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Abstract

The article presents a novel strategy for reducing the geometric error of a vehicle headlamp

equipped with a set of calibration screws, which represents a product assembly. Using a

general method for designing and implementing a digital twin, we determined the optimal

configuration for a compensatory element that minimizes the total geometric error. Formu-

lated as a problem of constrained minimization, we solved the error using the gradient

method and the Broyden–Fletcher–Goldfarb–Shanno method. Products are automatically

adjusted according to this optimal setting during the manufacturing process. The results of

this novel method indicate that all points can be aligned when the non-individual calibration

satifies a geometrical specification of 92%. The digital twin approach was compared to the

manufacturing process on 84,055 samples. Overall, 98.19% of the samples were perfectly

aligned.

Introduction

As industrial fields diversify and emerge, customers are placing greater demands on producers

to continually improve manufacturing processes [1]. Improving manufacturing today requires

significant transformation in many processes and the application of new and modern strate-

gies, for example the conceptual changes delivered by Industry 4.0. The article describes a

novel process for adjusting calibration screws in a vehicle headlamp. The target product is pro-

tected under a Non-Disclosure Agreement, therefore the paper describes a headlamp model

with general parameters only instead of the specified headlamp model. All the experiments

presented in this paper applied a general kinematic model to suitably illustrate the calibration

method.

The target product has a defined set of testing points on its surface. These are used to verify

whether the customer’s requirements for accuracy are satisfied. Equipped with compensating

elements in the form of calibration screws, the product allows minor adjustments to its fixing.
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During production, the calibration screws must be set so that the resulting geometric error at

the testing points is minimized.

In the traditional approach, one produced part per day is taken from a production line and

precision adjusted manually by an operator with a screwdriver and measured with a coordi-

nate measuring machine (CMM). The same setting for the calibration screws is then applied to

every part manufactured on that day, and consequently the geometric error in each part, in

theory, is identical. Quality control applies a statistical process control (SPC) method to calcu-

late the process capability index, which is a statistical measurement that represents the ability

to make a product within the specification tolerances (see [2]). The traditional method for cali-

brating the product is time-consuming, and the calibration screws could also not always be set

individually.

The main contributions in this paper are as follows:

1. A novel method for automatically adjusting the compensatory elements of individual head-

lamps directly in the manufacturing process.

2. A practical configuration for a digital twin to geometrically calibrate assemblies that use

adjustable compensatory elements measured directly for accuracy.

3. A comparison of two optimization algorithms (gradient method and Broyden–Fletcher–

Goldfarb–Shanno) used on the digital twin.

The challenges inherent in obtaining optimal adjustments calls for the use of a digital twin

and to simulate the adjustment process virtually for specific calibration screw settings. This

approach allows minimization of the locally Lipschitz continuous composite cost function,

which in our case is continuously differentiable and subject to inequality constraints. For this

purpose, we can use a method suitable for smooth, unconstrained optimization, for example

first-order or second-order methods, where the inequality constraints are subject to a qua-

dratic penalty. The solution proposed in this paper applied the gradient method (first-order

method) and Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (second-order method)

[3–7].

Fig 1 shows a block diagram of the optimal adjustment procedure using a digital twin. First,

an assembled part is measured during the manufacturing process, and then the set of measured

points is transferred to a digital twin to simulate the actual geometric parameters. An optimi-

zation algorithm then estimates the calibration screw settings and transfers this information to

the digital twin. The digital twin thus enables virtual adjustment and calculates the position of

the control points, which are subsequently passed to a cost function.

In this case, the cost function consists of two separate functions: inner and outer. The inner

function is formulated as an implicit nonlinear vector function that describes the product’s

kinematic model. This implicit function assigns the testing point locations dð~sÞ to the arbitrary

locations of the calibration screws~s. The outer function is a sum of two functions: the first

function evaluates the quality of the adjustment to the product, the second is a quadratic pen-

alty function which penalizes any violation of inequality constraints. The inequality constraints

ensure that the set of prescribed limits (tolerances) for testing point locations is not exceeded.

To solve the optimization problem, we applied the gradient method and BFGS algorithm.

The optimization algorithm provides a calibration screw setting for the minimum total geo-

metric error and transfers it to the production line. The product is subsequently adjusted

according this optimal setting with electronic screwdrivers.

The remainder of the paper is organized as follows. Related works provides an overview of

the state of the art. In Methods, we mathematically describe the gradient method, BGFS algo-

rithm and quadratic penalty method. The Models section presents the mass, digital twin and
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optimization models. Experiment describes the experimental procedure. In Results, we report

the experimental results, followed by a discussion of these results in the Discussion section.

Finally, we assess the paper’s body of knowledge and outline options for future work in the

Conclusion.

Related works

Most automotive parts are manufactured on production lines. Generally, they should be man-

ufactured very precisely according to a geometrical specification to facilitate the assembly pro-

cess. To fulfil quality control standards [8], all products or selected samples must be measured.

The most accurate measurements are done with a CMM [9]. Unfortunately, these machines

have several limitations, such as limited dimension range and a long measurement cycle [10].

Especially Considering the long measurement cycle, CMMs are especially unsuitable for

checking all aspects on a part. A promising method for measuring parts is inline measurement

[11], performed directly on the production line.

Quality control checks apply the Geometrical Product Specifications (GPS) defined by the

International Organization for Standardization (ISO). GPS provides the exact definitions for

the geometry of components in a product so that producing technical drawings, programming

measurement instruments, and estimating measurement uncertainties are unambiguous. GPS

characterizes the duality principle by defining the non-ideal surface model of a work piece and

defining the verification model according to the verification process executed by the person

who inspects the manufactured work piece [12]. The difference between the models indicates

a measurement uncertainty [13].

Quality control itself does not increase the manufacturing precision, it only estimates a

total geometric error. Research challenges lie in improving production processes for more

precise manufacturing. Several options are available generally to increase product precision

according to GPS. The first option is to calibrate a production line and its robot manipula-

tors using a CMM and the method presented in [14]. Another option for calibrating robot

Fig 1. Block diagram of the proposed method.

https://doi.org/10.1371/journal.pone.0279988.g001
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manipulators is using af laser tracker [15]. This method is suitable for a machine tool which

can be modelled as serial manipulator with individual axes behaving as rigid bodies with six

degrees of freedom.

The second option is to equip a product with compensating elements such as adjustment

screws. This allows the adjustment of fixing points in assembled parts to reduce geometric

error. Compensating elements such as these are provided by the Böllhof company [16]. Using

special mechanical fixing screws, Böllhoff’s Flexitol solution permits manual and automated

infinitely variable tolerance compensation.

The modern approach to maintaining individual production is a digital twin [17]. The term

digital twin has gained popularity recently in academic and industrial circles [18]. A digital

twin is a set of virtual information constructs which fully describe the possible or actual physi-

cal manufactured product from the micro-atomic level to the macro-geometric level [19, 20].

At its optimum, any information that could be obtained by inspecting a physically manufac-

tured product can be derived from its digital twin [19]. In the study presented here, the princi-

ple of a digital twin was used to obtain the highest geometric quality for the self-adjusting

smart assembly line described in [21].

Table 1 summarizes the works related to the proposed solution. The literature review sug-

gests that the commonly applied approach is calibration of the production line using robot

manipulators to achieve higher quality products. Interestingly, quality control is never dis-

cussed in any of the reviewed literature. The proposed solution uses Böllhoff Flexitol fixing

screws [16] to adjust the fixing points in a product and thereby decrease the total geometric

error. Inline measurement allows each part to be measured, a procedure which has a signifi-

cant impact on the Process Capability Index [25]. Instead of using SPC, the Process Capability

Index can be evaluated with each part.

Table 1. Summary of related works.

Source Key parameters

Wang et al. [14] • provides production line calibration

• requires a CMM

Montavon et al. [15] • provides production line calibration

• requires a laser tracker

• modelled as a serial manipulator

Pan et al. [22] • provides production line calibration

• requires cameras or laser sensors

• extensive image processing

Yin et al. [23] • provides parallel robot manipulator calibration

• approach based on screw theory to determine identifiable error parameters

Aderiani et al. [24] • individualized locator adjustments

• digital twin approach

• improvement of up to 81% in the geometric variation

• improvement of 78% in the component’s mean deviation

Proposed solution • provides individual product calibration

• uses Böllhoff Flexitol

• direct inline measurement

• measurement and automated calibration on every part

https://doi.org/10.1371/journal.pone.0279988.t001
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Methods

This section investigates the following type of unconstrained problem:

min
x2Rn

f ðxÞ; ð1Þ

where f : Rn
! R is a continuously differentiable function in O.

Let us apply the following notation: xT denotes the transpose of the column vector x and E
denotes the identity matrix.

To solve the problem (1), we introduce two iterative optimization algorithms, starting with

the gradient method, which represents a first-order method, then a second-order method

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Both methods need a value

of f and a gradient of f at every given point x.

Gradient method

First, let us attempt to solve the problem (1) using a descent direction to reduce the value of f.
The gradient method is a special variant of the descent direction method based on the

observation that f decreases the quickest if we follow the direction of the opposite gradient. For

more detailed information about the method, see [3, 4]. The method is still widely used across

many scientific disciplines, see for example [26, 27].

We start with an initial guess x0. The algorithm produces a sequence of iterations x1, x2, . . ..

In every iteration xk, the algorithm evaluatesrf(xk) and finds the descent direction d 2 Rn
, in

the following manner:

d ¼ �
rf ðxkÞ

k rf ðxkÞ k
: ð2Þ

A new iteration is acquired by moving xk in the direction d, i.e.

xkþ1 ¼ xk þ t�d; t� > 0: ð3Þ

The algorithm continues searching until kxk+1 − xkk � ε, where ε is a given precision.

The pseudocode of the gradient method is described in Algorithm 1.

Algorithm 1: Gradient method f, x0

1: take x0 2 R
n, set d ¼ � rf ðx0Þ

krf ðx0Þk
, k = 0

2: while krf(xk)k � ε do
3: take t� > 0 {we consider t� that guarantees the reduction of f}
4: xk+1 = xk + t�dk
5: dkþ1 ¼ �

rf ðxkþ1Þ

krf ðxkþ1Þk

6: k = k + 1
7: end while
8: set x = xk

To find the optimal step length t�, we use the descent direction and compute a local mini-

mum of f in the direction d, where

t� ¼ arg min
t2R;t>0

f ðxk þ tdÞ: ð4Þ

For practical computation, it is easier to turn (4) into a constrained problem:

t� ¼ arg min
t2R;t2½0;tmax�

f ðxk þ tdÞ;

where tmax is sufficiently large.
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For the one-dimensional constrained optimization of f with respect to t, we use the Golden

Section method (see [3]).

BFGS algorithm

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm introduced here is based on New-

ton’s method. It is a second order method using a quadratic model of f in the neighbourhood

of xk, i.e.

f ðxÞ � mkðxÞ ¼ f ðxkÞ þ ðx � xkÞ
T
rf ðxkÞþ

þ
1

2
ðx � xkÞ

T
r2f ðxkÞðx � xkÞ:

ð5Þ

We want to find a minimum of mk, i.e. find x as a stationary point of mk,

rmkðxÞ ¼ 0;

which means

rf ðxkÞ þ r
2f ðxkÞðx � xkÞ ¼ 0: ð6Þ

The stationary point is labelled xk+1. From (6), we obtain an expression of Newton’s itera-

tion

xkþ1 ¼ xk � r
2f ðxkÞ

� 1
rf ðxkÞ; ð7Þ

where

r2f ðxkÞ ¼

@
2f ðxkÞ

@x1@x2

� � �
@

2f ðxkÞ

@x1@xn

..

. . .
. ..

.

@
2f ðxkÞ

@xn@x2

� � �
@

2f ðxkÞ

@xn@xn

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

is the Hessian of f. We can denote

dk ¼ r
2f ðxkÞ

� 1
rf ðxkÞ:

Moreover, if the Hessian is a positive definite matrix, i.e.

8x 2 Rn
; x 6¼~0 : xTr2f ðxkÞx > 0;

andrf(xk) 6¼ 0, it is true that dk is a descent direction of f.
The BFGS algorithm is introduced here is a method which uses Newton’s step. In contrast

to Newton’s method, the Hessian is approximated using the results of the previous iterations,

known as a Quasi-Newton’s method. A detailed introduction of the method can be found in

[4, 7]. Even today, the algorithm is used in many scientific fields, see for example [28, 29].

The approximation Hk of the Hessianr2f(xk) is computed as follows:

Hk ¼ Hk� 1 þ
yyT

yTs
�

Hk� 1sstHk� 1

sTHk� 1s
; ð8Þ

where y = xk − xk−1 and s =rf(xk) −rf(xk−1). The pseudocode of the BFGS algorithm is

described in Algorithm 2.
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Algorithm 2: BFGS f, x0

1: take ε > 0, x0 2 R
n

2: set H0 = E, k = 1
3: while krf(xk)k � ε do
4: xk = xk−1 − (Hk−1)

−1gk−1
5: y = xk − xk−1
6: s = rf(xk) − rf(xk−1)
7: if yTs > 0 then {if the Hessian is positive definite}

8: Hk ¼ Hk� 1 þ
yyT

yTs �
Hk� 1sstHk� 1

sTHk� 1s

9: else
10: Hk = Hk−1
11: end if
12: k = k + 1
13: end while
14: set x = xk

Quadratic penalty method

For the purposes here, we need to minimize f(x) subject to inequality constraints. We solve the

following constrained problem:

min
x2O

f ðxÞ;

O ¼ fx 2 Rn
: gðxÞ �~0g;

g : Rn ! Rr; r < n;

ð9Þ

where f and g are continuously differentiable. To apply the algorithms introduced above, we

need to approximate our constrained problem (9) with an unconstrained problem. We apply a

Quadratic Penalty method to approximate the original solution with a solution to the follow-

ing:

min
x2Rn

frðxÞ;

frðxÞ≔ f ðxÞ þ
1

2
raðxÞTaðxÞ;

aiðxÞ≔maxfgiðxÞ; 0g:

ð10Þ

For large ρ, the approximate solution cannot be far from the solution of the original prob-

lem. Furthermore, for ρ!1, the solution of (10) is also a solution of (9).

Models

This section introduces a mathematical model for the digital twin and describes the mass,

kinematic model and optimization models in detail.

To indicate points, we use capital letters and two types of index. The upper index refers to

the index of the point, the lower index represents the coordinate. The vector which describes

the positions of the calibration screws is denoted~s.

Mass

Headlamps must fulfil GPS and consist of a housing and glass glued together. Gluing is a possi-

ble source of imprecision if the glass is inaccurately positioned. To check the quality, we mea-

sure the the geometric dimensions. The product’s specification defines a set of test points and

vectors. Each vector of the set defines the direction of a measuring sensor.
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The specification also defines the constraint points fixed to or supported in the product.

The set of test points and vectors and set of constrained points provide the basis for the digital

twin. In this study, we define the following types of fixing:

• Calibration screw—this fixation type has three degrees of rotational freedom. It can be

adjusted (and fixed) along a specific vector, and the remaining perpendicular directions pro-

vide the next two degrees of freedom.

• Spike—this fixation type has three degrees of rotational freedom and another degree of free-

dom in a specific vector (straight line). The spike is a point to line constraint.

• Ball bearing—this fixation has only three degrees of rotational freedom. Other movements

are not possible.

• A propped point—this fixation type has three degrees of rotational freedom. Movement is

restricted to a plane, or specifically, the propped point slides along a plane surface.

Digital twin

The following section mathematically describes the constraint points. Using a digital twin, we

simulated kinematic behavior. The digital twin allows adjustment of the the screws in virtual

space and substitutes an approach involving a complicated procedure by an operator who

attempts to find an optimal calibration screw setting with a screwdriver and CMM. This sec-

tion describes the mathematical formulation of the kinematic model which represents the digi-

tal twin.

The main idea behind this approach is the assumption that a headlamp is a rigid body and

that if we consider the distances between pairs of points and other aspects given by the con-

straint points, we can obtain a system of equations to describe the object.

We assume that the distances remain constant. For a given~s representing the position of

the calibration screws, we can compute the shift δ at all test points as a solution of a system of

nonlinear equations. The system is represented by the following expression:

Fðdð~sÞ;~sÞ ¼ 0;

where F is a vector function, F : Rq
! Rq

.

For the small values of~s that we are interested in, the system F is nearly linear. We can

therefore obtain an approximation of δ in~s as a solution of

dð~sÞ ¼ d0 � J � 1
F ðd0;~sÞFðd0;~sÞ;

where JF is a Jacobian matrix of F with respect to δ, i.e.

JF ¼

@F1

@d1

. . .
@F1

@dq

..

. . .
. ..

.

@Fq

@d1

. . .
@Fq

@dq

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

:
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Furthermore, we can take δ0 = 0 and obtain

dð~sÞ ¼ � J � 1
F ð0;~sÞFð0;~sÞ: ð11Þ

Let us now describe mathematically the constraint and the test point shifts and specify the

elements of δ.

• Calibration screw S—in general, S is screwed in a direction parallel to one of the axes. Move-

ment in the other two coordinates is free. For example, if we decide to screw in the z direc-

tion, the location of S after transformation is described as

S0 ¼ ½S1; S2; S3� þ ðd
S
1
; d

S
2
; zÞ:

• Spike T—this type of point shifts only in the prescribed direction nT ¼ ðnT
1
; nT

2
; nT

3
Þ. The

position after transformation is described as

T 0 ¼ ½T1;T2;T3� þ d
T
ðnT

1
; nT

2
; nT

3
Þ:

• Ball bearing (or fixed point) K—this type of point has no degrees of freedom, and its position

after transformation remains the same

K 0 ¼ K ¼ ½K1;K2;K3�:

• Propped point Pd—this point must belong to a plane ρ defined by a given normal vector

nr ¼ ðnr1; n
r

2; n
r

3Þ. For (Pd)0 2 τ, it must be true that

nr1ðPd
1
þ d

Pd

1
Þ þ nr2Pd

2
þ d

Pd

2
Þ þ nr3ðPd

3
þ d

Pd

3
Þ þ d ¼ 0;

where

d ¼ � nr1Pd
1
� nr2Pd

2
� nr3Pd

3
:

• Test point Pi—the point has generally no defined limits in terms of shift or rotation. Its posi-

tion after transformation is described as

P0i ¼ Pi þ ½d
i
1
; d

i
2
; d

i
3
�:

The test point positions and the shifts δi play a key role in the optimization problem intro-

duced in this article.

Optimization model

The aim of the method is to find the optimal configuration of the calibration screws S1, S2, . . .,

where the distances between test points Pi and their prescribed locations Pi
prec are minimal.

Regarding the technical aspects, we cannot use the Euclidean norm to compute k PiPi
prec k and

must develop a more complex method.

For each test point, we have a sensor B with an approach vector ~m ¼ BP�!i
prec. The point B

and vector ~m determine the line p.
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We construct a plane ρ perpendicular to p containing the point Pi and find the point Pi
pr as

an intersection of p and ρ. We then define the desired distance as

k PiPi
preckB ≔ k Pi

prP
i
prec k :

This is illustrated in Fig 2.

We solve the following constrained optimization problem

min
~s2Rn

f ð~sÞ≔

≔min
~s2Rn

Xk

i¼1

�
X3

j¼1

wiðP
i
j � Pi

prec j þ d
i
jð~sÞÞ

2

� ð12Þ

with the set of constraints related to the distances k PiPi
preckB,

X3

j¼1

ðmijtið~sÞÞ
2
< tol2i ; 8i 2 f1; . . . ; kg;

where

tið~sÞ ¼
X3

j¼1

ðmi
jÞ

k mik2
ðPi

j � Pi
prec j þ d

i
jð~sÞÞ;

d
i
ð~sÞ is a vector describing the shift of the point Pi depending on~s, and wi represents the weight

of Pi. In other words, the value wi indicates the importance of aligning Pi near the ideal posi-

tion. Let us specify that our task is to solve the problem of quadratic programming with non-

linear inequality constraints.

We apply the Quadratic Penalty method introduced above and transform (12) into an

unconstrained problem

min
~s2Rn

frð~sÞ≔

≔min
~s

Xk

i¼1

X3

j¼1

wiðP
i
j � Pi

prec j þ d
i
jð~sÞÞ

2

 !

þ
1

2
ra0ð~sÞað~sÞ;

ð13Þ

Fig 2. Measuring the distance between Pi and Pi
prec.

https://doi.org/10.1371/journal.pone.0279988.g002
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where

aið~sÞ≔max
X3

j¼1

ðmijtið~sÞÞ
2
� tol2i ; 0

�

:

(

This type of problem can be solved using either of the optimization methods introduced

above. Considering the properties of the cost function, it can also be shown that the gradient

method converges linearly to the minimum. The convergence of the BFGS algorithm is

superlinear.

Experiment

In this section, we provide an example of a design for a digital twin and formulate the kine-

matic model of a headlamp and application of the optimization algorithm.

Data

For the numerical experiments, we considered a model with the following specification:

• Two calibration screws S1 and S2—both are screwed in the z direction, while movement in

the other directions is free.

• A spike T—this point shifts only in the direction defined by a vector~nT .

• Two propped points Pd1 and Pd2—both points must remain in the given planes defined by

normals nr1 and nr2 .

• The headlamp does not contain any ball bearings.

We also considered the set of test points Pi, i 2 {1, . . .n} that we would like to align to an

optimal position.

If we consider all the model’s properties, we obtain a vector of unknowns:

d ¼ ðdPd11; dPd12; dPd13; dPd21; dPd22; dPd23; dT;

dS1
1
; dS1

2
; dS2

1
; dS2

2
; dPi1

; dPi2
; dPi3

; . . .Þ
T
;

ð14Þ

where the first 11 elements relate to shifts in the constraint points and the remaining 3n ele-

ments describe the transformation of the test points needed to evaluate the cost function. It

must be true that the distance between each pair of points remains constant.

For a given~s ¼ ðs1; s2Þ, let us formulate the system of equations which define our kinematic

model. First, we take into account the distances between the test points and constraint points;

a prime symbol denotes the points after transformation. We thus obtain n equations in the fol-

lowing form:

k P0iT 0 k¼ di
T ≔ k PiT k 8i 2 f1; � � � ; ng: ð15Þ

The previous equations can be modified to

k P0iT 0k2 � ðdi
TÞ

2
¼ 0 8i 2 f1; . . . ; ng: ð16Þ
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Consequently, we can focus on a combination of test points and both calibration screws

and obtain another 2n equations:

k P0iS01 k¼ di
S1 ≔ k PiS1 k 8i 2 f1; . . . ; ng; ð17Þ

k P0iS02 k¼ di
S2 ≔ k PiS2 k 8i 2 f1; . . . ; ng: ð18Þ

The last coordinate of Si is equal to si, which is given.

The propped points belong to given planes and are described by the following two equa-

tions:

Pd1 2 r1 :
X3

j¼1

nr1
j ðPd1

j þ d
d1

j Þ �
X3

j¼1

nr1
j Pd1

j ¼ 0; ð19Þ

Pd2 2 r2 :
X3

j¼1

nr2
j ðPd2

j þ d
d2

j Þ �
X3

j¼1

nr2
j Pd2

j ¼ 0: ð20Þ

The points must also be a constant distance from the spike and both calibration screws.

Therefore,

k P0dlT 0 k ¼ di
T ≔ k PdlT k; 8l 2 f1; 2g; ð21Þ

k P0dlS0k k¼ di
PdlSk ≔ k PdlSk k 8k; l 2 f1; 2g; ð22Þ

and we obtain another 8 equations. The final three equations reflect the distances between

pairs of constraint points.

k T 0S0k k¼ di
TSk ≔ k TSk k ð23Þ

k P0d1P0d2 k¼ dPdPd ≔ k P0d1P0d2 k : ð24Þ

We can rewrite Eqs (17)–(24) in the same manner as Eq (15).

Finally, we obtain a system of equations that can be written as

Fðdð~sÞ;~sÞ ¼ 0; ð25Þ

where F : Rq ! Rq, q = 3n + 11 is a vector function. Each component of this function is

defined from Eqs (15), (17)–(24) (e.g., the first component of the vector function F is defined

by the left side of Eq (16)). As mentioned above, we exploit the system’s approximately linear-

ity for small values of s1, s2 and compute δ from

dð~sÞ ¼ � J � 1
F ðd0;~sÞFðd0;~sÞ; ð26Þ

where J is a matrix of the first derivatives of F with respect to all variables in δ.

Gradient and BFGS method

The methods introduced here are designed for unconstrained optimization. For each given

vector~s, we need to evaluate the cost function (13) and compute the gradient.

The gradient can be computed as follows:

rfrð~sÞ ¼ rf ð~sÞ þ r
Xn

i¼1

aið~sÞrgið~sÞ; ð27Þ
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where

rf ð~sÞ ¼

Pk
i¼1

P3

j¼1
2wi Pi

j � Pi
precj þ d

i
jð~sÞ

� � @d
i
jð~sÞ
@s1

Pk
i¼1

P3

j¼1
2wi Pi

j � Pi
precj þ d

i
jð~sÞ

� � @d
i
jð~sÞ
@s2

0

B
B
B
B
B
@

1

C
C
C
C
C
A

:
ð28Þ

The elements ofrg can be calculated in the following manner:

rgið~sÞ ¼ 2�

�

P3

k¼1

P3

j¼1
mi

k

mi
j

k mik2
Pi

j þ d
i
jð~sÞ � Pi

precj

� � @d
i
jð~sÞ
@s1

P3

k¼1

P3

j¼1
mi

k

mi
j

k mik2
Pi

j þ d
i
jð~sÞ � Pi

precj

� � @d
i
jð~sÞ
@s2

0

B
B
B
B
B
@

1

C
C
C
C
C
A

:
ð29Þ

Now we compute
@di

jð~sÞ

@s1
and

@di
jð~sÞ

@s2
. Returning to (26) and modifying the equation, we obtain

Jðd0;~sÞdð~sÞ ¼ � Fðd0;~sÞ: ð30Þ

If we first differentiate both sides of (30) with respect to s1, we obtain

@JFðd0;~sÞ
@s1

dð~sÞ þ JFðd0;~sÞ
@dð~sÞ
@s1

¼ �
@Fðd0;~sÞ
@s1

:

After a slight modification, we obtain

@dð~sÞ
@s1

¼ J � 1

F ðd0;~sÞ �
@JFðd0;~sÞ
@s1

dð~sÞ �
@Fðd0;~sÞ
@s1

� �

:

Consequently, we can differentiate (30) with respect to the other variable

@JFðd0;~sÞ
@s2

dð~sÞ þ JFðd0;~sÞ
@dð~sÞ
@s2

¼ �
@Fðd0;~sÞ
@s2

and express
@di

jð~sÞ

@s2
:

@dð~sÞ
@s2

¼ J � 1

F ðd0;~sÞ �
@JFðd0;~sÞ
@s2

dð~sÞ �
@Fðd0;~sÞ
@s2

� �

:

Simple model example

Let us now illustrate the previous relationship which describes the kinematic model of the

headlamp and application of the optimization algorithms on a simple model. The model in

this example contains only one calibration screw S, one spike T, one propped point Pd, and

one test point P and its prescribed location Pprec.

The specification in the given model is as follows:

• Calibration screw S = [0, 0, 0]—screwed only in the z direction, while movement in other

directions is fixed.

PLOS ONE Adjustment of products with compensatory elements using digital twin: Model and methodology

PLOS ONE | https://doi.org/10.1371/journal.pone.0279988 January 3, 2023 13 / 29

https://doi.org/10.1371/journal.pone.0279988


• Spike T = [1, 0, 0]—the point shifts only in the direction~nT ¼ ½0; 0; 1�.

• Propped point Pd = [−1, 0, 1]—the point must remain in the plane ρ defined by normal nρ =

[−1, 0, 0], the movement in the x direction is fixed.

• Test point P = [0, 0, 1], which we want to adjust to the optimal position Pprec = [0, 0, 2].

The model is illustrated in Fig 3.

For this simple model, we obtain the following vector of unknowns:

d ¼ ðdPd2; dPd3; dT; dP1
; dP2

; dP3
Þ

T
; ð31Þ

where the first three unknowns relate to shifts of the constraint points, and the remaining

three unknowns describe the transformation of the test point we need for evaluating the cost

function.

Let us now describe the kinematic model for this example, obtained in the same manner as

the system of Eq (25).

Fig 3. Example of a simple model with one calibration screw.

https://doi.org/10.1371/journal.pone.0279988.g003
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We formulate the system of equations for the model (a prime symbol denotes the points

after transformation)

k P0T 0k2 � k PT k2 ¼ 0; where k PT k¼ 2: ð32Þ

k P0S0k2 � k PT k2 ¼ 0; where k PS k¼ 1: ð33Þ

Pd 2 r :
X3

j¼1

nrj ðP
d
j þ d

d
j Þ �

X3

j¼1

nrj P
d
j ¼ 0: ð34Þ

k P0dT 0k2� k PdT k2 ¼ 0; where k PdT k¼
ffiffiffi
5
p

: ð35Þ

k P0dS0k2� k PdS k2 ¼ 0; where k PdS k¼
ffiffiffi
2
p

: ð36Þ

k T 0S0k2 � k TS k2 ¼ 0; where k TS k¼ 1: ð37Þ

Finally, we obtain a system of equations that can be written as

Fðdð~sÞ;~sÞ ¼ 0; ð38Þ

where F : Rq
! Rq

, q = 6 is a vector function. Each component of this function is defined by

the left side of Eqs (32)–(37). Eq (38) is solved using the expression in (26).

Now let us consider the optimization problem describing the calibration of screws during

headlamp adjustment. For simplicity, in this example, we do not require a given tolerance to

be satisfied for the test point P, i.e., we consider only the unconstrained optimization problem.

For this example, we obtain the following optimization problem:

min
~s2R

X3

j¼1

wiðPj � Pprec j þ djð~sÞÞ
2
: ð39Þ

The analytical solution to the problem is~s ¼ 1.

Algorithm 3: Description of the calibration procedure
1: A headlamp is placed onto a mounting stand by an operator.
2: A shelf with a stand is transferred to a calibration area.
3: Robotic arms and tactile sensors perform precise measurement.
4: The digital twin calculates optimal calibration screw settings.
5: Automated screwdrivers set the target screw settings.
6: A protocol with estimated tolerances is stored in the database.

An iteration of the optimization method for headlamp adjustment is explained schemati-

cally in Fig 4. Algorithm 3 indicates the entire procedure for the calibration process of one

headlamp on a deployed machine.

Results

For the numerical experiments, let us consider the headlamp introduced in the previous sec-

tion, with two calibration screws S1 and S2, two propped points, one spike, and 25 test points.

Both S1 and S2 can only be screwed in the z direction. At every test point, we are given a toler-

ance, i.e. a maximum permitted distance from the prescribed position. Note that the distance

is measured in the k.kB norm defined above. Fig 5 shows a sketch of the model. The test points

we want to align to the prescribed positions are indicated with blue dots, the constraint points

are indicated with red stars.
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We simulated real situations and applied both algorithms. By computing the configuration

of the calibration screws, a headlamp model can be placed in the desired position to allow eval-

uation of the distances between the test points and their prescribed positions. All the test point

tolerances and shifts are small in relation to the product’s size, guaranteeing that the values of

s1 and s2 remain sufficiently small.

Starting with an ideal headlamp model, all points are located exactly in the prescribed posi-

tions. For any given movement in the calibration screws~s ¼ ðs1; s2Þ, the headlamp model is

transformed according to the kinematic model. The optimization algorithm is then applied to

move it back into the original position. This type of simulation guarantees that none of the

model’s mathematical conditions are violated and provides an excellent opportunity to study

Fig 4. Flowchart of the optimization procedure—k-th iteration.

https://doi.org/10.1371/journal.pone.0279988.g004

Fig 5. General shape of the model, test points and constraint points.

https://doi.org/10.1371/journal.pone.0279988.g005
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the behaviours of the algorithms. It also provides an easy way to verify the output of the

algorithm.

We then applied the same conditions as in the previous simulation, but after transforma-

tion, slightly adjusted the test points using shifts. This procedure simulated an imperfect

manufacturing process or glass imprecisely glued to the housing.

The final simulation modelled an ideal headlamp and moved it into an initial position.

Unlike the previous simulation, the product was transformed using general shifts and rota-

tions. The optimization algorithm then calculated an optimal position.

The combination of the previous two approaches reflects the real conditions of a headlamp

not having an ideal shape.

All experiments were solved with the starting point~s0 ¼ ð0; 0Þ and a stopping point: the

ideal headlamp was adjusted using general transformations and a stopping point of ε = 10−6;

the real headlamp was adjusted according to the kinematic model and a stopping point of ε =

10−3; the ideal headlamp was adjusted using a penalty coefficient ρ = 1012 and a stopping point

of ε = 10−2. These parameters were tuned according to the type of adjustment. These stopping

point values are sufficient due to the accuracy achieved in the calibration screw settings by the

industrial robot performing the adjustment.

Ideal headlamp adjusted according to the kinematic model

For the numerical experiment, we set~s ¼ ð0:4; 0:1Þ and transformed all points according to

(11). The aim was to determine the screw settings that aligned the model into an ideal

position.

We then applied both algorithms and compared the results. The gradient method produced

the output~sgradout ¼ ð� 0:414042806; � 0:098633275Þ, and the BFGS algorithm returned the vec-

tor~sBFGSout ¼ ð� 0:414042804; � 0:098633323Þ.

With a precision set to 10−6 in both algorithms, the number of decimal places was raised

accordingly. Both results corresponded to the expected solution.

We are interested in comparing the distances between the test points and their prescribed

positions before and after adjustment. Fig 6 compares the k.kB norm with the given tolerance,

which is indicated by a red line. Some points in the initial position fell outside the given toler-

ance. By contrast, after optimization, the headlamp fully satisfied the specified conditions, and

distances were reduced significantly. Namely, the mean of the distance before adjustment was

1.91�10−1, and the mean of the final distance was 3.50�10−3. The value of the cost function at

the beginning of the optimization was 4.34. Both algorithms reduced the value to 8.01�10−4.

We are also interested in the performance of the algorithms. Fig 7 indicates that the gradi-

ent method needed significantly fewer iterations to reduce the cost function. However, the

Golden Section method applied in this algorithm is more time-consuming.

The results in Table 2 give us a better idea of the behaviour of the algorithms and various

configurations for the calibration screws.

Real headlamp adjusted according to the kinematic model

In this case,~s ¼ ð0:4; 0:1Þ again and all points were transformed according to (11). We then

slightly deformed the test points, resulting in the initial model that we want to adjust and

return to the prescribed position.

First, imprecise manufacturing was simulated by adding noise to all test points. Initially,

several points fell outside the given tolerance, but after optimization, all points were completely

within tolerance. The mean of the distance before adjustment was 1.92 � 10−1, and the mean of
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the final distance was 1.33 � 10−2. The value of the cost function was reduced from 4.33 to

1.39 � 10−2.

The next experiment simulated an error created by imprecision in the gluing process. For

this simulation, we adjusted all points located on the glass 0.01 mm in the z direction. This

Fig 6. Ideal headlamp adjusted according to the kinematic model with~s ¼ ð0:4; 0:1Þ—approach distances

between the test points and their prescribed positions before and after optimization.

https://doi.org/10.1371/journal.pone.0279988.g006

Fig 7. Ideal headlamp adjusted according to the kinematic model with~s ¼ ð0:4; 0:1Þ—convergence history of both

algorithms.

https://doi.org/10.1371/journal.pone.0279988.g007
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adjustment caused several points to fall outside the given tolerance, but after optimization all

test points completely satisfied the tolerance. The mean of the distance before adjustment was

1.92 � 10−1, and the mean of the final distance was 9.40 � 10−3. The value of the cost function

was reduced from 4.36 to 5.57 � 10−3.

Fig 8 indicates the distances k.kB before and after transformation in relation to the given

tolerance, shown as a red line for both of the experiments above. Since the given tolerance for

each test point was different, we scaled all tolerances to one and scaled the distances in the

same manner. We observed a significant reduction in the distance of the test points from their

prescribed positions after adjustment.

Ideal headlamp adjusted using general transformations

In this case, an ideal headlamp was modified with general shifts and rotations. This approach

reflects practical situations more realistically and tested the robustness of the algorithms.

First, a rotation of 10−2π on the x axis was applied. The aim is to find a position for the cali-

bration screws which compensates the rotation. The mean of the distance before adjustment

was 5.14�10−1, and the mean of the final distance was 2.55�10−1. The value of the cost function

was reduced from 12.03 to 4.67.

Consequently, the rotation according to the y axis by 10−2π was applied. The mean of the

distance before adjustment was 3.71�10−1, and the mean of the final distance was 2.15�10−1.

The value of the cost function was reduced from 8.59 to 4.52.

We then rotated the model around the x and y axes by 10−2π. Fig 9 illustrates the effect of

both rotations and the distances k.kB. The mean of the distance before adjustment was

5.03�10−1, and the mean of the final distance was 2.52�10−1. The value of the cost function was

reduced from 9.32 to 5.95.

The model is very sensitive to rotation and it is easy to violate the mathematical conditions.

However, both algorithms were able to adjust all the test points within the given tolerance.

Table 2. Ideal headlamp adjusted according to the kinematic model for different values of~s—results for both

algorithms.

Gradient method BFGS algorithm

~s it ~sout it ~sout
(−0.4, −0.4) 23 (0.37837, 0.35932) 29 (0.37838, 0.35933)

(−0.4, −0.2) 12 (0.38439, 0.19254) 31 (0.38439, 0.19254)

(−0.4, 0.2) 15 (0, 38498, −0, 20823) 33 (0.38499, −0.20824)

(−0.4, 0.4) 49 (0, 37698, −0, 44491) 26 (0.37698, −0.44492)

(−0.2, −0.4) 34 (0, 18865, 0, 35682) 33 (0.18865, 0.35682)

(−0.2, −0.2) 40 (0, 19440, 0, 18973) 30 (0.19441, 0.18974)

(−0.2, 0.2) 26 (0, 19448, −0, 21115) 7 (0.19449, −0.21115)

(−0.2, 0.4) 54 (0, 18626, −0, 44776) 8 (0.18627, −0.44777)

(0.2, −0.4) 14 (−0, 21026, 0, 35622) 7 (−0.21026, 0.35623)

(0.2, −0.2) 23 (−0, 20508, 0, 18923) 6 (−0.20509, 0.18923)

(0.2, 0.2) 43 (−0, 20602, −0, 21040) 27 (−0.20602, −0.21041)

(0.2, 0.4) 45 (−0, 21464, −0, 44614) 30 (−0.21465, −0.44614)

(0.4, −0.4) 20 (−0, 41959, 0, 35807) 34 (−0.41959, 0.35807)

(0.4, −0.2) 20 (−0, 41470, 0, 19144) 30 (−0.41471, 0.19145)

(0.4, 0.2) 17 (−0, 41618, −0, 20690) 31 (−0.41619, −0.20691)

(0.4, 0.4) 34 (−0, 42501, −0, 44188) 31 (−0.42502, −0.20690)

https://doi.org/10.1371/journal.pone.0279988.t002
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Let us now focus only on shift along the vector (0.3, 0.3, 0.5) mm. The mean of the distance

before adjustment was 5.09�10−1, and the mean of the final distance was 3.61�10−1. The value of

the cost function was reduced from 8.71 to 5.98.

Finally, we combine rotation and shift. We take both angles equal to 1

3
� 10� 2p and the vector

(0.05, 0.05, 0.05) mm. The mean of the distance at the start was 5.09�10−1, and the mean of the

final distance was 2.47�10−1. The value of the cost function was reduced from 9.41 to 4.95.

Fig 10 shows the distances k.kB before and after the transformation in relation to the given

tolerance, which is indicated with a red line for all five experiments above. Since the given tol-

erance for each test point was different, we scaled all tolerances to one and scaled the distances

in the same manner. We observed a reduction in the distance of the test points from their pre-

scribed positions after adjustment.

Comparison to manual calibration by an operator

The proposed method has been successfully applied to the production line of an automotive

manufacturer. In this section, we compare the proposed method (individual calibration) to

manual calibration by an operator (non-individual calibration).

In manual calibration, when production commences, the first headlamp produced is taken

and precisely measured using a CMM. An operator then manually and expertly estimates the

optimal calibration screw setting. All subsequent headlamps adjusted on the same day are con-

sidered as having the same geometry, shape, and initial position as the reference headlamp.

The same calibration screw setting is therefore used for every product produced on that day.

The calibration procedure itself is non-individual and done by the operator using an industrial

robot.

Fig 8. Distances between test points and their prescribed positions before and after optimization: A—poorly

manufactured, B—poorly glued.

https://doi.org/10.1371/journal.pone.0279988.g008
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The proposed method achieves a major improvement in the success rate of adjustment. It is

able to respond to the changes in shape and position and adjust settings accordingly. A minor

disadvantage is the additional time needed for measurement and the adjustment procedure.

Each headlamp on the line is checked, measured and adjusted, and compared to manual

adjustment, the positions of the calibration screws can be computed very precisely for each

part.

Fig 9. Ideal headlamp rotated around the x and y axes by 10−2π: (a) 3D location of test points; (b) approach

distances between test points and their prescribed positions before and after optimization.

https://doi.org/10.1371/journal.pone.0279988.g009
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The products are considered slightly deformed and adjusted along the vector t = (0.1, 0.1,

0.2). Using the optimization algorithm, the optimal position~sopt of the calibration screws is

computed. To test the system, we used a set of 20 test samples with random noise added to

each point and applied the vector t. To simulate the original method, all samples were adjusted

according to the same calibration screw setting~sopt. Table 3 shows the results for both

approaches obtained by the computer simulation and the original position before adjustment.

The reference product is highlighted in grey.

Fig 11 compares non-individual and individual calibration with non-calibrated samples.

Headlamps with no calibration indicate the highest inaccuracies and only 56% are within tol-

erances. Non-individual calibration produced better results with 92% of samples within toler-

ances. All individually calibrated samples were within tolerances and obtained slightly smaller

distances.

Comparison of digital twin with the manufacturing process

To evaluate the digital twin, we compared the predicted adjustment according to the digital

twin and the results obtained from a practical run. The evaluation procedure differs from the

manufacturing process in that a part is measured only once, specifically before calibration.

This is due to the strict requirements in the machine cycle where post-calibration measure-

ment cannot be performed. Fig 12 indicates the relative error between estimated tolerances

according to the digital twin and experimental measurements by the CMM. Relative error

Fig 10. Distances between test points and their prescribed positions before and after optimization in the

experiments: A—rotation about the x axis, B—rotation about the y axis, C—rotation about the x and y axes, D—

shift, and E—rotation about the x and y axes and a shift.

https://doi.org/10.1371/journal.pone.0279988.g010
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Table 3. Comparison of results obtained by computer simulation of individual and non-individual calibration.

No calib. Non-ind. calib. Individual calib.

Sample MD PIT MD PIT MD PIT Opt. Conf.

ref. 0.220 14 0.087 25 0.089 25 (−0.240, −0.168)

1 0.223 14 0.085 24 0.078 25 (−0.252, −0.215)

2 0.223 14 0.085 23 0.080 25 (−0.256, −0.187)

3 0.223 14 0.085 24 0.086 25 (−0.242, −0.187)

4 0.224 14 0.086 23 0.085 25 (−0.250, −0.181)

5 0.229 14 0.091 21 0.076 25 (−0.283, −0.286)

6 0.228 14 0.090 23 0.074 25 (−0.273, −0.292)

7 0.226 14 0.088 23 0.075 25 (−0.269, −0.301)

8 0.227 14 0.089 22 0.081 25 (−0.271, −0.179)

9 0.226 14 0.088 23 0.087 25 (−0.245, −0.188)

10 0.224 14 0.086 24 0.082 25 (−0.263, −0.167)

11 0.225 14 0.087 22 0.074 25 (−0.272, −0.212)

12 0.224 14 0.086 23 0.073 25 (−0.277, −0.253)

13 0.220 14 0.082 24 0.083 25 (−0.245, −0.182)

14 0.224 14 0.086 24 0.075 25 (−0.256, −0.278)

15 0.228 14 0.090 22 0.080 25 (−0.272, −0.191)

16 0.221 14 0.083 25 0.079 25 (−0.260, −0.174)

17 0.220 14 0.083 25 0.092 25 (−0.220, −0.187)

18 0.227 14 0.089 23 0.086 25 (−0.243, −0.205)

19 0.223 14 0.085 24 0.086 25 (−0.243, −0.182)

20 0.219 14 0.082 25 0.085 25 (−0.247, −0.162)

Opt. Conf.—Optimal configuration of screws, Individual calib.—Results for individual calibration (the proposed method), Non-ind. calib.—Results of the non-

individual calibration (previous method), No calib.—No calibration, MD—Mean distance, PIT—Points in tolerances,

https://doi.org/10.1371/journal.pone.0279988.t003

Fig 11. Distances between test points and their prescribed positions. The success rate of test point alignment for

each headlamp.

https://doi.org/10.1371/journal.pone.0279988.g011
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relates to the maximum tolerance at each point, calculated as follows:

ErrREL ¼
XEST � XCMM

Toler
; ð40Þ

where ErrREL is the relative error, XEST is the tolerance estimated from the digital twin, XCMM is

the tolerance measured by the CMM, and Toler is the maximum tolerance permitted for a par-

ticular point. Fig 12 indicates that the relative error does not exceed 12%, which means, for

example, all points with a tolerance of 1 mm have a maximum absolute error of 0.12 mm.

Table 4 gives a breakdown of the digital twin’s success in adjusting a specific headlamp type

in a practical industrial scenario. The source data set were obtained from an industrial partner

and represent the results of the digital twin calibration process performed directly on a

manufacturing line. The dataset describes 84,055 fully measured headlamps before calibration

and the number of points outside tolerances after calibration according to the digital twin.

Headlamps with no points outside tolerances satisfied the limits for accuracy. The remain-

der of the samples were separated according to the number of points outside tolerances: low

(1–4), medium (5–10) and high (11–25).

From 84,055 fully calibrated samples, 98.19% and most of the remaining (1.59%) samples

were produced with few inaccuracies. A breakdown is given for the input samples according to

four inaccuracy levels. Input samples at the zero (0) level indicated no points outside toler-

ances, representing 14.39% of all production; these were adjusted simply to improve their geo-

metrical properties. After calibration, almost all of these samples showed zero inaccuracies,

only eight samples indicating a few points outside tolerances. Input samples at the next level

(1–4) represented 53.77% of production and contained a small number of inaccuracies. After

calibration, 98.61% of these samples showed no points outside tolerances. The majority of the

remainder had few inaccuracies (low), and eight samples had slightly more (medium). At the

next level (5–10), input samples represented 30.53% of production and contained significant

numbers of inaccuracies. The calibration process improved these samples to 97.32% with no

points outside tolerances. Input samples at the (high) level of inaccuracy represented a minor

portion of production (1.31%); the calibration procedure in this case was able to fully cali-

brated 81.87% of samples.

Fig 12. Relative error between the estimated tolerance and experimental measurement in relation to the tolerance

value.

https://doi.org/10.1371/journal.pone.0279988.g012
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Discussion

Several interesting topics can be discussed, the first being the optimization methods intro-

duced in the article. The industrial partner required quick computation and high accuracy,

and to investigate, we selected a first-order method (gradient method) and quasi-Newton

method (BFGS algorithm). The experiments revealed that the BFGS algorithm is quicker than

the gradient method.

Compared to the zero-order method, it is necessary to evaluate the gradient of the cost

function. However, the proposed methods required significantly less time to find a solution.

Theoretically, second-order methods converge even more quickly than quasi-Newton meth-

ods, but unfortunately, it is very difficult to compute the Hessian in every iteration.

Table 5 provides a general overview of the proposed approach compared to two state-of-

the-art methods. Both of the state-of-the-art methods are more versatile than the proposed

solution, however they permit only basic transformations (translation and rotation) and do

not include any additional constraints. The proposed method can be applied to a specific prod-

uct only, but it incorporates more complex transformations (with calibrations screws),

includes constraint points, and allows a priority and limits to be set for each test point. More-

over, the proposed method has a guaranteed convergence and shorter computational time:

computation speed was one of the industrial partner’s main requirements.

Finally, we outline possible future modifications to the proposed automated product adjust-

ment and calibration screw method. Thus far, we have worked with the assumption that the

Table 4. Success rate analysis of the practical industrial application of a digital twin in executing adjustments on a specific headlamp type.

Input Output

Points outside tolerances Number of headlamps Percentage of total Points outside tolerances Number of headlamps Percentage of category

Total

0–25 84,055 100.00% 0 82,532 98.19%

1–4 1,338 1.59%

5–10 168 0.20%

11–25 17 0.02%

Categorized

0 12,095 14.39% 0 12,087 99.93%

1–4 8 0.07%

5–10 0 0.00%

11–25 0 0.00%

1–4 45,194 53.77% 0 44,567 98.61%

1–4 619 1.37%

5–10 8 0.02%

11–25 0 0.00%

5–10 25,663 30.53% 0 24,975 97.32%

1–4 597 2.33%

5–10 88 0.34%

11–25 3 0.01%

11–25 1,103 1.31% 0 903 81.87%

1–4 114 10.34%

5–10 72 6.53%

11–25 14 1.27%

https://doi.org/10.1371/journal.pone.0279988.t004
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product behaves as a rigid body and that no friction exists between the calibration screws and

the product. We also regard the problem as static and independent of time. The adjustment

process does not depend on the screwing sequence. In the future, it may be necessary to mod-

ify the kinematic model to describe a product as an elastic body. In this case, the kinematic

model will require modification and use finite element methods.

Another possible modification is to consider the friction between the calibration screws

and the product according to the Coulomb model of friction, for example. In this article, we

neglected friction. If we consider friction, both the kinematic model and optimization algo-

rithm would need to be redesigned since the cost function would no longer be continuously

differentiable, only Lipschitz continuous. For this reason, a method which is suitable for mini-

mizing a function that is not differentiable should be used. These types of method are called

non-smooth methods; one of the most commonly applied is the bundle method. A detailed

discussion about using the bundle method for this type of problem is in [31, 32]. It may also be

necessary to model the adjustment process as dependent on time so that the correct screwing

sequence is considered and maintained.

Conclusion

The article introduced a digital twin model for automated product adjustment using calibra-

tion screws. The automated product adjustment procedure was designed to find the optimal

configuration for a set of calibration screws to minimize the distances between the test points

and their prescribed positions and therefore eliminate geometric error. The proposed strategy

consists of solving two sub-problems: the design of a digital twin for a headlamp and optimiza-

tion using calibration screws.

We formulated an optimal product adjustment procedure for minimizing the locally

Lipschitz continuous cost function, which in this case is continuously differentiable and sub-

ject to inequality constraints. To solve the optimization problem, we applied the gradient

method and BFGS algorithm.

Table 5. Comparison of the results to state-of-the-art studies.

Algorithm Description Advantages and limitations

Montavon, Dahlem, Schmitt [15]

system of equations, method using pseudo-inverse direct methods, geometric error in each point treated

separately

+ direct method

+ points are aligned evenly

− all points have the same priority

Garcı́a, Ortega, Garcı́a, Martı́nez [30]

system of nonlinear equations, fuzzy control algorithm more complex method, positions of the points are

measured by multiple sensors

+ multiple sensors

+ includes position errors of sensors

− all points have the same priority

− only basic transformations

− unconstrained problem

Proposed algorithm

least square method, optimization using the gradient

method or BFGS algorithm

constrained opt., allows to specify tolerances for each

point

+ short computation time

+ more complex model (with constraint points, etc.)

+ more complex transformations (adjustment with

calibration screws, etc.)

+ constrained optimization

+ each point has its own priority

− necessary to compute the gradient of the cost

function

− used only for a specific type of problem

https://doi.org/10.1371/journal.pone.0279988.t005
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The body of knowledge presented in the article contains a novel strategy for precisely

manufacturing headlamps using a digital twin. Headlamps are equipped with compensatory

elements that can adjust the fixing points of the product. Before we applied the proposed auto-

mated adjustment method, only one headlamp per day was measured and adjusted manually

by a machine operator. The remaining products were adjusted according to the same settings

throughout the day by a machine. The main advantage of the proposed method is its ability to

adjust each part with individual settings and thereby reduce production variability. Its second

advantage is in process capability: the manufactured part is measured during the adjustment

process, yielding final tolerances. This feature has an enormous impact on the Process Capabil-

ity Index. Tolerances only need to meet the customer’s specification limits instead of the stric-

ter tolerances applied in the SPC strategy.

The results showed that the novel method was able to align all headlamps, whereas non-

individual calibration is able to aligns only 92% of parts. The digital twin method was applied

to 84,055 headlamps samples, yielding successfully alignment by the calibration machine in

98.19% of samples.
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