
RESEARCH ARTICLE

MMKE: Multi-trial vector-based monkey king

evolution algorithm and its applications for

engineering optimization problems

Mohammad H. Nadimi-ShahrakiID
1,2,3*, Shokooh TaghianID

1,2, Hoda ZamaniID
1,2,

Seyedali Mirjalili3,4, Mohamed Abd Elaziz5

1 Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, 2 Big Data

Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran, 3 Centre for Artificial

Intelligence Research and Optimisation, Torrens University Australia, Adelaide, Australia, 4 Yonsei Frontier

Lab, Yonsei University, Seoul, South Korea, 5 Department of Mathematics, Faculty of Science, Zagazig

University, Zagazig, Egypt

* nadimi@iaun.ac.ir, nadimi@ieee.org

Abstract

Monkey king evolution (MKE) is a population-based differential evolutionary algorithm in

which the single evolution strategy and the control parameter affect the convergence and

the balance between exploration and exploitation. Since evolution strategies have a consid-

erable impact on the performance of algorithms, collaborating multiple strategies can signifi-

cantly enhance the abilities of algorithms. This is our motivation to propose a multi-trial

vector-based monkey king evolution algorithm named MMKE. It introduces novel best-his-

tory trial vector producer (BTVP) and random trial vector producer (RTVP) that can effec-

tively collaborate with canonical MKE (MKE-TVP) using a multi-trial vector approach to

tackle various real-world optimization problems with diverse challenges. It is expected that

the proposed MMKE can improve the global search capability, strike a balance between

exploration and exploitation, and prevent the original MKE algorithm from converging pre-

maturely during the optimization process. The performance of the MMKE was assessed

using CEC 2018 test functions, and the results were compared with eight metaheuristic

algorithms. As a result of the experiments, it is demonstrated that the MMKE algorithm is

capable of producing competitive and superior results in terms of accuracy and conver-

gence rate in comparison to comparative algorithms. Additionally, the Friedman test was

used to examine the gained experimental results statistically, proving that MMKE is signifi-

cantly superior to comparative algorithms. Furthermore, four real-world engineering design

problems and the optimal power flow (OPF) problem for the IEEE 30-bus system are opti-

mized to demonstrate MMKE’s real applicability. The results showed that MMKE can effec-

tively handle the difficulties associated with engineering problems and is able to solve single

and multi-objective OPF problems with better solutions than comparative algorithms.
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1. Introduction

Metaheuristic algorithms are shown to be advantageous for addressing challenging optimiza-

tion problems with diverse properties, including but not limited to high dimensionality, multi-

modality, and non-differentiability in a reasonable time [1]. This has led to the widespread use

of these algorithms and an increasing trend of developing new and improved algorithms. Such

techniques can be considered as approximate algorithms that are the successful alternative

approach for solving problems in polynomial time. The stochastic nature of these algorithms

keeps them distinct in comparison with deterministic methods or conventional optimization

algorithms. Nature-inspired algorithms are a class of problem solvers inspired by nature’s nat-

ural phenomena to design new and robust competing algorithms. Taking into account the No-

Free-Lunch (NFL) theorem [2], that asserts no single optimization algorithm can handle all

problems of any complexity, numerous new optimization algorithms have been designed that

are capable of handling the vast majority of optimization issues. Furthermore, the same algo-

rithm is also observed to have variable outcomes when applied to the same problem depending

on the values of the parameters.

Metaheuristic algorithms can be categorized as either population-based or single solution-

based. The single solution-based algorithms are focused on exploiting and expanding a solu-

tion for crossing the local optimal point. In contrast to single-based metaheuristics, popula-

tion-based metaheuristics begin with a collection of solutions known as population or swarm.

They then construct a new population of solutions via an iterative process. This allows for the

transmission of information between the solutions. In real-world issues, there is a strong likeli-

hood that a single solution-based algorithm may become stuck on the local optima. On the

other hand, population-based algorithms are known to be extremely exploratory of the search

space, with less incidence of becoming stuck locally. If a solution traps within the local subopti-

mal, further iterations will help to avoid it by including alternative solutions. As a downside,

these algorithms are computationally costly and need more objective function evaluations.

Nature-inspired metaheuristic algorithms typically draw their inspiration from natural phe-

nomena such as biological, physical, chemical, and geological principles [3]. Nature-inspired

algorithms can be classified into three categories based on the source of inspiration [4]: evolu-

tion-based, swarm intelligence-based, and physics-based algorithms. Evolution-based algo-

rithms tend to mimic creatures’ evolutionary behavior concepts in nature. In this category

some prominent algorithms are genetic programming (GP) [5], differential evolution (DE)

[6], evolution strategy (ES) [7], genetic algorithm (GA) [8], and evolutionary programming

(EP) [9]. Swarm-intelligence-based algorithms are inspired by the social and collective behav-

ior of swarms in nature, such as colonies of bees and ants, animal herds, and birds’ flocks.

Some of the prevailing and recently introduced algorithms in this category are particle swarm

optimization (PSO) [10], ant colony optimization (ACO) [11], artificial bee colony (ABC)

[12], symbiotic organism search (SOS) [13], salp swarm algorithm (SSA) [14], squirrel search

algorithm (SSA) [15], crow search algorithm (CSA) [16], grey wolf optimizer (GWO) [17],

capuchin search algorithm (CapSA) [18], and Snake Optimizer (SO) [19].

The third category is physics-based algorithms that are derived from the fundamental phys-

ical laws existing in nature. Some well-known algorithms in this category are simulated anneal-

ing (SA) [20], big bang-big crunch (BB-BC) algorithm [21], gravitational search algorithm

(GSA) [22], water evaporation optimization (WEO) [23], and Archimedes optimization algo-

rithm (AOA) [24].

The monkey king evolution (MKE) [25] is one of the algorithms in the evolution-based cat-

egory inspired by a Chinese mythological novel. The population is guided in this population-

based algorithm by the best monkey king of the whole population. The MKE algorithm is
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prone to premature convergence and insufficient balance between exploitation and explora-

tion. These shortcomings originate from the MKE’s evolution scheme (search strategy) that

updates all monkey kings’ positions by considering the best one and using a fixed control

parameter. Moreover, the MKE algorithm has a single evolution strategy (search strategy) to

deal with various kinds of problems that results in inefficient performance when confronted

with various issues. Thus, by incorporating multi-evolution strategies into the MKE algorithm,

we aim to make it more effective in solving a wide variety of real-world optimization problems,

which is the primary goal of this work.

As part of our prior work, we introduced a multi-trial vector (MTV) approach [26] to lever-

age a mix of evolution strategies and handle various issues. This approach comprised four

components: winner-based distributing, multi-trial vector producing, evaluating and popula-

tion updating, and life-time archiving. The MTV approach has the merits of introducing and

combining multiple search strategies incorporated by defining distribution policies over the

population, which increases the algorithms’ performance. Using the MTV approach can fulfill

the need to define different strategies that can be adapted to various characteristics of problems

in every stage of the search process to avoid local optima entrapment, prevent premature con-

vergence, and strike an appropriate balance between exploitation and exploration. It is our

motivation to use the merits of the MTV approach and a combination of three trial vectors to

significantly improve the MKE algorithm’s performance and handle various complex real-

world optimization issues.

In this paper, we propose an effective multi-trial vector-based monkey king evolution

(MMKE) algorithm using the multi-trial vector (MTV) approach [26]. In the design of the

multi-trial vector producing step of the MTV approach, novel best-history trial vector pro-

ducer (BTVP) and random trial vector producer (RTVP) are introduced to cooperate with

canonical MKE (MKE-TVP). Each trial vector producer (TVP) is adjusted to maintain a par-

ticular search behavior during the process of solving different problems with diverse character-

istics. Also, each TVP is used to apply to a section of the population that is dedicated to that

TVP. Through the winner-based MTV distribution strategy, the percentage of the devoted

population is adjusted at consistent intervals depending on the number of individuals each

TVP improved. The integration of different evolution strategies in the MTV approach can

improve the balance between exploration and exploitation, prevent premature convergence,

and avoid local and deceptive optimum conditions. As part of the validation of the proposed

MMKE algorithm, experiments on 29 test functions taken from the CEC 2018’s special session

on real-parameter optimization [27] were conducted. An evaluation of the results was made in

comparison with state-of-the-art evolutionary and swarm intelligence algorithms, and then

the statistical analysis was done. Additionally, the applicability of MMKE was demonstrated by

solving engineering problems. Based on the comparisons and statistical analyses, the MMKE

algorithm has proven to be superior to comparative algorithms.

The general methodology used in this research includes problem modeling and mathemati-

cal formulation, algorithmic design and development, performance assessment and compari-

son, and deployment for real-world applications. Regarding problem modeling and

mathematical formulation, optimization is to find the best solution(s) from a collection of

solutions that minimize (or maximize) an objective function and adhere to a number of con-

straints. The task of optimization can be mathematically formulated as a search to find X
�

,

which minimizes such an objective function f(X
�

)< f(X) for all X 2 O, where O is a non-

empty large finite set as the domain of the search. Next, in the algorithmic design and develop-

ment, the proposed MMKE algorithm’s methodology is initializing, winner-based distributing,

control stopping criteria, multi-trial vector producing, evaluating and population updating,

and archiving.
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The performance assessment in this research is done the same as works on metaheuristics

which is qualitative and quantitative. In the qualitative assessment, a visual analysis of MMKE

is provided along with two directions: trial vector impact analysis and exploration and exploi-

tation behavior analysis. Then, MMKE’s performance was evaluated using a quantitative anal-

ysis including exploration and exploitation, local optima avoidance, and convergence

evaluation compared to eight state-of-the-art metaheuristic algorithms. Eventually, deploy-

ment for real-world applications includes five engineering problems that were used to study

further the MMKE algorithm’s potential to address real-world engineering difficulties.

The contributions of this study can be summarized as follows:

• Amending the MKE algorithm’s evolution scheme with the multi-trial vector (MTV)

approach to enhance the original MKE’s performance.

• Dividing the MKE’s population into the number of sub-populations based on the winner-

based distribution policy and using an exclusive TVP for each sub-population to guide the

individuals.

• Proposing northward evolution strategies by introducing two new trial vector producers.

• Using a combination of best-history trial vector producer (BTVP) and random trial vector

producer (RTVP) in conjunction with canonical MKE (MKE-TVP) to improve global search

capability, reducing the risk of trapping in the local optima and preventing premature con-

vergence of the original MKE.

Based on the mentioned deficiencies of the MKE algorithm and the merits of the MTV

approach, the research hypothesis is stated as follows: the performance of the MKE algorithm

in terms of accuracy of the gained results, avoidance of local optima trapping, equilibrant

exploitation and exploration, and prevention of premature convergence can be increased and

enhanced using the MTV approach and effective trial vector producers.

The remainder of this article is structured in such a way that Section 2 summarizes relevant

works. Section 3 contains the MKE algorithm’s mathematical model and flowchart. The pro-

posed MMKE algorithm is detailed in Section 4. Section 5 discusses the MMKE’s qualitative

and quantitative analysis, whereas Section 6 discusses the MMKE’s statistical analysis.

MMKE’s applicability for solving real engineering design problems is assessed in Section 7.

Finally, Section 8 concludes research findings and recommends further studies.

2. Related work

Nature-inspired algorithms have become popular choices to solve a wide variety of optimiza-

tion issues in diverse areas such as engineering [28–34], image processing and segmentation

[35–37], global optimization [38–45], software fault prediction [46], scheduling [47–50], pho-

tovoltaic modeling [51–54], structural design problems [55–59], power and energy manage-

ment [60–62], planning and routing problems [63–65], power take off and placements of wave

energy converters [66, 67], power consumption [68, 69], and wind speed prediction [70, 71].

Although the majority of nature-inspired algorithms are proposed to solve continuous prob-

lems, there have been various methods to adapt these algorithms to solve problems with dis-

crete nature [72]. Numerous real-world issues have been solved using the adapted methods,

including feature selection [73–79], clustering and community detection [80–84], and medical

diagnosis [85–87].

In nature-inspired algorithms, a population of individuals searches different regions of the

solution space cooperatively by applying a search mechanism derived from natural phenom-

ena. These algorithms possess two substantial aspects exploitation and exploration.
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Exploration is related to an optimization algorithm’s capability to explore diverse areas of the

search space on a global scale. In contrast, exploitation refers to an algorithm’s capability to

identify solutions that are close to the optimal solution in promising regions. An excessive

level of exploration can lead to a decrease in the probability of finding the optimal solution. At

the same time, too much exploitation can cause the algorithm to be trapped in local optima

[88]. Thus, a proper balance between exploration and exploitation is essential to enhance the

search ability, avoid falling into local optima, and achieve a reasonable solution.

Although these aspects are considered in the design of metaheuristic algorithms, different

behaviors can occur when they confront various optimization problems. Thus, different alter-

ations are also performed in the canonical versions of nature-inspired algorithms to solve opti-

mization problems with different characteristics and complexities. As a clarification,

imbalanced exploration and exploitation of the GWO algorithm is improved in the Gaze cues

learning-based grey wolf optimizer (GGWO) [89]. The same issue is resolved by defining a

hybrid phase into the MFO algorithm in the variant improved moth-flame optimization

(IMFO) algorithm [90]. Likewise, the search ability of the basic EPO algorithm is improved for

color image segmentation in improved emperor penguin optimization (IEPO) [91] by using

the levy flight, Gaussian mutation, and opposition-based learning. Higher performance and

quick convergence are achieved by a new parameter-adaptive DE (PaDE) algorithm [92] while

solving numerical optimization problems.

In stochastic search algorithms, the quality of obtained solutions depends on various

aspects, such as the search strategy, the adjustment of the parameters, and constraint handling

of the problem. As shown in Fig 1, metaheuristic algorithms based on the number of strategies

used during the search process can be classified into single search strategy algorithms and

multi-search strategies algorithms. Single search strategy algorithms may not be able to find an

appropriate solution for problems with complex search space because an adaptation needs

with the changes in the search landscape during the optimization process. Multiple strategies

have different characteristics and capabilities in multi search strategies algorithms, such as

exploration, exploitation, and maintaining diversity. Thus, an effective algorithm with a com-

bination of the different strategies has the potential to deal with diverse kinds of optimization

problems. Moreover, it is beneficial to use different search techniques to increase the probabil-

ity of locating the optimal solution for a sophisticated optimization issue with a complex search

space.

As shown in Fig 1, the algorithms containing multi-search strategies can be applied to the

whole population or individual sub-populations. In the first category, all the strategies are

applied to the whole population to discover the survivors for the following iteration. To be

more specific, algorithms such as SaDE [93], CoDE [94], SL-PSO [95], I-GWO [96], and

MSCA [97] are kinds of algorithms that apply multi-search strategies to the whole population

of individuals. It is an effective way to deal with different problems but computationally expen-

sive as needs to evaluate the fitness value of multiple produced candidates. Qin et al. have

developed a self-adaptive DE (SaDE) that effectively uses two mutation strategies concurrently

by adjusting the control parameters F and CR in accordance with prior knowledge. Wang

et al. suggested a composite DE (CoDE) that includes three trial vector techniques and three

control parameter settings. In order to create new vectors, each individual is assigned a new

search strategy and parameter selection at random. Cheng and Jin proposed a social learning

PSO (SL-PSO) in which all the particles except the best one use a social learning mechanism to

learn from particles with better objective value in the current fitness-sorted population. In

[97], a multi-strategy enhanced sine cosine algorithm named MSCA is proposed, in which

four search mechanism is applied to the search agents, and in each iteration, the previous posi-

tion replaces the best candidate solutions. In [96], I-GWO was proposed by introducing a new
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search strategy named dimension learning-based hunting (DLH). The I-GWO enhances diver-

sity, strikes a balance between exploration and exploitation, and copes with premature conver-

gence of GWO. The wolves’ new position is selected between the GWO or the DLH search

strategies according to the quality of obtained solutions.

In the second category, the main population is always split up into some small sub-popula-

tions, each of which is updated according to the assigned search strategy and control parame-

ters to generate candidate solutions. This is a potential way to improve optimization

performance by when each sub-population is responsible for exploring, exploiting, maintain-

ing diversity, and reducing the probability of trap in local optima. In the literature, some algo-

rithms were developed with multi sub-populations, each of which uses a different search

Fig 1. The classification of single and multi-search strategies.

https://doi.org/10.1371/journal.pone.0280006.g001
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strategy. In [98], a multi-swarm cooperative particle swarm optimizer named MCPSO was

proposed in which the population contains a master swarm and several slave swarms. The par-

ticles of the master swarm move according to both master swarm and slave swarms’ knowl-

edge, while the particles of slave swarms move based on the independent execution of PSO

variants. In this algorithm, slave swarms can preserve diversity, and the interaction of this two

kind of swarms has an effect on the balance between exploration and exploitation. In [99],

multi-strategy ensemble particle swarm optimization (MEPSO) was proposed, in which parts I

and II are a division of particles into two parts. Each part had a distinctive role in the search

process; indeed, the Gaussian local search and differential mutation strategies were utilized in

combination with the traditional PSO search algorithm for each part. The investigation

revealed that the method utilized in part I can improve the algorithm’s convergence, while the

other part can improve the algorithm’s exploration capability and avoidance of local optima.

EPSDE was suggested in [100], which comprises a collection of mutation and crossover and

a pool of values matching to each related parameter that strive to develop better candidate solu-

tions. EPSDE has proven to be competitive on a variety of optimization problems due to its

proper moves in the search space. In [101], MPEDE, a multi-population based DE was pro-

posed in which the population is partitioned into three sub-populations, each using a different

mutation and update strategy. The constituent mutation strategies were selected from the litera-

ture are competitive in solving unimodal and multimodal optimization problems and perform-

ing a better exploration. The experimental results on the benchmark functions demonstrated

that the proposed algorithm outperformed the other DE variants. An adaptive multi-population

differential evolution (AMPDE) algorithm was proposed in [102], in which the size of the sub-

populations was adaptively altered considering information gathered from prior search knowl-

edge. Individuals from each sub-population were modified in accordance with the crossover

operator that was assigned to them from GAs in order to create perturbed vectors. In [103], an

adaptive DE with dynamic population reduction was proposed named sTDE-dR. The entire

population was clustered into multiple tribes with different sizes, and each tribe has different

mutation and crossover strategies. The experimental results showed the robustness of the pro-

posed algorithms in comparison to the other comparative algorithms. As a variation on the

developed MTV approach, [26], proposed a multi-trial vector-based differential evolution algo-

rithm named MTDE. Despite previous algorithms that populations were divided into multiple

sub-populations with smaller sizes, in the MTDE algorithm, the whole population is divided

into three sub-populations with different sizes based on the defined distribution policy. The aim

of using the combination of TVPs in the proposed algorithm is to maintain the population

diversity, the balance between the exploration, and enhance the local search ability.

3. Monkey King Evolution (MKE) algorithm

The monkey king evolution algorithm (MKE) is a simple evolutionary algorithm inspired by

the monkey king, a character of a Chinese mythological novel named “Journey to the West”.

In a tough situation, the monkey king can transform into a number of small monkeys, each of

which tries to find and report a solution. Then, the monkey king selects the most suitable solu-

tion for the trouble. In the MKE algorithm, N monkey kings are randomly distributed in the

search space with Dim dimensions. The monkey kings’ position and the ith monkey king are

denoted by matrix X and its ith row Xi = {xi,1, xi,2, . . ., xi,Dim}. Then, in each generation, the

monkey kings’ fitness is calculated to determine the gbest particle with the best fitness value

and then the matrix Xgbest is built in which all rows are replicated by gbest position.

The MKE uses an evolution scheme to update the monkey kings’ position in which first,

two different matrixes Xr1 and Xr2 are constructed by permuting the row vectors of the matrix
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X. Next, the matrix of mutated monkeys denoted by B is built using Eq (1) where FC is the

fluctuation coefficient parameter with a constant value 0.7.

B ¼ Xgbest þ FC � ðXr1 � Xr2Þ ð1Þ

Then, the evolved monkeys are calculated by Eq (2), where M is a transformation matrix,

and �M is the binary inverse of M. The matrix M is generated from a lower triangular matrix

with the elements set by one. After that, each row of the matrix’s elements is randomly permu-

tated, and then the sequence of row vectors of the matrix is separately permuted.

X ¼ M � X þ �M � B ð2Þ

Finally, as shown in Fig 2, in the 7th line of the pseudo-code of MKE, each evolved monkey’s

fitness value is calculated by which either the particle at the current position or its trial vector

is selected to survive to the next generation.

Although the benchmarked results show that the MKE algorithm’s performance is suffi-

cient in comparison to some PSO-based variants, it has shortcomings, including premature

convergence and inadequate exploration/exploitation balance. These defects originate from

updating all monkey kings’ positions using the MKE’s evolution scheme based on the gbest.

4. Multi-trial vector-based monkey king evolution (MMKE)

algorithm

Solving different optimization problems with various characteristics such as uni/multi-modal-

ity, (non)separability, (a)symmetry [27, 104] requires suitable search strategies. Furthermore,

maintaining an equilibrium between exploration and exploitation prevents premature conver-

gence and stagnation and provides a higher level of population diversity. Then, the effective-

ness of a metaheuristic algorithm in solving optimization problems depends on selecting an

appropriate search strategy and setting its parameters. On the other hand, based on the no-

free-lunch (NFL) theorem, there is no general-purpose search strategy to cope with optimiza-

tion problems and different strategies are required for solving diverse problems [2]. These con-

siderations led us to propose an improved variant of the MKE algorithm named multi-trial

vector-based monkey king evolution (MMKE) algorithm to tackle its insufficiencies. MKE’s

shortcomings include a premature convergence to local optima, an improper balance between

Fig 2. Pseudo-code of MKE.

https://doi.org/10.1371/journal.pone.0280006.g002
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exploration and exploitation, and a fixed control parameter. These issues suppress the MKE

algorithm’s ability to handle different complicated problems.

As shown in Fig 3, the proposed MMKE algorithm’s framework consists of four main

phases: initializing, winner-based distributing, multi-trial vector producing of MMKE, evalu-

ating and population updating, and archiving. Each of these phases are explained in the follow-

ing paragraphs.

Table 1 provides a nomenclature to show the parameters’ description used in the following

sections.

The simple evolution scheme of the MKE algorithm is substituted by the MTV approach to

boost its performance using different evolution strategies for solving various optimization

problems. Adapting the MTV approach enables the MKE algorithm to use a varying number

of trial vector producers (TVPs) as required to achieve a particular behavioral outcome. More-

over, another advantage of using the MTV approach is to dedicate a portion of the whole pop-

ulation based on the winner-based distribution policy to each TVP. Furthermore, the

population exchange between TVPs can enhance information sharing between monkeys and

maintain diversity. The proposed MMKE algorithm uses three different evolution strategies

integrated with a random fluctuation coefficient for enhancing the global search ability, reduc-

ing the probability of trapping in local optima, and preventing the original MKE’s premature

convergence.

The proposed MMKE algorithm’s flowchart is depicted in Fig 4, consisting of initializing,

winner-based distributing, multi-trial vector producing, evaluating and population updating,

and archiving. In the initializing step, after the random distribution of N monkeys and evaluat-

ing the fitness of the initial population in every ngen generation and in the winner-based dis-

tributing step, the sub-population size of TVPs is determined by considering the reward rule

distribution policy. Then, three trial vector producers, canonical MKE (MKE-TVP), best-his-

tory trial vector producer (BTVP), and random trial vector producer (RTVP), cooperate in the

step of multi-trial vector producing to guide the monkeys over the search space. MMKE’s abil-

ity to detect promising regions when solving different problems is significantly facilitated

when these TVPs are combined. Then, in evaluating and population updating step, the mon-

keys’ current position is updated after calculating the fitness of evolved monkeys. According to

the archiving step, the inferior ones are archived to use their knowledge in TVPs. The step-

wise procedure of the proposed MMKE algorithm is explained as follows.

Initializing step: N monkeys are randomly overspread within the predefined range [l, u]

using Eq (3).

xij ¼ lj þ ðuj � ljÞ � randð0:1Þ ð3Þ

Where xij is the position of the ith monkey king in the jth dimension, lj and uj are jth dimen-

sion’s lowest and maximum bounds, and rand represents a random value between 0 and 1,

respectively. The positions of N monkeys are stored in matrix X, which is a N×Dim matrix.

The fitness value of monkey Xi in tth generation is calculated by f (Xi (t)).
The winner-based distributing step: The whole generation is divided into k portions

including ngen generations. The first step of each portion is to select the best TVP or the pro-

ducer with the highest rate of improvement over the previous ngen generations. Therefore, the

improved rate of each TVP, IRZ-TVP (Z represents one of the TVPs), is calculated by dividing

the number of improved monkeys by the number of function evaluations in the previous por-

tion using Eq (4).

IRZ� TVP ¼
#improved solutions

#function evaluations
ð4Þ
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Fig 3. The framework of the proposed MMKE algorithm.

https://doi.org/10.1371/journal.pone.0280006.g003
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After determining the improved rate of each TVP, the size of each TVP’s sub-population is

calculated for the next n generations using the reward rule distribution policy defined in Eq

(5),

NZ� TVP ¼
2� l� N for TVP with higher improved rate

l� N for other TVPs
ð5Þ

(

where there is N number of monkeys, NZ-TVP is the size of the sub-population considering the

TVPs’ improved rate, and λ = 0.25.

Multi-trial vector producing step: In each generation, monkey Xi is moved by one of the

three different TVPs, MKE-TVP, BTVP, or RTVP. The MKE-TVP facilitates exploitation

capability by enabling individuals to search for new solutions in their locality or immediate

vicinity. Exploitation and escape from the local optima are handled using BTVP, whereas

RTVP is designed to balance exploration and exploitation. Once each TVP mutates its dedi-

cated sub-population, the evolved vector of the monkeys is produced using the M and �M
matrixes by Eq (6).

UMpop
i ðtþ 1Þ ¼ Mi � XMpop

i þ �Mi � VMpop
i

UBpop
i ðtþ 1Þ ¼ Mi � XBpop

i þ �Mi � VBpop
i ð6Þ

URpop
i ðtþ 1Þ ¼ Mi � XRpop

i þ �Mi � VRpop
i

Where Ui
Mpop, Ui

Bpop, and Ui
Rpop indicate the produced candidate solution for Xi

Mpop, Xi
Bpop,

and Xi
Rpop, ith monkey of sub-population MKE-TVP, BTVP, or RTVP. Vi

Mpop, Vi
Bpop, and Vi

R-

pop indicate the mutated vector which generated for the ith monkey of sub-population

MKE-TVP, BTVP, or RTVP.

Monkey king evolution trial vector producer (MKE-TVP): As mentioned in the preceding

section, in each generation, the best monkey from X is considered as gbest and preserved in

gbestpop. Next, to move the monkey Xi from XMpop sub-population, the constant fluctuation

coefficient (FC = 0.7) multiples to the differentiate of the two randomly selected monkeys

Xr1
Mpop and Xr2

Mpop. Finally, the MKE-TVP generates the mutated vector Vi
Mpop by Eq (7).

VMpop
i ðtþ 1Þ ¼ gbestpopðtÞ þ FC � ðXMpop

r1 ðtÞ � XMpop
r2 ðtÞÞ ð7Þ

Where Vi
Mpop is the mutated vector for ith monkey of XMpop, gbestpop indicates the best

Table 1. The nomenclature used in the MMKE algorithm.

Parameter Description

X The monkey king’s position matrix

Xgbest The replicated matrix of the gbest

FC The fluctuation coefficient parameter

M, �M� The transformation matrix and its reverse

NMKE-TVP, NBTVP, and NRTVP The portion size of MKE-TVP, BTVP, and RTVP

XMpop, XBpop, and XRpop The sub-population of each TVP

UMpop, UBpop, and URpop The candidate sub-population of each TVP

gbestpop The best monkey from X
XBHpop Replicated matrix of the best-history archive

XAllpop The union population of X and archive

https://doi.org/10.1371/journal.pone.0280006.t001

PLOS ONE Multi-trial vector-based monkey king evolution algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0280006 January 3, 2023 11 / 41

https://doi.org/10.1371/journal.pone.0280006.t001
https://doi.org/10.1371/journal.pone.0280006


monkey from X, and Xr1
Mpop and Xr2

Mpop are two randomly selected monkeys from XMpop

sub-population.

As shown in Fig 5, this strategy is more explorative at the earlier stages of the evolution and

afterward becomes more exploitative at the later stages of the optimization and will produce

well-distributed solutions around the best monkey. Since the strategy used is the same as the

MKE evolution scheme, this leads to produce identical monkeys throughout the generations,

resulting in the occurrence of undesirable convergence.

Best-history trial vector producer (BTVP): Despite the widespread use of the best monkey in

MKE-TVP to help for fast convergence, it might suffer from the premature convergence

Fig 4. The flowchart of the proposed MMKE algorithm.

https://doi.org/10.1371/journal.pone.0280006.g004
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problem. Therefore, in BTVP, we aim to use the top best monkeys to direct the population’s

evolution rather than the one global best. For this purpose, the best-history archive is designed

to keep M recent best monkeys. At first, the best-history archive is initialized with the gbest

vector and then the best vector is distinctively added to the gbest-history in the subsequent

generations. If the best-history archive has no entry, the current best is replaced by the entry

with the worst fitness value. In each generation, a matrix XBHpop which has NBTVP rows and

Dim columns is created by repeating the best-history for (NBTVP/M) times. Then, the mutated

vector Vi
Bpop is produced by Eq (8),

VBpop
i ðtþ 1Þ ¼ XBHpop

i ðtÞ þ C � ðXBpop
r1 ðtÞ � XBpop

r2 ðtÞÞ ð8Þ

where Vi
Bpop is the mutated vector for ith monkey of XBpop, Xi

BHpop is the ith row of the best-his-

tory population and Xr1
Bpop and Xr2

Bpop are two randomly selected individuals from XBpop.

Parameter C is a decreasing coefficient [105] which is computed by Eq (9),

C ¼ a � ða � bÞ � ðððMaxGen � genÞ=MaxGenÞÞ̂ m ð9Þ

where α and β are the initial and final values of parameter C, MaxGen and gen indicate the

maximum number of generations and the current generation, and μ is a dimension dependent

value. This strategy is less greedy than the MKE-TVP and prevents local optima trapping. The

pseudo-code of the BTVP shown in Fig 6.

Random trial vector producer (RTVP): RTVP is proposed to prevent premature convergence

and keep exploration and exploitation in balance. In fact, these problems are caused by the

Fig 5. Pseudo-code of MKE-TVP.

https://doi.org/10.1371/journal.pone.0280006.g005

Fig 6. Pseudo-code of BTVP.

https://doi.org/10.1371/journal.pone.0280006.g006
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inability of the evolution strategies to generate newly evolved vectors and the failure to pro-

duce new promising monkeys. Therefore, the last TVP uses the difference between the current

monkey and a random one from the population and a difference between two random mon-

keys from its sub-population (XRpop) and the combination of the archive and whole population

(XAllpop). Then, the mutated vector Vi
Rpop is produced by Eq (10).

VRpop
i ðtþ 1Þ ¼ XRpop

i ðtÞ þ Fi � ðX
Rpop
r1 ðtÞ � XRpop

i ðtÞÞ þ Fi � ðX
Rpop
r2 ðtÞ � XAllpop

j ðtÞÞ ð10Þ

Where Vi
Rpop is the mutated vector for ith monkey of XRpop, Xr1

Rpop and Xr2
Rpop are two ran-

domly selected individuals from XRpop, Xi
Rpop is the ith monkey of XRpop, and Xj

Allpop is the ran-

domly selected solution from the union of X and archive, respectively. As explained in the

following, Fi is a scale factor which generated by Cauchy distribution.

Despite using the constant FC, for each monkey, a random number generated by Cauchy

distribution [106] is calculated as Fi = randci (μf, σ), where μf is the mean value of improved

scale factors initiated by 0.5 and σ = 0.2. In order to determine the value of Fi, it must lie within

the range (0, 1]; if Fi is greater than 1, it is considered to be 1; otherwise, it should be recalcu-

lated. The scale factor F remains unchanged if there is absolutely no monkey with improved

fitness in the population; however, if a monkey with enhanced fitness exists, μf is calculated

using the weighted Lehmer mean by Eq (11).

mf ¼

P
fi2Sf

wfi
� f 2

i
P

fi2Sf
wfi
� fi

ð11Þ

Where Sf is the set of all scale factors of Xi that f(Xi(t+1))< f(Xi(t)), and the weight wfi is cal-

culated by Eq (12), where Df i ¼ fðXiðtÞÞ � fðXiðt þ 1ÞÞ.

wfi
¼

DfiP
fi2Sf

Dfi
ð12Þ

This TVP has a top priority for exploring and leading the search to the global optimum.

Differences between random solutions are utilized to balance exploration and exploitation and

preserve diversity throughout the optimization. The RTVP’s pseudo-code shown in Fig 7.

Evaluating and population updating: After the evolution of one generation of monkeys,

the evolved monkeys’ fitness value is assessed and compared with that of the previous genera-

tion and the best monkeys are survived and are allowed to participate in the next generation.

Fig 7. Pseudo-code of RTVP.

https://doi.org/10.1371/journal.pone.0280006.g007
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Archiving: During each generation, inferior monkeys, the solutions that their candidates

were replaced, possess important information about the search space’s potential areas. Thus, it

is useful to save and distribute their knowledge in order to advise future generations of mon-

keys. To prohibit the residency of the earlier inferior monkeys’ in the archive, each of them has

a lifetime variable that demonstrates the duration of being in the archive. At the end of each

generation, the inferior monkeys are added to the archive, and the lifetime is increased by one.

The number of monkeys in the archive must not exceed N; in that case, inferior monkeys with

a longer lifespan should be removed in random order. Using the archive throughout the devel-

opment of monkeys makes it possible to retain a high level of diversity in simple and complex

problems. The proposed MMKE algorithm’s pseudo-code is demonstrated in Fig 7.

4.1 The computational complexity of MMKE

As shown in Fig 8, the main steps of the MMKE algorithm are initializing, winner-based dis-

tributing, multi-trial vector producing, and evaluating and population updating. All N mon-

keys are distributed in the D-dimensional search space in the first step with computational

complexity O(ND). Then, the complexity of the while-loop (lines 7–26), including the winner-

based distributing step (line 11), multi-trial vector producing and evaluating step is O(2N+-

NMKE-TVPD+NBTVPD+NRTVPD). Because N = NMKE-TVP+NBTVP+NRTVP, the complexity of the

while-loop (lines 7–26) is O(2N+ND). The cost of creating XBHpop (line 24) is O(N), then the

evolution’s complexity for all generations (G) is O(ND+G(2N+ND)). The overall computa-

tional complexity of the MMKE algorithm is equivalent to O(ND+2GN+GND) or O(GND).

Fig 8. Pseudo-code of MMKE.

https://doi.org/10.1371/journal.pone.0280006.g008
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5. Experimental evaluation and results

Various experiments were designed to evaluate our proposed algorithm’s performance by

using different problems of the CEC 2018 [27]. First, a visual analysis of MMKE is provided

along with two directions: trial vector impact analysis and exploration and exploitation behav-

ior analysis. These experiments aimed to demonstrate the impact, convergence behavior, and

explorative and exploitative tendencies of proposed trial vectors during the search process.

Second, MMKE’s performance was evaluated using a quantitative analysis including explora-

tion and exploitation, local optima avoidance, and convergence evaluation in comparison to

eight state-of-the-art metaheuristic algorithms.

5.1 Benchmark test functions and experimental environment

As part of this study, 29 benchmark functions from the CEC 2018 test suite [27] are used in

order to evaluate the proposed MMKE algorithm. There are four kinds of functions in this test

suite: unimodal, simple multimodal, hybrid, and composition functions. It is imperative to

analyze the algorithm’s exploitative capacity as well as its convergence behavior in issues

where there is only one optimal solution. Unimodal functions (Func 1, Func 3) particularly

serve this purpose. In addition, it is possible to test the algorithm’s exploratory and local

optima avoidance abilities using multimodal functions (Func 4-Func 10) having more than

one local optimum. Considering the importance of striking a balance between exploration and

exploitation when solving real-world issues, hybrid (Func 11–Func 20) and composition

(Func 21–Func 30) functions are suitable for benchmarking this capability. The MMKE was

developed by Matlab programming environment R2018a, and all experiments were run using

an Intel i7 CPU with 3.4GHz and 8.00 GB memory.

5.2 Visual analysis

In this experiment set, the MMKE’s visual analysis was performed on a number of selected

functions of the CEC 2018 to analyse the impact of proposed trial vectors and exploration and

exploitation behavior. First, to analyse the impact of introduced TVPs in the MMKE algo-

rithm, the convergence of each TVP and the improved rate of each TVP is performed. Then,

the exploration and exploitation tendency of MMKE is shown. All analyses were performed

over (Dim×10000)/N generations, where N is the population size that set to 100 and Dim is the

dimensions of the problem, which varies of 10, 30, and 50.

5.2.1 Trial vector impact analysis. In the following subsection, the impact of the BTVP

and RTVP evolution strategies examine on the performance of MMKE using two separate

tests. The curves of these tests are shown in Figs 9 and 10 on six functions Func 3, Func 8,

Func 10, Func 16, Func 21, and Func 30. In the first test, each MKE-TVP, BTV, and RTVP was

considered as a distinct algorithm, and the best obtained result in each generation was com-

pared to MMKE. As the curves shown in Fig 9, in comparison to MKE-TVP, better solutions

are obtained by BTVP in unimodal, simple multimodal, hybrid, and composition functions.

Thus, the findings of this analysis reveal that by using gbest-history, the BTVP is able to avoid

premature convergence and entrapment in local optima, as well as perform superior exploita-

tion. The RTVP is also able to better find optimal solutions for the hybrid and composition

functions that can adjust a balance between exploration and exploitation and avoid premature

convergence. This TVP has a top priority for exploring and leading the search to the global

optimum. Differences between random solutions are utilized to balance exploration and

exploitation and preserve diversity throughout the optimization.

In the second test, the improved rate of each TVP in the MMKE algorithm is calculated,

and the percent of their improvement is indicated on the aforementioned functions of CEC
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2018. As the curves shown in Fig 10, it is evident that BTVP and RTVP are dominant evolution

strategies that have unique effects on the search process, while MKE-TVP has the least impact

on the optimization process. Also, the improved rate of each TVP differs in functions with var-

ious features or even in different phases of the search process. By considering the curves

shown in this figure, it reveals that the combination of MKE-TVP and BTVP has a superior

effect on dealing with unimodal problems, while the cooperation of BTVP and RTVP in solv-

ing complex problems with many local optima is most significant.

Fig 9. The TVPs’ impact analysis.

https://doi.org/10.1371/journal.pone.0280006.g009
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5.2.2 Exploration and exploitation analysis. In this section, the explorative and exploit-

ative capabilities of the MMKE algorithm are examined on selected functions of CEC 2018.

The exploration ability of an algorithm is to globally investigate more regions of the search

space, while exploitation refers to locally search potential solutions in the promising regions to

increase the efficiency of the found solution. Since metaheuristic algorithms use a population

of solutions, the effect of exploration is more apparent when the distance between the solutions

increases. On the other hand, the effect of exploitation increases when the distance among the

solutions decreases. Depending on the search strategy of an algorithm, a tradeoff between

Fig 10. The TVPs’ improved rate in percentage.

https://doi.org/10.1371/journal.pone.0280006.g010
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exploration and exploitation is needed to achieve a reasonable solution. To analyze this behav-

ior, a dimension-wise diversity measurement [107] shown in Eq (13) is used to measure the

distance among the solutions.

Div ¼
1

D

XD

j¼1

1

N

XN

i¼1

jmedianðxjðtÞ � xijðtÞj ð13Þ

Where Div is the diversity measurement of the whole population in each generation, Dim

and N are dimensions and the size of the population, and median xj(t) refers to the median of

dimension j in the whole population. The exploration and exploitation invested by an algo-

rithm can be calculated using Eq (14) and Eq (15),

XPL% ¼
Div

Divmax
� 100 ð14Þ

XPT% ¼
jDiv � Divmaxj

Divmax
� 100 ð15Þ

where Divmax is the maximum diversity value during the optimization process. As can be

observed from the plotted curves shown in Fig 11, both XPL% and XPT% are mutually com-

plement each other and MMKE can be achieved an adequate balance between exploration and

exploitation during the search process. Also, the figures demonstrate that MMKE starts to

explore the search space through multiple candidate solutions. Then, exploration behavior is

transformed into exploitation depending on the problem to be solved by a smooth transition.

The plotted curves for the unimodal test functions Func 1 are shown in Fig 11 for dimen-

sions 10, 30, and 50, which indicate that individuals investigate search space with a high pro-

portion of exploration during the first one-fourth of the evolutionary process. Then,

individuals gradually modify their behavior to accelerate convergence to a global optimal with

a large proportion of exploitation. The exploration capability of the proposed algorithm was

evaluated using multimodal test functions Func 8 and Func 10, including several local optima.

The plotted curves for these test functions indicate that individuals alternate between explora-

tion and exploitation to decrease the probability of being trapped in local optima. In addition,

the large proportion of exploration signifies that individuals tend to enhance the possibility of

discovering new areas inside the search space, although exploiting the optimal solution is con-

tinued in the last iterations. The plotted curves depicted for Func 16, Func 21, and Func 30

show that individuals explore the search space with a large proportion of exploration during

the initial iterations, and this ratio subsequently decreases until this behavior transitions into

the exploitation capacity, which grows to accelerate convergence speed.

5.3 Quantitative evaluation

Analyzing the performance of the MMKE algorithm is the objective of this subsection, which

includes an extensive experimental study and a statistical evaluation. On the basis of the gained

results, a comparison is conducted with state-of-the-art algorithms, including grey wolf opti-

mizer (GWO) [17], whale optimization algorithm (WOA) [4], salp swarm algorithm (SSA)

[14], butterfly optimization algorithm (BOA) [108], and Aquila optimizer (AO) [109] from

swarm intelligence algorithms and well-known composite DE (CoDE) [94], the ensemble of

mutation strategies and parameters in DE (EPSDE) [100], quasi-affine transformation evolu-

tionary (QUATRE) [110], and monkey king evolution (MKE) [25] from the same category of

evolutionary algorithms.
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The values of any parameters related to the comparative algorithms were set in accordance

with the recommendations from the original article, as shown in Table 2. A total of 20 separate

runs with varying dimensions of 10, 30, and 50 were used to assess all benchmark functions.

Every time a run was performed, the maximum number of generations (MaxGen) was deter-

mined by (Dim×10000)/N, where Dim and N were set to the problem’s dimensions and a con-

stant of 100. Reporting the obtained results is done by using the fitness error value f(gbestpop)–f

(X�), where f(gbestpop) signifies the minimum fitness value gained and f(X�) denotes the actual

global optimum solution of the test function. The mean and standard deviation of the error

values were used to assess the algorithms’ performance. The experimental results are shown in

Fig 11. The balance of exploration and exploitation in MMKE.

https://doi.org/10.1371/journal.pone.0280006.g011
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Tables 3–6, in which the best-obtained error values are remarked in boldface. Furthermore,

the bottom three consecutive rows of each table designated "l/t/w" represent the number of

algorithm losses (l), ties (t), and wins (w).

5.3.1 Exploration and exploitation evaluation. The exploitative ability of algorithms is

evaluated using unimodal functions, while the exploratory capability of algorithms is evaluated

using multimodal functions. The exploitative and explorative qualifications of MMKE were

evaluated and compared with comparative algorithms using these two kinds of test functions,

which are detailed in the following:

As shown in Table 3, the MMKE algorithm has a significantly improved performance over

MKE in gaining more accurate results for unimodal functions in dimensions 10, 30, and 50.

This is mostly because the MKE-TVP and BTVP use the evolution strategy that is mostly

exploitative since the best monkey or best-history archive of monkeys is selected to guide the

search. In dimension 50, this is because of the usage of BTVP and RTVP, which assist in escap-

ing from local optima while still preserving diversity. As a result, the MMKE algorithm exploits

the optimum solution more efficiently than the MKE algorithm and other comparative

algorithms.

As per the results stated in Table 4, MMKE is capable of producing competitive results for

simple multimodal functions, particularly those with dimensions 10 and 30. This experiment

is carried out on Func 4-Func 10, where the number of local optima rises exponentially while

Table 2. The parameter settings of algorithms.

Algorithms Parameters values

GWO, WOA a = [2 0]

SSA c2, c3 = random numbers in [0, 1]

AO α = δ = 0.1
CoDE CR = [0.1, 0.9, 0.2], F = [1, 1, 0.8]

EPSDE CR = [0.1, 0.9], F = [0.4, 0.9]

QUATRE FC = 0.7

MMKE ngen = 20, M = 5, α = 0.001, β = 2, μ = log(Dim)

https://doi.org/10.1371/journal.pone.0280006.t002

Table 3. The obtained results for unimodal test functions.

Func # Dim Metric GWO WOA SSA BOA AO CoDE EPSDE QUATRE MKE MMKE

Func 1 10 Avg 2.6936E+06 2.3700E+05 3.1749E+03 9.7702E+09 2.2624E+05 1.2755E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

SD 7.2072E+06 4.3642E+05 2.9583E+03 2.3917E+09 1.4225E+05 6.8568E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

30 Avg 8.1476E+08 3.0083E+06 4.8644E+03 5.6174E+10 3.1847E+06 3.1323E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

SD 6.2356E+08 2.2408E+06 5.7586E+03 5.0365E+09 1.1160E+06 1.0292E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

50 Avg 4.7363E+09 1.0154E+07 6.7143E+03 1.0737E+11 1.1735E+07 2.7340E+03 0.0000E+00 2.3615E-04 3.2384E-02 1.0573E-04

SD 2.1066E+09 1.0566E+07 8.5797E+03 5.1881E+09 2.5192E+06 2.5877E+03 0.0000E+00 5.1790E-04 4.4004E-02 1.3220E-04

Func 3 10 Avg 5.3309E+02 1.6779E+02 1.1679E-09 1.3524E+04 1.1512E+01 1.7841E-02 0.0000E+00 0.0000E+00 1.3158E-06 0.0000E+00

SD 8.2463E+02 1.5222E+02 4.4346E-10 2.8594E+03 1.2833E+01 1.5514E-02 0.0000E+00 0.0000E+00 1.7859E-06 0.0000E+00

30 Avg 2.6220E+04 1.5432E+05 3.6089E-08 8.3024E+04 6.0179E+03 1.0315E+00 1.4991E+01 7.6683E-04 6.9121E+03 5.5310E-03

SD 7.0614E+03 7.2660E+04 1.1043E-08 8.1575E+03 1.5948E+03 5.7046E-01 6.5823E+01 1.3767E-03 2.0852E+03 6.4540E-03

50 Avg 6.7629E+04 6.9827E+04 1.9602E-07 2.3521E+05 5.4669E+04 9.2546E+00 2.6866E+05 4.5795E+01 5.6432E+04 1.2089E+03

SD 1.5462E+04 2.7736E+04 5.4646E-08 5.7252E+04 6.9606E+03 5.8621E+00 2.2933E+05 3.0281E+01 1.0679E+04 4.1105E+02

Rank 10 (l/t/w) 2/0/0 2/0/0 2/0/0 2/0/0 0/2/0 2/0/0 0/2/0 0/2/0 1/1/0 0/2/0

30 (l/t/w) 2/0/0 2/0/0 1/0/1 2/0/0 0/2/0 2/0/0 1/1/0 1/1/0 1/1/0 1/1/0

50 (l/t/w) 2/0/0 2/0/0 1/0/1 2/0/0 0/2/0 2/0/0 1/0/1 2/0/0 2/0/0 2/0/0

https://doi.org/10.1371/journal.pone.0280006.t003
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Table 4. The obtained results for simple multimodal test functions.

Func # Dim Metric GWO WOA SSA BOA AO CoDE EPSDE QUATRE MKE MMKE

Func 4 10 Avg 7.8487E+00 4.0139E+01 3.9742E+00 1.2370E+03 5.3668E+00 5.1561E-03 0.0000E+00 0.0000E+00 1.6905E-02 4.2814E-02

SD 2.7641E+00 4.5178E+01 1.5470E+00 3.2145E+02 2.7193E+00 1.8530E-03 0.0000E+00 0.0000E+00 1.2835E-02 1.2965E-02

30 Avg 1.5949E+02 1.5829E+02 8.7145E+01 2.1165E+04 1.2033E+02 8.1949E+01 1.9933E-01 5.1643E+01 2.7683E+01 2.0426E+01

SD 4.1578E+01 3.9381E+01 1.7130E+01 3.6209E+03 4.4275E+01 5.4621E+00 8.9144E-01 2.1843E+01 3.0449E+01 2.1501E+01

50 Avg 4.4232E+02 2.8183E+02 1.4073E+02 4.1621E+04 2.1898E+02 5.7050E+01 1.2897E+01 6.8273E+01 8.6013E+01 7.2119E+01

SD 1.8550E+02 6.4627E+01 5.0752E+01 5.2965E+03 5.8845E+01 4.1001E+01 1.4051E+01 5.1426E+01 5.5424E+01 3.7261E+01

Func 5 10 Avg 1.1370E+01 4.4390E+01 1.8456E+01 1.1849E+02 2.7027E+01 1.3083E+01 4.6813E+00 9.7378E+00 1.0651E+01 2.6366E+00

SD 4.4095E+00 2.2590E+01 9.2858E+00 1.3523E+01 9.6599E+00 2.4619E+00 1.2234E+00 4.2841E+00 2.2667E+00 7.4140E-01

30 Avg 9.5317E+01 2.6401E+02 1.2732E+02 5.8562E+02 1.5762E+02 1.3589E+02 5.5854E+01 6.6602E+01 1.0981E+02 2.8307E+01

SD 2.0311E+01 5.5593E+01 2.9601E+01 4.6640E+01 2.9011E+01 1.0157E+01 5.3044E+00 1.7212E+01 1.0068E+01 5.7517E+00

50 Avg 1.8147E+02 4.1296E+02 3.0417E+02 9.5053E+02 2.9415E+02 2.9638E+02 1.7334E+02 1.4851E+02 2.4883E+02 7.1090E+01

SD 3.4472E+01 8.0627E+01 6.4642E+01 5.1820E+01 4.1151E+01 2.0240E+01 1.5788E+01 2.9009E+01 1.4592E+01 7.4559E+00

Func 6 10 Avg 1.1894E+00 3.1527E+01 6.3763E+00 6.5093E+01 9.3669E+00 1.5789E-03 5.6843E-15 6.7772E-07 8.5265E-14 0.0000E+00

SD 1.5200E+00 1.2828E+01 7.5525E+00 1.3798E+01 3.8987E+00 4.1862E-04 2.5421E-14 2.7150E-06 5.0507E-14 0.0000E+00

30 Avg 5.2351E+00 6.9296E+01 3.1236E+01 1.1713E+02 3.7565E+01 3.5183E-02 0.0000E+00 4.8730E-06 6.1419E-08 3.2745E-05

SD 2.8082E+00 9.7291E+00 1.3201E+01 1.2387E+01 5.2719E+00 5.8565E-03 0.0000E+00 6.6260E-06 2.4437E-07 1.6826E-05

50 Avg 1.1030E+01 7.5389E+01 4.3445E+01 1.3207E+02 5.2480E+01 2.2104E-02 0.0000E+00 5.2786E-02 8.9129E-07 1.1673E-04

SD 3.9609E+00 9.2975E+00 9.4786E+00 7.7612E+00 6.1813E+00 5.1171E-03 0.0000E+00 1.6546E-01 2.0783E-06 4.7099E-05

Func 7 10 Avg 2.5162E+01 7.6079E+01 3.4645E+01 3.2142E+02 4.7231E+01 2.8806E+01 1.6181E+01 1.8731E+01 2.2055E+01 1.3318E+01

SD 8.5271E+00 3.2575E+01 1.2508E+01 6.5306E+01 1.3861E+01 3.6728E+00 1.4943E+00 4.7393E+00 2.8185E+00 1.1527E+00

30 Avg 1.5280E+02 5.0438E+02 1.6410E+02 1.1549E+03 2.7505E+02 1.7836E+02 9.0265E+01 1.0289E+02 1.4935E+02 6.2925E+01

SD 4.9621E+01 1.0117E+02 3.0913E+01 1.1713E+02 4.0861E+01 9.0470E+00 7.3344E+00 1.3817E+01 1.3173E+01 4.4816E+00

50 Avg 3.3824E+02 1.0075E+03 3.3601E+02 1.8620E+03 5.7082E+02 3.6599E+02 2.2897E+02 2.1822E+02 3.1569E+02 1.1086E+02

SD 8.3081E+01 1.0137E+02 9.2109E+01 1.2774E+02 9.0809E+01 1.4569E+01 1.2009E+01 3.2075E+01 1.4007E+01 8.1794E+00

Func 8 10 Avg 1.0379E+01 4.0549E+01 1.7263E+01 1.0390E+02 2.2191E+01 1.4827E+01 5.5220E+00 9.6122E+00 1.1319E+01 3.0362E+00

SD 3.6736E+00 1.5843E+01 9.3740E+00 1.3239E+01 6.6420E+00 2.6524E+00 1.4668E+00 4.0365E+00 2.2883E+00 6.8279E-01

30 Avg 7.7273E+01 2.1580E+02 1.1934E+02 4.8186E+02 1.3289E+02 1.3824E+02 5.7414E+01 7.1570E+01 1.1418E+02 3.0452E+01

SD 2.8266E+01 5.5436E+01 2.7226E+01 3.6216E+01 2.7277E+01 6.3473E+00 5.7066E+00 1.6854E+01 8.2390E+00 4.6568E+00

50 Avg 2.0225E+02 4.1131E+02 2.8890E+02 9.9076E+02 3.0518E+02 2.9429E+02 1.7693E+02 1.6358E+02 2.5042E+02 6.5928E+01

SD 3.1759E+01 7.2877E+01 8.1083E+01 5.4246E+01 5.3405E+01 2.0582E+01 1.4681E+01 3.6884E+01 1.5163E+01 8.8744E+00

Func 9 10 Avg 6.1717E+00 4.5187E+02 4.7899E+00 2.5353E+03 6.2282E+01 2.0539E-05 0.0000E+00 0.0000E+00 5.6843E-15 0.0000E+00

SD 1.5826E+01 3.3710E+02 1.8037E+01 6.6907E+02 4.6892E+01 2.5090E-05 0.0000E+00 0.0000E+00 2.5421E-14 0.0000E+00

30 Avg 5.2873E+02 6.4165E+03 2.2272E+03 2.6869E+04 3.3454E+03 5.3077E-01 3.2330E-03 5.8614E-01 9.9818E-02 0.0000E+00

SD 3.6007E+02 2.0378E+03 1.2425E+03 4.9770E+03 8.7093E+02 2.3929E-01 1.4451E-02 1.4372E+00 1.8388E-01 0.0000E+00

50 Avg 4.4885E+03 2.0131E+04 1.0124E+04 7.9929E+04 1.3028E+04 6.1739E-02 9.9732E-01 9.7230E+01 4.6261E-01 0.0000E+00

SD 3.2635E+03 6.7791E+03 2.2154E+03 5.9504E+03 2.9579E+03 9.8630E-02 2.8696E+00 3.3040E+02 5.5392E-01 0.0000E+00

Func 10 10 Avg 5.2074E+02 9.4125E+02 9.1517E+02 2.2427E+03 6.9539E+02 5.9908E+02 4.0650E+02 3.3879E+02 4.8703E+02 1.3434E+01

SD 3.1319E+02 2.4674E+02 2.5987E+02 2.1553E+02 3.0102E+02 1.0306E+02 1.0178E+02 1.6816E+02 1.4692E+02 8.9351E+00

30 Avg 3.2464E+03 5.1831E+03 3.5990E+03 8.9329E+03 3.8183E+03 5.0346E+03 4.2168E+03 3.1226E+03 4.4796E+03 2.0002E+03

SD 9.3032E+02 7.2715E+02 5.5099E+02 3.1834E+02 6.1713E+02 3.0123E+02 3.2407E+02 4.4122E+02 4.2501E+02 2.2204E+02

50 Avg 5.4515E+03 8.8691E+03 6.4743E+03 1.5646E+04 6.5191E+03 1.0192E+04 9.1234E+03 7.1913E+03 9.3447E+03 4.3089E+03

SD 7.8058E+02 1.1283E+03 1.0281E+03 4.3295E+02 9.8610E+02 3.2791E+02 4.5276E+02 8.2756E+02 3.4200E+02 4.9506E+02

Rank 10 (l/t/w) 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 5/2/0 5/2/0 7/0/0 1/1/5

30 (l/t/w) 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 5/0/2 7/0/0 7/0/0 2/0/5

50 (l/t/w) 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 5/0/2 7/0/0 7/0/0 2/0/5

https://doi.org/10.1371/journal.pone.0280006.t004
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Table 5. The obtained results for hybrid test functions.

Func # Dim Metric GWO WOA SSA BOA AO CoDE EPSDE QUATRE MKE MMKE

Func 11 10 Avg 1.9701E+01 8.5048E+01 9.4305E+01 1.6971E+03 6.5036E+01 4.5977E+00 2.6263E+00 2.7222E+00 7.3230E-01 9.9496E-02

SD 9.5902E+00 5.7137E+01 7.9869E+01 1.3442E+03 2.8446E+01 8.5711E-01 7.4468E-01 1.9369E+00 1.1053E+00 3.0624E-01

30 Avg 2.3004E+02 3.5236E+02 1.6649E+02 6.9994E+03 2.3845E+02 6.7356E+01 2.2598E+01 4.0313E+01 5.1794E+01 7.0905E+00

SD 4.8676E+01 9.7563E+01 4.7438E+01 1.9350E+03 6.5398E+01 2.0836E+01 5.9317E+00 2.9007E+01 3.8859E+01 2.2540E+00

50 Avg 1.3424E+03 4.6940E+02 2.7692E+02 2.4474E+04 3.5228E+02 9.5524E+01 8.4989E+01 1.3917E+02 1.1583E+02 4.5005E+01

SD 1.0928E+03 1.0374E+02 7.4539E+01 2.9482E+03 6.9666E+01 2.4815E+01 4.4216E+01 5.4759E+01 3.5544E+01 6.8801E+00

Func 12 10 Avg 4.8726E+05 4.2120E+06 1.0344E+06 4.1210E+08 2.7730E+06 2.8640E+02 1.0908E+02 1.8454E+02 2.9447E+02 7.9903E+01

SD 7.1855E+05 5.9617E+06 1.6575E+06 1.8812E+08 2.4568E+06 6.3462E+01 1.5482E+02 1.7062E+02 1.6237E+02 6.7506E+01

30 Avg 3.3989E+07 3.6939E+07 2.2560E+06 1.5487E+10 1.2367E+07 2.5892E+03 4.5615E+04 1.5134E+04 1.5506E+04 5.7579E+03

SD 3.9251E+07 2.8031E+07 2.5525E+06 2.6744E+09 5.3106E+06 1.1808E+03 4.4471E+04 1.4375E+04 1.1730E+04 3.7950E+03

50 Avg 4.6164E+08 1.8458E+08 1.8689E+07 8.3041E+10 5.3329E+07 9.2217E+04 2.2565E+05 6.5904E+04 9.3254E+04 3.0629E+04

SD 6.1781E+08 9.2767E+07 1.1690E+07 9.3296E+09 3.5845E+07 6.0451E+04 1.3454E+05 4.2030E+04 4.4857E+04 1.3071E+04

Func 13 10 Avg 7.9340E+03 1.5234E+04 1.2144E+04 4.7861E+06 1.1589E+04 1.1016E+01 6.6574E+00 6.9931E+00 5.9751E+00 3.0267E+00

SD 6.7034E+03 1.0382E+04 1.0960E+04 5.6843E+06 8.0174E+03 1.9231E+00 1.2419E+00 2.7752E+00 4.1283E+00 2.0191E+00

30 Avg 1.0140E+07 1.2115E+05 1.1858E+05 1.3810E+10 2.3444E+05 1.0519E+02 2.1091E+02 2.4022E+02 1.1235E+02 3.1343E+01

SD 3.0220E+07 6.2436E+04 7.8704E+04 3.4469E+09 1.2381E+05 8.9029E+00 3.9523E+02 4.5269E+02 4.5668E+01 7.3672E+00

50 Avg 7.9170E+07 1.5436E+05 1.1479E+05 5.0392E+10 5.7355E+05 2.4947E+02 5.0622E+03 1.5081E+03 5.8228E+03 1.1284E+03

SD 1.0185E+08 7.4862E+04 6.1017E+04 1.0450E+10 2.1883E+05 3.1585E+01 8.6389E+03 5.5496E+03 7.0074E+03 9.9250E+02

Func 14 10 Avg 9.2984E+02 3.3810E+02 8.5938E+01 4.1676E+03 3.5378E+02 5.6295E+00 2.0179E+01 1.2591E+01 6.7102E-01 4.4773E-01

SD 1.5298E+03 6.4869E+02 2.7485E+01 4.7082E+03 3.7947E+02 1.1535E+00 1.4918E+00 9.8647E+00 6.1418E-01 5.0784E-01

30 Avg 1.0906E+05 9.5530E+05 5.6744E+03 4.9894E+06 9.4088E+04 5.1292E+01 4.3521E+01 8.2280E+01 5.0334E+01 2.9373E+01

SD 2.0586E+05 1.5190E+06 4.5919E+03 2.6076E+06 8.2181E+04 5.3422E+00 9.4334E+00 4.5761E+01 1.0133E+01 2.7682E+00

50 Avg 4.5484E+05 5.5205E+05 5.2942E+04 1.5267E+08 6.5814E+05 9.4391E+01 2.5571E+02 2.2464E+02 1.2188E+02 4.6395E+01

SD 7.1116E+05 4.0055E+05 3.8724E+04 8.7508E+07 4.3006E+05 1.0579E+01 1.4043E+02 1.4114E+02 1.7404E+01 7.1188E+00

Func 15 10 Avg 1.3381E+03 2.3648E+03 5.2345E+02 1.8893E+04 1.8253E+03 1.7661E+00 5.4421E-01 1.0820E+00 4.0578E-01 4.6232E-02

SD 1.5180E+03 2.7828E+03 5.3881E+02 1.1977E+04 1.0919E+03 3.8889E-01 4.5094E-01 7.4875E-01 5.6612E-01 5.7034E-02

30 Avg 1.3431E+05 8.8391E+04 4.5520E+04 1.1021E+09 6.6141E+04 3.6380E+01 6.3875E+01 5.2284E+01 4.0541E+01 8.2638E+00

SD 4.5283E+05 4.7060E+04 2.8470E+04 3.6327E+08 5.1010E+04 4.0614E+00 5.9824E+01 4.7524E+01 2.7569E+01 2.5450E+00

50 Avg 4.8137E+06 7.7435E+04 4.4971E+04 9.5803E+09 1.5026E+05 8.0859E+01 2.0920E+02 2.1065E+02 1.1593E+02 5.0609E+01

SD 8.7240E+06 6.3161E+04 3.0186E+04 2.4727E+09 5.7380E+04 1.1678E+01 1.9079E+02 9.7264E+01 2.0690E+01 9.8997E+00

Func 16 10 Avg 8.0516E+01 1.7716E+02 9.0012E+01 7.3601E+02 1.3963E+02 4.3984E+00 1.5174E+01 5.4826E+01 7.4553E+00 3.2658E-01

SD 7.5621E+01 1.2895E+02 9.3476E+01 1.7751E+02 1.1097E+02 1.2698E+00 6.2396E+00 8.0120E+01 2.6358E+01 1.2715E-01

30 Avg 6.5336E+02 1.8852E+03 9.8454E+02 4.9447E+03 1.2135E+03 7.1072E+02 6.7917E+02 8.4932E+02 4.3748E+02 2.5417E+02

SD 2.8241E+02 4.9031E+02 2.3543E+02 7.2397E+02 3.5766E+02 1.0700E+02 1.6662E+02 2.6359E+02 2.7036E+02 1.3060E+02

50 Avg 1.2954E+03 3.0592E+03 1.5807E+03 9.8435E+03 2.1509E+03 1.5917E+03 1.3719E+03 1.3897E+03 1.2226E+03 7.7220E+02

SD 3.0457E+02 7.2440E+02 4.2003E+02 1.3719E+03 4.6546E+02 3.3049E+02 1.9557E+02 3.2689E+02 4.4406E+02 2.0267E+02

Func 17 10 Avg 5.3811E+01 9.7431E+01 5.5165E+01 3.3417E+02 5.8279E+01 1.7364E+01 2.0831E+01 2.6272E+01 8.6833E+00 3.7087E-01

SD 3.0730E+01 6.1952E+01 1.6261E+01 1.0912E+02 1.7090E+01 2.1923E+00 5.3884E+00 3.5899E+01 1.7414E+01 2.2703E-01

30 Avg 2.5303E+02 7.2939E+02 3.5041E+02 3.8562E+03 5.4176E+02 1.4952E+02 2.4680E+02 1.4841E+02 1.3210E+02 4.0423E+01

SD 1.3331E+02 2.1697E+02 1.6716E+02 1.7286E+03 1.6947E+02 3.2047E+01 8.0924E+01 1.1734E+02 5.7431E+01 8.0561E+00

50 Avg 9.8963E+02 2.3482E+03 1.4008E+03 1.7082E+04 1.6435E+03 1.0202E+03 9.5925E+02 9.8996E+02 8.1060E+02 4.5664E+02

SD 2.5497E+02 3.4275E+02 2.3268E+02 8.0980E+03 3.6818E+02 1.5162E+02 1.2572E+02 2.3941E+02 2.4805E+02 9.7341E+01

Func 18 10 Avg 2.3830E+04 9.1182E+03 2.1367E+04 6.4501E+07 2.4003E+04 5.5952E+00 1.9351E+01 1.7835E+01 4.7390E+00 1.6141E-01

SD 1.6466E+04 8.0976E+03 1.4669E+04 7.1919E+07 1.3873E+04 8.8690E-01 2.9851E+00 1.2328E+01 7.9763E+00 1.6100E-01

30 Avg 6.7335E+05 1.9281E+06 1.5707E+05 1.0521E+08 1.0231E+06 4.1279E+01 2.6412E+02 6.4504E+01 6.6905E+01 4.4423E+01

SD 8.4951E+05 2.1247E+06 1.5509E+05 7.3852E+07 7.2859E+05 3.6041E+00 2.6325E+02 3.2442E+01 3.2365E+01 1.0211E+01

50 Avg 3.0602E+06 4.9346E+06 4.1591E+05 2.4993E+08 3.7985E+06 6.9730E+01 2.8082E+03 4.0956E+03 3.1495E+03 1.2223E+03

SD 4.0639E+06 5.1695E+06 2.1358E+05 9.0045E+07 2.1464E+06 1.5608E+01 2.5804E+03 3.8959E+03 1.9190E+03 5.4361E+02
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increasing the function dimension. These results prove that the proposed MMKE algorithm is

competitive in exploration. The RTVP’s preservation of diversity and extensive exploration of

the search space is the primary reason for the adequate exploration of MMKE.

5.3.2 Evaluation of local optima avoidance. Hybrid and composition functions are usu-

ally composed of a variety of unimodal and multimodal functions, making them more com-

plex and challenging in the optimization process. Consequently, these functions are

appropriate for evaluating the MMKE’s capability to maintain the balance of exploration and

exploitation, resulting in the avoidance of local optima.

For hybrid functions, the results in Table 5 show that MMKE surpasses all other algorithms

in all three dimensions and produces better results. Furthermore, Table 6 shows the results of

MMKE compared to comparative algorithms used in solving composition functions. Results

demonstrated that the MMKE algorithm achieves a good balance between exploration and

exploitation, which increases the ability to avoid local optima in a given situation. In addition,

since each TVP’s improved rate is considered when determining the portion size of sub-popu-

lations, a suitable balance between exploration and exploitation can be achieved.

5.3.3 Convergence evaluation. This experiment aims to assess and compare the conver-

gence behavior and speed of MMKE with the comparative algorithms. Fig 12 shows the con-

vergence curves for the unimodal function Func 1, multimodal functions Func 5 and Func 10,

and composition functions Func 21 and Func 26 on dimensions 10, 30, and 50. Each of these

curves represents the mean of the best values in every generation over twenty runs for each

algorithm.

As indicated by the curves in Fig 12, the MMKE demonstrates three convergence behaviors

during the optimization process for test functions with diverse properties. First, there is a

decreasing convergence in the early generations, in which an approximate optimal solution is

found and maintained. The second behavior seen during the first half of the generations is

faster convergence, and the estimate of the global optimum becomes increasingly accurate as

the number of generations increases. Finally, the last behavior involves steady improvement of

the solution until the last generations are reached. Based on the curves, it can be stated that the

suggested MMKE algorithm is better capable of striking a balance between exploration and

exploitation throughout generations than the comparative algorithms. The curves in Fig 12

Table 5. (Continued)

Func # Dim Metric GWO WOA SSA BOA AO CoDE EPSDE QUATRE MKE MMKE

Func 19 10 Avg 4.1600E+03 1.2711E+04 8.0869E+02 1.0653E+05 3.2745E+03 1.0741E+00 8.1032E-01 1.5541E+00 3.8454E-01 1.6517E-02

SD 5.5781E+03 1.1561E+04 1.6812E+03 1.1615E+05 3.1393E+03 2.8534E-01 3.1367E-01 1.0883E+00 7.2222E-01 7.1188E-03

30 Avg 3.5439E+05 2.6507E+06 3.9762E+05 1.0527E+09 3.9096E+05 2.6320E+01 1.9979E+01 3.0166E+01 1.3136E+01 9.6118E+00

SD 4.6865E+05 2.7677E+06 2.5112E+05 4.9151E+08 3.0493E+05 3.2389E+00 3.8950E+00 2.0669E+01 3.9191E+00 1.4389E+00

50 Avg 3.2081E+06 2.3104E+06 6.5237E+05 4.7424E+09 6.1083E+05 4.8120E+01 6.1557E+01 1.0128E+02 4.8194E+01 2.9314E+01

SD 7.3057E+06 2.0747E+06 3.5169E+05 1.3844E+09 4.1220E+05 6.8592E+00 3.5392E+01 3.8509E+01 1.9089E+01 2.7358E+00

Func 20 10 Avg 7.6925E+01 1.3176E+02 7.3270E+01 2.7479E+02 7.3709E+01 4.3993E-01 1.6571E+01 8.0695E+00 6.0618E+00 1.2487E-01

SD 6.1548E+01 5.7658E+01 4.7158E+01 8.1726E+01 2.7974E+01 1.8870E-01 5.7182E+00 9.8664E+00 1.0350E+01 1.5691E-01

30 Avg 4.1912E+02 6.7155E+02 4.8377E+02 1.4074E+03 4.1028E+02 1.4331E+02 1.5420E+02 2.5595E+02 1.1070E+02 5.3814E+01

SD 1.3238E+02 1.8164E+02 1.3994E+02 1.5378E+02 1.1620E+02 4.9126E+01 5.9122E+01 1.6851E+02 8.5737E+01 4.9171E+01

50 Avg 7.5885E+02 1.6766E+03 9.9999E+02 2.8807E+03 1.0341E+03 6.1653E+02 7.0643E+02 8.6896E+02 6.9616E+02 3.6463E+02

SD 2.0892E+02 2.5815E+02 2.7946E+02 3.7797E+02 3.5672E+02 1.9642E+02 1.6138E+02 2.8636E+02 2.4116E+02 1.4015E+02

Rank 10 (l/t/w) 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0

30 (l/t/w) 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 8/0/2 10/0/0 10/0/0 10/0/0 2/0/8

50 (l/t/w) 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 8/0/2 10/0/0 10/0/0 10/0/0 2/0/8

https://doi.org/10.1371/journal.pone.0280006.t005
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Table 6. The obtained results for composition test functions.

Func # Dim Metric GWO WOA SSA BOA AO CoDE EPSDE QUATRE MKE MMKE

Func 21 10 Avg 1.9614E+02 2.3460E+02 1.3061E+02 2.8459E+02 1.7774E+02 1.0592E+02 1.5730E+02 1.7445E+02 1.7428E+02 1.0000E+02

SD 4.1224E+01 4.8464E+01 5.0939E+01 4.9160E+01 5.9930E+01 2.6202E+01 4.8312E+01 5.6414E+01 5.5960E+01 7.3244E-12

30 Avg 2.8060E+02 4.5188E+02 3.1560E+02 7.1831E+02 3.2528E+02 3.3301E+02 2.6052E+02 2.7140E+02 3.1199E+02 2.2772E+02

SD 1.6418E+01 7.3246E+01 2.9539E+01 5.1813E+01 6.2453E+01 9.6162E+00 8.2407E+00 2.0045E+01 1.1834E+01 4.9093E+00

50 Avg 3.7544E+02 7.4701E+02 4.3025E+02 1.2658E+03 5.1188E+02 4.9273E+02 3.8471E+02 3.5163E+02 4.5133E+02 2.6449E+02

SD 3.0298E+01 9.5699E+01 4.7570E+01 6.0478E+01 5.6546E+01 1.7678E+01 1.4231E+01 3.9948E+01 1.5299E+01 7.5386E+00

Func 22 10 Avg 1.0619E+02 1.3376E+02 8.8180E+01 1.0813E+03 1.0797E+02 4.3357E+01 9.6913E+01 1.0182E+02 1.0128E+02 7.5014E+01

SD 7.3900E+00 1.0088E+02 3.2657E+01 2.6322E+02 2.2633E+00 4.9441E+01 1.4082E+01 8.0659E-01 1.0036E+00 4.4435E+01

30 Avg 2.0456E+03 3.6439E+03 1.4902E+03 8.6244E+03 1.1494E+02 1.0000E+02 2.9035E+03 8.9957E+02 1.2769E+03 1.0000E+02

SD 1.5506E+03 2.3704E+03 1.9986E+03 7.6311E+02 9.6972E-01 9.4554E-04 2.0334E+03 1.2571E+03 2.0994E+03 0.0000E+00

50 Avg 6.1474E+03 9.3525E+03 7.0540E+03 1.6040E+04 6.9706E+03 8.7246E+03 9.9569E+03 7.4538E+03 9.3518E+03 3.6589E+03

SD 7.5856E+02 1.2469E+03 1.5776E+03 5.5055E+02 1.8424E+03 4.4359E+03 5.0803E+02 1.3538E+03 6.1993E+02 2.1541E+03

Func 23 10 Avg 3.1284E+02 3.4248E+02 3.1847E+02 4.7943E+02 3.3474E+02 3.1393E+02 3.1322E+02 3.1122E+02 3.0746E+02 3.0261E+02

SD 8.4370E+00 1.3709E+01 8.6560E+00 4.8374E+01 1.3034E+01 2.0255E+00 2.1350E+00 3.7951E+00 2.7964E+00 1.8361E+00

30 Avg 4.3072E+02 7.0212E+02 4.5263E+02 1.3711E+03 5.6898E+02 4.8025E+02 4.1174E+02 4.1037E+02 4.5145E+02 3.7852E+02

SD 3.5671E+01 6.6517E+01 3.2601E+01 1.5568E+02 4.5736E+01 7.6902E+00 9.9364E+00 1.9390E+01 9.8454E+00 4.3152E+00

50 Avg 6.0970E+02 1.3035E+03 6.5586E+02 2.6334E+03 9.1394E+02 7.2378E+02 5.8213E+02 5.8373E+02 6.7668E+02 4.9177E+02

SD 3.5568E+01 1.5268E+02 5.6923E+01 1.5849E+02 7.8416E+01 1.8367E+01 1.7904E+01 3.7836E+01 2.0890E+01 9.2253E+00

Func 24 10 Avg 3.4380E+02 3.5689E+02 3.1038E+02 5.0869E+02 3.4915E+02 2.2244E+02 3.3662E+02 3.1792E+02 3.0456E+02 2.0830E+02

SD 9.4946E+00 9.7844E+01 9.1119E+01 4.6854E+01 6.0042E+01 1.2565E+02 2.5896E+00 7.4611E+01 8.8197E+01 1.1453E+02

30 Avg 5.3382E+02 7.6947E+02 5.1174E+02 1.5868E+03 6.4264E+02 5.5398E+02 4.8137E+02 4.7983E+02 5.2809E+02 4.4564E+02

SD 6.8442E+01 9.0379E+01 2.5875E+01 1.9553E+02 4.9661E+01 1.1181E+01 1.1149E+01 1.5665E+01 1.1512E+01 6.6828E+00

50 Avg 6.9049E+02 1.2697E+03 7.0900E+02 2.8707E+03 9.4342E+02 6.4575E+02 6.7698E+02 6.5057E+02 7.4601E+02 5.5142E+02

SD 8.5956E+01 1.5069E+02 5.3673E+01 2.8393E+02 8.2722E+01 8.8053E+01 1.4229E+01 3.8349E+01 1.8041E+01 1.1048E+01

Func 25 10 Avg 4.3362E+02 4.4488E+02 4.2154E+02 1.0935E+03 4.3185E+02 3.9820E+02 4.2328E+02 4.2633E+02 4.1845E+02 3.9786E+02

SD 2.0757E+01 2.0129E+01 2.3849E+01 1.4983E+02 2.2141E+01 1.9559E-01 2.3566E+01 2.3516E+01 2.3182E+01 1.4183E-01

30 Avg 4.4942E+02 4.4611E+02 4.0568E+02 3.5590E+03 3.9870E+02 3.9789E+02 3.7841E+02 3.8674E+02 3.8632E+02 3.8662E+02

SD 2.5934E+01 2.6972E+01 2.1988E+01 5.1242E+02 1.6156E+01 3.8017E-02 1.0756E-01 7.8332E-01 1.2497E+00 7.5171E-01

50 Avg 8.8298E+02 6.2219E+02 5.2520E+02 1.4643E+04 6.0868E+02 4.8910E+02 4.4755E+02 5.2411E+02 5.0738E+02 5.0727E+02

SD 1.8837E+02 4.5353E+01 3.8626E+01 1.4197E+03 3.7225E+01 2.5260E+01 1.8717E+01 4.1225E+01 4.0578E+01 2.1759E+01

Func 26 10 Avg 3.2437E+02 7.4395E+02 2.9461E+02 1.6321E+03 3.5388E+02 3.0000E+02 2.8548E+02 2.9736E+02 2.9500E+02 3.0000E+02

SD 5.9688E+01 4.5063E+02 7.3787E+01 3.6387E+02 1.4986E+02 1.9674E-05 6.7229E+01 2.5218E+01 2.2361E+01 0.0000E+00

30 Avg 1.7689E+03 4.9515E+03 1.5758E+03 1.0368E+04 2.4270E+03 2.1429E+03 1.3023E+03 1.6544E+03 1.8867E+03 1.2157E+03

SD 2.2496E+02 1.1525E+03 1.0800E+03 9.7725E+02 1.4937E+03 4.4295E+02 7.5383E+01 1.9675E+02 3.9692E+02 2.2155E+02

50 Avg 3.2733E+03 1.0913E+04 2.0788E+03 1.6089E+04 1.7551E+03 3.8840E+03 2.7486E+03 2.6956E+03 3.5013E+03 1.6696E+03

SD 5.3469E+02 1.5122E+03 1.8790E+03 7.0608E+02 2.0666E+03 1.5757E+02 4.8340E+02 4.5215E+02 1.6075E+02 1.2198E+02

Func 27 10 Avg 3.9523E+02 4.2436E+02 3.9483E+02 5.7185E+02 3.9845E+02 3.8760E+02 4.0072E+02 3.9110E+02 3.9121E+02 3.8826E+02

SD 4.0047E+00 3.5677E+01 1.5509E+01 5.5238E+01 7.7662E+00 6.5616E-01 4.4191E+01 2.7598E+00 2.7537E+00 1.1598E+00

30 Avg 5.2954E+02 6.4006E+02 5.3278E+02 2.1219E+03 5.7485E+02 5.0346E+02 5.0001E+02 4.9970E+02 5.0289E+02 4.9532E+02

SD 1.3225E+01 7.2336E+01 1.2106E+01 3.7653E+02 2.7387E+01 9.9651E+00 8.7647E-05 1.2158E+01 1.0891E+01 5.5993E+00

50 Avg 7.9301E+02 1.4026E+03 6.9374E+02 5.1389E+03 9.5782E+02 5.1226E+02 5.0001E+02 5.5031E+02 5.4194E+02 5.2602E+02

SD 7.0529E+01 2.3708E+02 7.1030E+01 5.7605E+02 1.5256E+02 1.0809E+01 7.1482E-05 2.7741E+01 2.1735E+01 1.2148E+01

Func 28 10 Avg 5.3726E+02 4.7922E+02 4.9103E+02 9.9378E+02 5.4237E+02 3.0000E+02 4.7603E+02 4.6990E+02 3.7655E+02 3.0000E+02

SD 9.7918E+01 1.0838E+02 1.6206E+02 1.4739E+02 9.8188E+01 2.6259E-04 8.4491E+00 1.7847E+02 1.3616E+02 2.0865E-13

30 Avg 5.3765E+02 4.9436E+02 4.0895E+02 5.3227E+03 4.7057E+02 3.3213E+02 4.9963E+02 3.3566E+02 3.3668E+02 3.0000E+02

SD 6.1685E+01 2.6276E+01 3.3489E+01 7.8232E+02 3.2362E+01 3.9776E+01 1.2179E+00 5.6614E+01 5.1341E+01 1.3041E-13

50 Avg 1.1503E+03 6.3839E+02 4.8895E+02 1.1692E+04 5.4272E+02 4.5885E+02 5.0001E+02 4.8430E+02 4.8014E+02 4.6779E+02

SD 3.5418E+02 6.4159E+01 2.0504E+01 1.3846E+03 3.2914E+01 1.2604E-03 1.6171E-02 2.3796E+01 2.4333E+01 1.8447E+01

(Continued)
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indicate the competitive behavior of the MMKE algorithm while solving unimodal functions

considering the performance assessment results presented in Tables 3–6 and Fig 12.

The MMKE algorithm is also superior to other comparative algorithms in which it achieves

a faster convergence on multimodal and composition functions than comparative algorithms.

Since the proposed algorithm uses a combination of best-obtained solutions in the BTVP and

differences between random solutions, it achieves sufficient convergence, exploitation, and

proper balance between exploration and exploitation. Additionally, the proposed algorithm

maintains diversity throughout the optimization process by utilizing the differences between

random solutions. The convergence curves presented in Fig 12 demonstrate that MMKE out-

performs both the hybrid and composition functions, respectively. The MMKE’s gained results

prove that the exploration and exploitation processes are appropriately balanced in both

hybrid and composition functions. Furthermore, the proposed MMKE algorithm maintains

the diversity essential for dealing with issues in complicated functions.

5.4 Discussion and limitations

This subsection discusses the primary advancements and reasons that make the proposed

MMKE algorithm suited for tackling complex benchmark functions and global optimization

problems with superiority over comparative algorithms. The qualitative results which are rep-

resented in Figs 9 and 10, by utilizing gbest-history, the BTVP can prevent premature conver-

gence and entrapment in local optima and perform greater exploitation, as shown by the

results of this investigation. Additionally, the RTVP is able to locate optimal solutions for

hybrid and composition functions that can strike a balance between exploration and exploita-

tion and prevent premature convergence. This TVP is vital for exploring and directing the

optimal global search. The exploration and exploitation analysis that is presented in Fig 11

demonstrates that MMKE allocates a high proportion of its resources to the exploitation of

unimodal test functions and a high percentage of its resources to the investigation of multi-

modal test functions. Using the winner-based distributing and reward rule distribution policy,

the proposed MMKE algorithm successfully switch between exploration and exploitation in

hybrid and composition test functions.

Table 6. (Continued)

Func # Dim Metric GWO WOA SSA BOA AO CoDE EPSDE QUATRE MKE MMKE

Func 29 10 Avg 2.7165E+02 4.2308E+02 2.6891E+02 6.8632E+02 3.0297E+02 2.6247E+02 2.5192E+02 2.4842E+02 2.6032E+02 2.3557E+02

SD 1.7381E+01 7.6486E+01 3.0117E+01 1.3040E+02 4.7613E+01 6.0718E+00 1.0557E+01 1.4246E+01 2.9329E+01 1.3620E+00

30 Avg 7.5712E+02 1.8765E+03 1.0873E+03 6.1277E+03 1.2297E+03 6.9229E+02 5.6641E+02 5.7772E+02 5.4841E+02 4.6267E+02

SD 1.4023E+02 2.9345E+02 1.7555E+02 2.5079E+03 1.5970E+02 4.2984E+01 1.0707E+02 1.4608E+02 8.6615E+01 2.1864E+01

50 Avg 1.3296E+03 4.0178E+03 1.8041E+03 1.3003E+05 2.3577E+03 1.0479E+03 1.0868E+03 9.0517E+02 7.0696E+02 4.5401E+02

SD 2.9071E+02 7.4330E+02 2.3337E+02 8.2266E+04 4.3220E+02 1.3026E+02 1.7259E+02 3.1452E+02 2.2811E+02 4.1591E+01

Func 30 10 Avg 7.6233E+05 6.4443E+05 1.6375E+05 3.9928E+07 1.1970E+05 5.1510E+02 2.0557E+02 2.6717E+05 2.8711E+05 7.2482E+02

SD 1.0643E+06 6.3156E+05 4.6598E+05 3.0313E+07 2.2524E+05 3.2683E+01 5.7926E+00 4.2760E+05 3.9937E+05 9.0905E+01

30 Avg 6.0076E+06 9.3139E+06 1.4725E+06 1.6164E+09 2.2004E+06 2.1866E+03 2.1780E+02 2.2013E+03 2.4617E+03 2.5499E+03

SD 7.6144E+06 6.5517E+06 1.0637E+06 8.1713E+08 1.1240E+06 5.4869E+01 2.5005E+00 2.3885E+02 2.9539E+02 2.6014E+02

50 Avg 6.9927E+07 9.0731E+07 2.7144E+07 8.7175E+09 2.4682E+07 6.0624E+05 8.2966E+02 7.0584E+05 7.2011E+05 6.1816E+05

SD 1.9852E+07 3.2599E+07 5.8046E+06 2.1223E+09 5.9167E+06 1.0765E+04 1.5298E+03 1.3725E+05 8.9903E+04 1.7907E+04

Rank 10 (l/t/w) 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 8/1/1 8/0/2 10/0/0 10/0/0 3/1/6

30 (l/t/w) 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 9/1/0 8/0/2 10/0/0 10/0/0 2/1/7

50 (l/t/w) 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 9/0/1 7/0/3 10/0/0 10/0/0 4/0/6

https://doi.org/10.1371/journal.pone.0280006.t006
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According to the results and curves shown in Table 3 and Fig 12, the MMKE algorithm is

very competitive for unimodal and multimodal test functions by accurately converging to the

promising area in terms of its ability to exploit and explore. It is attributable to the BTVP and

RTVP, which promote the flow of information through the use of informative monkeys from

the best-history archive as well as random monkeys. The experimental evaluations presented

in Tables 4 and 5 and the convergence curves in Fig 12 demonstrate that utilizing TVP’s

improved rate for determining the portion size of sub-populations enhances the probability of

Fig 12. CEC 2018 convergence curves for selected functions with various dimensions.

https://doi.org/10.1371/journal.pone.0280006.g012
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assigning the appropriate TVP. The experimental results demonstrate that the proposed

MMKE algorithm competes with state-of-the-art evolutionary and swarm intelligence algo-

rithms and has superior performance for solving unimodal, multimodal, hybrid, and composi-

tion test functions.

As with any research, ours has its limitations. Three TVPs were utilized in this investigation

to inform the design of the winner-based distribution strategy, which will need to be revised

for further trial vectors. The suggested MTDE’s performance may also suffer when the prob-

lem’s dimensions are exceedingly high. This restriction can be overcome by conducting pre-

liminary experiments to establish the optimal archive size and policy for high-dimensional

issues.

6. Statistical analysis

While the experimental assessment results compare the proposed MMKE algorithm’s overall

performance to that of comparative algorithms, the statistical significance of the algorithms is

not revealed. Thus, the Friedman test [111] is used to prove MMKE’s statistical superiority.

The non-parametric test Friedman test (Ff) is used to rank all algorithms according to their

performance. This test is utilized to determine the MMKE and comparative algorithms rank-

ing according to their obtained fitness by Eq (16),

Ff ¼
12� n

k� ðkþ 1Þ

X

j

R2

j �
k�ðkþ 1Þ

2

4

" #

ð16Þ

where k, n, and Rj are the number of algorithms, case tests, and the mean rank of the jth algo-

rithm, respectively. It scores each algorithm/problem pair from 1 (best outcome) to k (worst

result) and then averages the rankings achieved across all problems to get the algorithm’s final

rating.

In the Friedman test, the null hypothesis H0 which indicates there is no significant differ-

ence between the compared algorithms with p-value > 5%. The alternative hypothesis H1

assumed there is a significant difference between the results of the used algorithms for the 20

runs. This test scores each algorithm/problem pair from 1 (best outcome) to k (worst result)

and then averages the rankings achieved across all problems to get the algorithm’s final rating.

Better algorithms are identified by small ranks. The results of the Friedman rank test at a 95%

confidence level are given in Table 7. According to Table 7, the p-value reached through the

non-parametric test indicated the significance of the results and demonstrated the MMKE

algorithm’s superiority on dimensions 10, 30, and 50 in comparison to state-of-the-art

algorithms.

7. Applicability of MMKE for solving engineering design problems

As discussed in previous sections, metaheuristic algorithms are extremely useful for solving

real-world engineering [112–116]. This section includes five engineering problems that were

used to study further the MMKE algorithm’s potential to address real-world engineering diffi-

culties. MMKE and other comparative algorithms have been applied to the pressure vessel

design [117], the welded beam design [118], the tension/compression spring [119], the three-

bar truss [120], and the optimal power flow problems for the IEEE 30-bus system [121]. A

detailed description of these problems can be found in S1 Appendix. The death penalty func-

tion is used to manage constraints in these problems such that solutions that violate any of the

constraints are ignored. As a result, a large number increases the fitness value of solutions that

disrupt one or more constraints [1]. Each algorithm is run 30 times individually in this
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experiment, with the maximum number of generations (MaxGen) and the population size (N)

were considered (Dim×10^4)/N and 20, respectively. Also, in the last experiment, they set to

20, 50, and 200. For each problem, the design problem’s obtained values (DV), and the opti-

mum value of the design problem’s objectives are tabulated in Tables 8–13.

This experiment aims to investigate the stated hypothesis in real-life scenarios, whether

using the MTV approach in the MKE algorithm enhances its performance in terms of local

optima avoidance, premature convergence, and balanced equilibrant exploitation and

Table 8. Comparison of variables and objective values for the problem of pressure vessel.

Algorithms Variables’ optimum values Optimal Cost

Ts Th R L
GWO 0.77871 0.38613 40.34139 199.71096 5890.888

WOA 0.79532 0.39676 40.75520 194.02393 5986.104

SSA 0.80423 0.39753 41.66972 182.02297 5931.400

AO 0.81699 0.40735 42.17072 175.9860 5992.254

CoDE 0.88184 0.44901 43.05134 168.19763 6532.407

EPSDE 0.77817 0.38465 40.31962 200.00000 5885.333

QUATRE 0.83117 0.41085 43.06589 165.00624 5982.244

MKE 0.77817 0.38465 40.31962 200.00000 5885.333

MMKE 0.77817 0.38465 40.31963 199.99990 5885.333

https://doi.org/10.1371/journal.pone.0280006.t008

Table 9. Comparison of variables and objective values for the problem of welded beam.

Algorithms Variables’ optimum values Optimal Cost

h l t b
GWO 0.20541 3.47884 9.03594 0.20577 1.72570

WOA 0.18995 3.99627 8.71047 0.22704 1.87153

SSA 0.20462 3.49445 9.03685 0.20573 1.72639

AO 0.19258 3.94571 9.27555 0.20620 1.81296

CoDE 0.20007 3.57545 9.22626 0.20670 1.77064

EPSDE 0.20573 3.47049 9.03662 0.20573 1.72485

QUATRE 0.20574 3.47030 9.03650 0.20574 1.72492

MKE 0.20573 3.47055 9.03655 0.20573 1.72488

MMKE 0.20573 3.47049 9.03662 0.20573 1.72485

https://doi.org/10.1371/journal.pone.0280006.t009

Table 10. Comparison of variables and objective values for the problem of tension/compression spring design.

Algorithms Variables’ optimum values Optimal weight

d D N
GWO 0.051176 0.344493 12.058282 0.01268

WOA 0.054237 0.421179 8.314372 0.01278

SSA 0.050000 0.317217 14.055452 0.01273

AO 0.058054 0.510944 6.2556107 0.01421

CoDE 0.050264 0.319697 14.080980 0.01299

EPSDE 0.051689 0.356711 11.289385 0.01267

QUATRE 0.056957 0.497201 6.146576 0.01314

MKE 0.052466 0.375666 10.269711 0.01269

MMKE 0.051622 0.355105 11.384534 0.01267

https://doi.org/10.1371/journal.pone.0280006.t010
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exploration. Thus, four constrained engineering design problems and a medium-scale OPF

Table 11. Comparison of variables and objective values for the problem of three-bar truss.

Algorithms Variables’ optimum values Optimal weight

x1 x2
GWO 0.78795 0.41032 263.8970

WOA 0.84126 0.27671 265.6145

SSA 0.78882 0.40784 263.8959

AO 0.77470 0.45499 264.6189

CoDE 0.78762 0.41128 263.9008

EPSDE 0.78868 0.40825 263.8958

QUATRE 0.78951 0.40588 263.8967

MKE 0.79191 0.39958 263.9435

MMKE 0.78868 0.40825 263.8958

https://doi.org/10.1371/journal.pone.0280006.t011

Table 12. Comparison of variables and objective values for the OPF using IEEE 30-bus system for Case1.

Case 1

DVs GWO WOA SSA BOA AO CoDE EPSDE QUATRE MKE MMKE

PG1 174.565 178.805 165.059 176.503 166.312 178.469 176.622 177.006 176.861 177.004

PG2 48.246 43.572 44.385 41.873 52.911 48.748 48.169 48.688 48.750 48.725

PG5 23.502 23.058 24.002 16.762 21.586 21.065 21.372 21.306 21.230 21.303

PG8 19.791 20.004 24.540 21.811 26.316 19.331 21.545 21.128 21.155 21.073

PG11 13.300 14.994 15.025 19.036 13.957 12.317 12.275 11.892 12.014 11.852

PG13 12.970 12.000 18.323 16.421 12.000 12.298 12.067 12.000 12.007 12.005

VG1 1.084 1.079 1.092 1.091 1.100 1.099 1.099 1.100 1.100 1.100

VG2 1.066 1.059 1.075 1.071 1.057 1.083 1.085 1.088 1.088 1.087

VG5 1.032 1.035 1.046 1.054 0.992 1.061 1.064 1.062 1.061 1.059

VG8 1.035 1.035 1.049 1.054 0.999 1.065 1.063 1.069 1.069 1.068

VG11 1.052 1.063 1.083 1.085 1.078 1.099 1.095 1.100 1.100 1.100

VG13 1.040 1.038 1.059 1.049 1.039 1.095 1.094 1.100 1.100 1.100

T11(6–9) 0.989 1.019 1.029 0.920 1.036 0.996 1.012 1.044 1.040 1.030

T12(6–10) 1.086 0.994 0.977 1.043 0.996 0.974 0.971 0.900 0.907 0.914

T15(4–12) 1.000 1.021 1.066 1.066 1.100 0.976 1.007 0.986 0.990 0.989

T36(28–27) 0.997 1.015 1.012 1.037 0.971 0.996 0.978 0.966 0.969 0.965

QC10 0.483 2.201 1.809 4.792 5.000 3.237 1.113 5.000 4.281 4.904

QC12 1.222 3.965 1.774 0.082 0.306 3.254 4.034 5.000 4.660 4.818

QC15 0.431 3.562 2.577 4.237 5.000 2.799 2.389 5.000 4.985 4.988

QC17 2.215 4.597 2.819 1.072 0.000 4.920 2.799 5.000 4.860 4.990

QC20 1.921 5.000 2.551 4.904 0.000 3.389 4.551 4.999 4.414 4.967

QC21 3.730 1.875 1.371 1.239 0.000 4.836 3.643 5.000 4.904 4.994

QC23 4.163 5.000 2.673 4.865 0.000 3.953 4.238 3.910 4.240 3.865

QC24 2.905 5.000 3.279 3.912 5.000 3.722 4.603 5.000 4.901 4.999

QC29 0.003 4.735 4.040 2.789 0.242 3.715 3.011 2.736 2.565 2.662

Cost ($/h) 801.617 801.817 803.305 805.140 806.287 799.436 799.373 799.071 799.087 799.062

Ploss(MW) 8.974 9.033 7.935 9.006 9.682 8.828 8.650 8.620 8.617 8.630

VD (p.u.) 0.387 0.468 0.600 0.761 0.456 1.526 1.437 1.860 1.808 1.832

P in MW, V in p.u., T in p.u., Q in MVAR.

https://doi.org/10.1371/journal.pone.0280006.t012
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with two cases are considered. Based on the gained results, not only the proposed MMKE algo-

rithm does perform better in constrained small-scale problems, but also achieves excellent

results on medium-scale OPF problem for both single and multi-objective cases. In engineer-

ing design problems, MMKE could obtain similar and even better results because the coopera-

tion of the defined TVPs prevents premature convergence and local optima trapping. In

addition, sufficient exploration and exploitation of RTVP and preservation of diversity lead to

superior results in medium-scale OPF problem. As a consequence of these results, the pro-

posed MMKE algorithm is competitive and can discover objective values that are equivalent to

or better than those solutions found by comparative algorithms.

8. Conclusion and future works

There are many stochastic algorithms, including evolution-based metaheuristic algorithms,

that are well-known and powerful in solving optimization problems. There are, however, cer-

tain deficiencies to these algorithms when they are applied to complex problems. In this paper,

we employed the multi-trial vector approach to present an effective multi-trial vector-based

Table 13. Comparison of variables and objective values for the OPF using IEEE 30-bus system for Case 2.

Case 2

DVs GWO WOA SSA BOA AO CoDE EPSDE QUATRE MKE MMKE

PG1 145.215 176.996 159.796 152.319 183.686 173.063 176.069 177.359 175.520 173.402

PG2 58.991 39.732 40.416 56.391 36.729 50.800 49.425 47.825 47.879 48.584

PG5 26.123 23.435 29.202 29.674 20.718 23.545 20.842 22.319 21.873 21.836

PG8 30.949 17.597 26.431 10.759 13.352 18.866 22.119 21.142 22.343 22.979

PG11 14.851 18.724 16.173 21.387 11.677 13.061 11.409 12.436 13.125 12.478

PG13 15.191 16.712 19.497 22.069 27.878 14.058 13.562 12.316 12.476 12.009

VG1 1.049 1.027 1.048 1.028 1.064 1.027 1.037 1.039 1.040 1.035

VG2 1.033 1.014 1.033 1.019 1.039 1.013 1.020 1.024 1.022 1.020

VG5 1.020 1.004 0.998 1.040 1.012 1.018 1.017 1.016 1.015 1.016

VG8 1.000 1.012 1.009 0.986 0.977 1.003 1.005 1.009 1.008 1.007

VG11 1.010 1.053 1.039 1.028 1.100 1.067 1.025 1.012 1.024 1.034

VG13 1.003 1.010 0.995 1.031 0.996 0.995 0.997 0.992 0.992 0.997

T11(6–9) 0.997 0.981 1.015 0.900 0.944 1.069 1.035 1.027 1.039 1.049

T12(6–10) 0.913 0.944 0.928 1.005 0.983 0.905 0.902 0.902 0.901 0.904

T15(4–12) 0.948 0.986 0.933 1.035 0.968 0.961 0.956 0.944 0.945 0.950

T36(28–27) 0.958 0.957 0.959 0.959 0.974 0.956 0.964 0.971 0.966 0.970

QC10 1.967 0.357 3.498 2.670 0.742 3.418 3.102 4.634 1.609 4.685

QC12 1.557 0.584 2.436 1.942 1.777 3.260 3.043 0.308 0.704 0.035

QC15 4.142 3.343 2.599 1.837 0.495 3.559 3.987 4.854 4.352 4.531

QC17 2.464 4.523 1.632 3.696 0.000 2.376 2.471 0.267 2.949 0.372

QC20 2.620 3.869 2.186 2.631 0.038 3.735 4.724 4.968 4.902 4.993

QC21 4.097 0.603 1.961 4.098 1.792 4.607 4.533 4.982 4.963 4.693

QC23 1.089 2.762 2.245 4.324 4.221 4.973 4.794 4.996 4.872 4.865

QC24 4.178 2.537 2.451 3.045 0.080 4.408 4.568 4.979 4.935 4.990

QC29 4.387 2.130 2.307 0.642 5.000 2.772 2.390 2.715 2.132 2.535

Cost ($/h) 812.395 808.216 811.942 820.591 815.714 805.546 804.358 804.204 804.031 803.182

Ploss(MW) 7.920 9.796 8.116 9.198 10.641 9.994 10.027 9.997 9.817 9.887

VD (p.u.) 0.146 0.159 0.163 0.234 0.289 0.119 0.104 0.094 0.101 0.095

P in MW, V in p.u., T in p.u., Q in MVAR.

https://doi.org/10.1371/journal.pone.0280006.t013
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monkey king evolution (MMKE) algorithm, which is an improvement over the evolutionary

algorithm known as monkey king evolution (MKE). The evolution strategy used by the MKE

resulted in premature convergence and an inadequate balance of exploration and exploitation.

Thus, the MTV approach substituted the simple MKE evolution scheme, which employs a

combination of various TVPs. By utilizing the MTV approach, the population is divided into

several sub-populations using a winner-based distributing policy, where each subpopulation

possesses its own TVP. In MMKE, two strategies, BTVP and RTVP, are corporate with the

canonical MKE-TVP such that various problems can be tackled with distinct characteristics.

Furthermore, as an additional advantage, MMKE uses the prior knowledge of the best individ-

uals to avoid local optimums and premature convergence.

In order to evaluate the performance of our proposed algorithm, a variety of experiments

were carried out using the CEC 2018 test suite. First, MMKE was qualitatively evaluated in

visual analysis subsection, followed by two directions of trial vector impact analysis and explo-

ration and exploitation analysis. The main purpose of this subsection is to illustrate the signifi-

cant effect and convergence behavior of suggested trial vectors throughout the search process,

as well as their explorative and exploitative potential. Next, in Subsection 5.3, the performance

of MMKE was quantitatively assessed in terms of exploration and exploitation, local optimality

avoidance, and convergence assessment in comparison to eight state-of-the-art algorithms.

The results revealed the effectiveness of MMKE in achieving optimum global solutions with

more stable convergence than other well-known published optimization algorithms.

Then, experimental results were statistically analyzed using the Friedman test. In addition

to demonstrating MMKE’s statistical superiority over comparative algorithms, the statistical

results also demonstrated that the MMKE algorithm guarantees the efficacy of explorations

and maintains a balance between exploration and exploitation. Finally, we evaluated the appli-

cability of the MMKE by solving four engineering design problems and the optimal power

flow problem for the IEEE 30-bus system. MMKE has been able to provide superior solutions,

both in terms of optimal objective function values and the number of function evaluations for

these problems. MMKE shown significant performance advantages over other well-known

optimization algorithms in engineering design problems and its ability to deal with various

constraint problems.

For the purpose of providing a concise summary of the results gained via the performance

assessment, Table 14 provides the overall effectiveness (OE) of the MMKE and comparative

algorithms based on their total performance results presented in Tables 3–6. Therefore, it is

imperative to calculate the algorithms’ overall effectiveness (OE) by Eq (17), where N and L are

the number of functions and the total number of loser functions for each algorithm, respec-

tively.

Overall Effectiveness ðOEÞ ¼ ððN � LÞ=NÞ � 100 ð17Þ

Table 14. Comparison of MMKE and comparative algorithms in terms of the overall effectiveness (OE).

GWO WOA SSA BOA AO CoDE EPSDE QUATRE MKE MMKE

Dim = 10 0/29/0 0/29/0 0/29/0 0/29/0 0/29/0 1/27/1 2/25/4 0/25/4 0/28/1 21/4/4

Dim = 30 0/29/0 0/290 1/28/0 0/29/0 0/29/0 2/26/1 4/24/1 0/28/1 0/28/1 20/7/2

Dim = 50 0/29/0 0/29/0 1/28/0 0/29/0 0/29/0 3/26/0 6/23/0 0/29/0 0/29/0 19/10/0

Total (w/l/t) 0/87/0 0/87/0 2/85/0 0/87/0 0/87/0 6/79/2 12/72/5 0/82/5 0/85/2 60/21/6

OE 0% 0% 2.29% 0% 0% 9.19% 17.24% 5.74% 2.29% 75.86%

https://doi.org/10.1371/journal.pone.0280006.t014

PLOS ONE Multi-trial vector-based monkey king evolution algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0280006 January 3, 2023 34 / 41

https://doi.org/10.1371/journal.pone.0280006.t014
https://doi.org/10.1371/journal.pone.0280006


The following remarks can be concluded from the overall effectiveness of MMKE and com-

parative algorithms. Firstly, for all different dimensions 10, 30, and 50, the proposed MMKE

algorithm is superior to other comparative algorithms. In addition, another important remark

is that MMKE is not only efficient than swarm intelligence algorithms including GWO, WOA,

SSA, BOA, and AO but also it is a serious competitor for the evolutionary algorithms consist-

ing of CoDE, EPSDE, QUATRE, and MKE.

The following conclusions can be taken from the results of experimental performance

assessment, statistical analysis, and solutions gained for engineering design problems:

• The proposed best-history trial vector producer (BTVP) and random trial vector producer

(RTVP) enhance exploitation and exploration.

• In cooperation with the canonical MKE-TVP, the proposed BTVP and RTVP assist in

improving the overall balance between exploration and exploitation. Thus, it becomes possi-

ble for the MMKE to escape the local optimality.

• The results derived from different qualitative and quantitative experiments conducted on

diverse test functions with various characteristics along with statistical tests testify to the

superior performance of the MMKE algorithm over the comparative algorithms.

• It has been shown that the MMKE algorithm effectively solves engineering problems.

The MMKE algorithm was proposed for the purpose of optimizing continuous single-

objective optimization problems. For future research, several directions can be considered.

MMKE can be adapted to handle binary and multi-objective problems depending on the prob-

lem to be solved to tackle discrete, multi-objective, and many-objective real-world optimiza-

tion problems. Moreover, attempting to tackle problems in various fields, such as scheduling,

image processing, feature selection, clustering, and community detection, is beneficial. Even-

tually, proposing the aggregate version of MMKE such that the TVPs benefit from the search

strategies of other algorithms could be a valuable and advantageous contribution.
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