0.09206 0.18964 0.01894 0.03558 0.16853 0.07596

WLSE -0.03658 0.02644 -0.07694 0.13960 0.01807 0.03464 0.11689 0.05285

CvME -0.03600 0.02797 -0.06664 0.13653 0.01558 0.03286 0.10896 0.04735

ADE -0.06368 0.03457 -0.02606 0.22200 0.01731 0.02940 0.16288 0.09017

200 MLE -0.01876 0.02062 -0.01745 0.09919 0.01621 0.02487 0.07138 0.02987

LSE -0.03499 0.04582 -0.07871 0.14420 0.01806 0.03398 0.13723 0.05132

WLSE -0.02926 0.02911 -0.06376 0.10774 0.01480 0.03118 0.09454 0.03308

CvME -0.02537 0.02579 -0.05854 0.10002 0.01422 0.03164 0.08905 0.03149

ADE -0.04763 0.03382 -0.02807 0.16861 0.01623 0.02885 0.13262 0.05949

250 MLE -0.01282 0.04530 -0.05548 0.09095 0.01272 0.02384 0.05741 0.02368

LSE -0.02781 0.06725 -0.10518 0.13197 0.01536 0.03326 0.11498 0.04029

WLSE -0.01963 0.05475 -0.09250 0.09967 0.01224 0.02719 0.07711 0.02585

CvME -0.01780 0.05535 -0.08908 0.09583 0.01120 0.02712 0.07295 0.02402

ADE -0.03935 0.05507 -0.06304 0.15147 0.01342 0.02807 0.10843 0.04612

500 MLE 0.00548 0.03977 -0.04660 0.04903 0.01109 0.01865 0.03068 0.00990

LSE -0.00483 0.05370 -0.07235 0.07718 0.01422 0.02782 0.06090 0.01871

WLSE -0.00283 0.03980 -0.06184 0.05719 0.01037 0.01990 0.03834 0.01155

CvME 0.00045 0.04337 -0.06272 0.05454 0.00998 0.02000 0.03778 0.01073

ADE -0.01283 0.04572 -0.05074 0.08724 0.01260 0.02468 0.05817 0.02042

750 MLE 0.01770 0.03929 -0.03921 0.02770 0.01046 0.01695 0.02225 0.00589

LSE 0.01468 0.05417 -0.05972 0.04588 0.01489 0.02595 0.04175 0.01088

WLSE 0.01253 0.03944 -0.05029 0.03267 0.01044 0.01873 0.02693 0.00698

CvME 0.01544 0.04246 -0.05143 0.03065 0.01034 0.01905 0.02663 0.00664

ADE 0.00809 0.04769 -0.04504 0.05266 0.01333 0.02354 0.04005 0.01158

1000 MLE 0.00945 0.01460 0.01799 0.00427 0.00945 0.01460 0.01799 0.00427

LSE 0.01469 0.02370 0.03341 0.00768 0.01469 0.02370 0.03341 0.00768

WLSE 0.00948 0.01559 0.02147 0.00480 0.00948 0.01559 0.02147 0.00480

CvME 0.00978 0.01704 0.02150 0.00493 0.00978 0.01704 0.02150 0.00493

ADE 0.01322 0.02169 0.03224 0.00800 0.01322 0.02169 0.03224 0.00800

https://doi.org/10.1371/journal.pone.0280349.t003
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test statistics with their p-values are applied for the four datasets together with Akaike’s infor-

mation criterion (AIC) and -2 × log-likelihood values.

5.1. Dataset 1

The first dataset is attained from the number of successive failures of the air conditioning

systems of the 13 members of a fleet of Boeing 720 jet airplanes. This dataset has been used

in previous studies [39, 40]. The dataset consists of the following values: 194, 413, 90, 74, 55,

23, 97, 50, 359, 50, 130, 487, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9, 254, 493, 18, 209, 41, 58,

60, 48, 56, 87, 11, 102, 12, 5, 100, 14, 29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 57, 33, 100, 61,

502, 220, 120, 141, 22, 603, 35, 98, 54, 181, 65, 49, 12, 239, 14, 18, 39, 3, 12, 5, 32, 9, 14, 70,

47, 62, 142, 3, 104, 85, 67, 169, 24, 21, 246, 47, 68, 15, 2, 91, 59, 447, 56, 29, 176, 225, 77, 197,

438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84,

27, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35,

5, 82, 5, 61, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 31, 22, 18, 156, 11, 216, 139, 67, 310, 3,

46, 210, 57, 76, 14, 111, 97, 62, 26, 71, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 62, 11,

191, 14, 16, 18, 130, 90, 163, 208, 1, 24, 70, 16, 101, 52, 208, and 95. The dataset is fitted to

GMO-EE, Weibull (W), EE [24], Marshall-Olkin Extended Burr Type XII (MOEBXII) [41],

generalized binomial exponential-II (GBE-II) [42], EOWEx [18], EWP [12], and exponen-

tial distributions. MLEs with standard errors for unknown parameters of the fitted distribu-

tions and the comparative statistics are given in Tables 4 and 5, respectively. The cdf plots of

the fitted distributions are shown in Fig 3.

As seen from Table 5, the GMO-EE distribution outperforms the one-parameter exponen-

tial, two-parameter W and EE, and three-parameter MOEBXII and GBE-II distributions. Sat-

isfactory and comparable model fits are provided by the three-parameter EOWEx and four-

parameter EWP, while the best results are obtained by the GMO-EE except for the smaller

AIC value of the EOWEx.

5.2. Dataset 2

The second dataset includes daily ozone level measurements in New York in May-September

1973. These data were used in previous studies [43, 44]. The dataset consists of the following

values: 41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34, 6, 30, 11, 1, 11, 4, 32, 23, 45, 115, 37,

29, 71, 39, 23, 21, 37, 20, 12, 13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35, 61, 79, 63, 16,

80, 108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35, 66, 122, 89, 110, 44, 28, 65, 22, 59, 23, 31, 44, 21,

9, 45, 168, 73, 76, 118, 84, 85, 96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13, 46, 18, 13, 24,

16, 13, 23, 36, 7, 14, 30, 14, 18, and 20. We analyze this dataset to compare the GMO-EE with

the W, MOEBXII [41], EE [24], GBE-II [42], EOWEx [18], EWP [12], and EW [11]

Table 4. Parameter estimates (standard errors) for dataset 1.

α̂ λ̂ θ̂ β̂

GMO-EE 0.1744 (0.1105) 0.7161(0.1834) 0.008(0.0014) 1.412(0.2170)

EWP 0.0076(1.4384) 0.0390(0.0543) 0.5561(0.1947) 2.8174(1.8256)

EOWEx 1.3954(0.2185) 0.0209(0.0052) 3.4321(1.3457) -

MOEBXII 239.17(196.7109) 1.4003(4.0277) 0.9921(2.9693) -

GBE-II 0.9267(0.0827) 0.0102(0.0017) 0.0056(0.2852) -

EE 0.0100 (0.0009) 0.9275(0.0827) - -

W 0.9245 (0.0482) 89.5575(7.0175) - -

Exponential 0.0107(0.0008) - - -

https://doi.org/10.1371/journal.pone.0280349.t004
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distributions. The results of this analysis are given in Tables 6 and 7, and the cdf plots of the fit-

ted distributions are depicted in Fig 4. As seen from Table 7, the best fitted model is the

GMO-EE according to all selection criteria except for the smaller AIC value of the EE.

5.3. Dataset 3

The third real data set contains the exceedances of flood peaks (in m3/s) of the Wheaton River

near Carcross in Yukon Territory, Canada. These data were used in previous studies [45, 46].

The dataset consists of the following values: 1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0,

9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3,

22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3,

4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5,

Table 5. Selection criteria statistics for dataset 1.

Distribution -2log AIC AD CvM K-S p(AD) p(CvM) p(K-S)

GMO-EE 2347.32 2355.32 0.2030 0.0286 0.0307 0.9896 0.9805 0.9878

EWP 2349.26 2357.26 0.2596 0.0345 0.0390 0.9650 0.9593 0.9009

EOWEx 2347.37 2353.38 0.2136 0.0308 0.0390 0.9862 0.9736 0.9602

MOEBXII 2361.12 2367.12 0.6385 0.0710 0.0420 0.6122 0.7459 0.8470

GBE-II 2356.81 2362.81 1.1881 0.2138 0.0641 0.2721 0.2423 0.3457

EE 2356.81 2360.81 1.1978 0.2165 0.0644 0.2684 0.2377 0.3396

W 2355.17 2359.17 0.8246 0.1275 0.0520 0.4635 0.4663 0.6113

Exponential 2357.53 2359.53 1.6919 0.1157 0.0726 0.1367 0.1157 0.2112

https://doi.org/10.1371/journal.pone.0280349.t005

Fig 3. Fitted cdf plots for dataset 1.

https://doi.org/10.1371/journal.pone.0280349.g003
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and 27.0. We analyze this dataset to compare the GMO-EE with the EE [24], W, MOEBXII

[41], GBE-II [42], EOWEx [18], EWP [12], and exponential distributions. The analysis results

are given in Tables 8 and 9, and cdf plots of the fitted distributions are shown in Fig 5. As seen

from Table 9, the best fitted model is the GMO-EE for all selection criteria.

5.4. Dataset 4

The fourth real dataset includes recovery times of survivors as measured from the first positive

COVID-19 PCR test to the first negative test for 50 males over 60 years old. This dataset was

obtained from anonymized data published by the Israeli Ministry of Health and it was ana-

lyzed in a previous work [47]. The dataset contains the following values: 16, 16, 16, 14, 36, 9,

10, 11, 8, 9, 12, 10, 22, 5, 11, 17, 20, 12, 29, 12, 15, 25, 25, 24, 18, 13, 44, 14, 20, 19, 11, 10, 18, 21,

31, 9, 29, 12, 10, 10, 13, 12, 19, 33, 37, 16, 63, 9, 28, and 16. We analyze this dataset to compare

the GMO-EE with the W, EE [24], MOEBXII [41], GBE-II [42], EOWEx [18], EWP [12], and

exponential distributions. Analysis results are given in Tables 10 and 11, and cdf plots of the

fitted distributions are shown in Fig 6.

As seen from Table 11, the best fitted model is the GMO-EE according to the -2log, AD,

CvM, K-S, p(AD), p(CvM), and p(K-S) criteria, excluding the AIC value of the EOWEx. Satis-

factory and comparable model fits are also provided by the three-parameter EOWEx and four-

parameter EWP.

6. Conclusion

In this study, we have introduced the GMO-EE distribution with (α, λ, θ, β) parameters as a

sub-model of the GMO distribution family. We have obtained some statistical properties of

the new model, such as the moment-generating function, moments, incomplete moments,

Table 6. Parameter estimates (standard errors) for dataset 2.

α̂ λ̂ θ̂ β̂

GMO-EE 0.1121(0.0958) 0.5427(0.1571) 0.030(0.0044) 2.8284(0.6450)

EWP 70.6413(159.4820) 0.0516(0.0324) 0.8054(0.2253) 0.0404(0.0982)

EOWEx 1.9237(0.4617) 0.0283(0.0063) 2.4251(1.2859) -

MOEBXII 1062.58(606.767) 34.4062(38.9027) 0.0588(0.0665) -

GBE-II 1.7962(0,2460) 0.0338(0,0197) 0.0082(1,1555) -

EW 0.8350(0.2429) 21.1821(13.1199) 2.5804(1.6124) -

EE 0.0336(0.0035) 1.7960(0.2455) - -

W 1.3402(0.0954) 46.0803(3.3754) - -

https://doi.org/10.1371/journal.pone.0280349.t006

Table 7. Selection criteria statistics for dataset 2.

Distribution -2log AIC AD CvM K-S p(AD) p(CvM) p(K-S)

GMO-EE 1079.69 1087.69 0.2521 0.0338 0.0468 0.9692 0.9628 0.9615

EWP 1082.47 1090.47 0.5490 0.0875 0.0748 0.6971 0.6508 0.5354

EOWEx 1082.68 1088.68 0.4902 0.0694 0.0691 0.7564 0.7557 0.6372

MOEBXII 1090.12 1096.12 0.6516 0.0824 0.0677 0.0600 0.6786 0.6616

GBE-II 1082.79 1088.79 0.6850 0.1173 0.0846 0.5712 0.5081 0.3785

EW 1082.41 1088.41 0.5480 0.0878 0.0750 0.6980 0.6496 0.5310

EE 1082.79 1086.79 0.6844 0.1170 0.3788 0.5716 0.5081 0.3787

W 1085.22 1089.22 0.9028 0.1546 0.0900 0.4123 0.3764 0.3050

https://doi.org/10.1371/journal.pone.0280349.t007
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and Lorenz and Bonferroni curves. Since the GMO-EE distribution has hazard ratio functions

with the shape of an upside-down bathtub, bathtub-shaped, increasing, decreasing, constant,

and increasing-decreasing-increasing as depicted in Fig 2 for different parameter values, it can

be regarded as a flexible distribution for modeling. Moreover, we have provided five different

estimation methods for the unknown parameters of the GMO-EE distribution and conducted

a Monte Carlo simulation study to evaluate the performances of the estimators. According to

the simulation results, the mean biases and MSEs decrease progressively as sample sizes

increase.

Four real datasets were fitted to the GMO-EE and some competing distributions to com-

pare them in terms of model fits. The GMO-EE was found to be the best fitted model accord-

ing to -2log, AD with its p(AD), CvM with its p(CvM), and K-S with its p(K-S) criteria among

Fig 4. Fitted cdf plots for dataset 2.

https://doi.org/10.1371/journal.pone.0280349.g004

Table 8. Parameter estimates (standard errors) for dataset 3.

α̂ λ̂ θ̂ β̂

GMO-EE 0.0112(0.0095) 0.3677(0.0732) 0.0851(0.1238) 2.0726(0.3967)

EWP 32.4750(32.2928) 0.0533(0.0226) 1.3215(0.5396) 0.0176(0.0193)

EOWEx 1.8790(0.5583) 0.4776(0.2163) 12.9329(8.4529) -

MOEBXII 482.0154(3063.9710) 0.3355(0.4252) 5.7285(8.8558) -

GBE-II 0.7829(0.1500) 0.0923(0.0217) 0.4838(0.4012) -

EE 0.0724(0.0117) 0.8284(0.1231) - -

W 0.9012(0.0856) 11.6322(1.6017) - -

Exponential 0.0819(0.0097) - - -

https://doi.org/10.1371/journal.pone.0280349.t008
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the competing distributions. When the data on COVID-19 recovery time (dataset 4) were fit-

ted to the GMO-EE distribution, the mean recovery time of male patients aged >60 years was

estimated to be 18.35 days. Based on the same dataset, Tanış [47] estimated the mean recovery

time to be about 21 days, while Voinsky et al. [48] reported an average recovery time of

approximately 15 days for another sample of male COVID-19 patients over the age of 60 years

(n = 582) and Barman et al. [49] obtained the 95% confidence interval for average recovery

time of 16 to 34 days based on another sample of COVID-19 patients (n = 221). The probabil-

ity of recovery within 2 weeks was calculated as 44.62% based on the GMO-EE distribution,

while Tanış [47] found it to be 45.25%. The results obtained from the GMO-EE distribution

are thus supported by the findings of previous studies. From the satisfactory results of these

real data applications, the applicability of the GMO-EE model in real life is clear.

Table 9. Selection criteria statistics for dataset 3.

Distribution -2log AIC AD CvM K-S p(AD) p(CvM) p(K-S)

GMO-EE 494.58 502.58 0.2486 0.0323 0.0529 0.9710 0.9686 0.9876

EWP 502.56 510.56 0.6627 0.1080 0.1079 0.5903 0.5481 0.3718

EOWEx 498.22 504.22 0.4913 0.0891 0.0865 0.7551 0.6424 0.6544

MOEBXII 513.00 519.00 1.2564 0.2045 0.1048 0.2469 0.2593 0.4082

GBE-II 502.26 508.26 0.6976 0.1189 0.1044 0.5603 0.5008 0.4127

EE 506.59 506.59 0.7447 0.1300 0.1017 0.5221 0.4576 0.4462

W 502.99 506.99 0.8445 0.1489 0.1052 0.4496 0.3966 0.4029

Exponential 504.26 506.26 1.4587 0.2306 0.1422 0.1867 0.2153 0.1087

https://doi.org/10.1371/journal.pone.0280349.t009

Fig 5. Fitted cdf plots for dataset 3.

https://doi.org/10.1371/journal.pone.0280349.g005
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Table 10. Parameter estimates (standard errors) for dataset 4.

α̂ λ̂ θ̂ β̂

GMO-EE 0.0551(0.0547) 0.6796(0.1964) 0.1079(0.0280) 9.8323(3.6896)

EWP 16.5628(51.4257) 37.6783(213.0973) 0.3198(0.1848) 90.9496(665.3290)

EOWEx 5.6545(2.0157) 0.0585(0.0065) 4.9490(2.4912) -

MOEBXII 1010.5069(506.7894) 4.5381(18.0703) 0.5637(2.2449) -

GBE-II 6.1158(1.7533) 0.1360(0.0302) 0.00002(0.3456) -

EE 0.1360(0.0189) 6.1153(1.7532) - -

W 1.8779(0.1860) 20.8508(1.6693) - -

Exponential 0.0544(0.0077) - - -

https://doi.org/10.1371/journal.pone.0280349.t010

Table 11. Selection criteria statistics for dataset 4.

Distribution -2log AIC AD CvM K-S p(AD) p(CvM) p(K-S)

GMO-EE 346.78 354.78 0.2113 0.0276 0.0690 0.9870 0.9843 0.9712

EWP 348.21 356.21 0.2972 0.0417 0.0895 0.9400 0.9261 0.8183

EOWEx 346.79 352.79 0.2385 0.0350 0.0833 0.9761 0.9586 0.8787

MOEBXII 357.80 363.80 1.3315 0.1816 0.1739 0.2223 0.3069 0.0971

GBE-II 352.10 358.10 0.6886 0.1115 0.1155 0.5677 0.5329 0.5176

EE 352.10 356.10 0.6886 0.1115 0.1155 0.5677 0.5329 0.5176

W 363.40 367.40 1.4451 0.2290 0.1465 0.1902 0.2179 0.2333

Exponential 391.13 393.13 6.3070 1.2118 0.3472 0.0007 0.0007 0.0000

https://doi.org/10.1371/journal.pone.0280349.t011

Fig 6. Fitted cdf plots for dataset 4.

https://doi.org/10.1371/journal.pone.0280349.g006
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In light of our results, we anticipate that the proposed model can be used to fit data

obtained from a broad range of fields including survival analysis, meteorology, economics,

biology, hydrology, and other applications in life sciences and engineering. Although there are

more parsimonious models in the literature, the GMO-EE may still be used effectively thanks

to its upside-down bathtub and bathtub-shaped HRFs for modeling biological, clinical, and

mortality data in particular. Moreover, the proposed model can be considered as an alternative

to the extensions of exponential and Weibull distributions. Further studies based on the

GMO-EE distribution could address topics such as parameter estimation of censored data and

lifetime regression.
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Statistics—Theory and Methods. 2013; 42(22):4091–107. https://doi.org/10.1080/03610926.2011.

648785

30. Alizadeh M, Cordeiro GM, Brito Ed, B. Demétrio CG. The beta Marshall-Olkin family of distributions.

Journal of Statistical Distributions and Applications. 2015; 2(1):4. https://doi.org/10.1186/s40488-015-

0027-7

31. RistićMM, Kundu D. Marshall-Olkin generalized exponential distribution. METRON. 2015; 73(3):317–

33. https://doi.org/10.1007/s40300-014-0056-x

32. Nassar M, Kumar D, Dey S, Cordeiro GM, Afify AZ. The Marshall–Olkin alpha power family of distribu-

tions with applications. Journal of Computational and Applied Mathematics. 2019; 351:41–53. https://

doi.org/10.1016/j.cam.2018.10.052
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