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Abstract

Few studies have explored the genetic underpinnings of intra-abdominal visceral fat deposi-

tion, which varies substantially by sex and race/ethnicity. Among 1,787 participants in the

Multiethnic Cohort (MEC)-Adiposity Phenotype Study (MEC-APS), we conducted a

genome-wide association study (GWAS) of the percent visceral adiposity tissue (VAT) area

out of the overall abdominal area, averaged across L1-L5 (%VAT), measured by abdominal

magnetic resonance imaging (MRI). A genome-wide significant signal was found on chro-

mosome 2q14.3 in the sex-combined GWAS (lead variant rs79837492: Beta per effect allele

= -4.76; P = 2.62 × 10−8) and in the male-only GWAS (lead variant rs2968545: (Beta = -6.50;

P = 1.09 × 10−9), and one suggestive variant was found at 13q12.11 in the female-only

GWAS (rs79926925: Beta = 6.95; P = 8.15 × 10−8). The negatively associated variants were

most common in European Americans (T allele of rs79837492; 5%) and African Americans

(C allele of rs2968545; 5%) and not observed in Japanese Americans, whereas the posi-

tively associated variant was most common in Japanese Americans (C allele of

rs79926925, 5%), which was all consistent with the racial/ethnic %VAT differences. In a vali-

dation step among UK Biobank participants (N = 23,699 of mainly British and Irish ancestry)

with MRI-based VAT volume, both rs79837492 (Beta = -0.026, P = 0.019) and rs2968545

(Beta = -0.028, P = 0.010) were significantly associated in men only (n = 11,524). In the

MEC-APS, the association between rs79926925 and plasma sex hormone binding globulin

levels reached statistical significance in females, but not in males, with adjustment for total

adiposity (Beta = -0.24; P = 0.028), on the log scale. Rs79837492 and rs2968545 are

located in intron 5 of CNTNAP5, and rs79926925, in an intergenic region between GJB6

and CRYL1. These novel findings differing by sex and racial/ethnic group warrant replication

in additional diverse studies with direct visceral fat measurements.
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Introduction

Excess body fatness is an established risk factor for type 2 diabetes, cardiovascular disease, and

multiple common cancers [1, 2]. Abdominal visceral adipose tissue (VAT) has been shown to

be more metabolically active compared to fat stored in other areas of the body, such as subcu-

taneous adipose tissue (SAT) [3, 4]. Recent studies have shown strong associations between

VAT and type 2 diabetes, cardiovascular disease, and breast cancer [3, 5, 6]. VAT has greater

metabolic activity and direct access to the portal circulation, which promotes an abnormal

metabolic profile (i.e. circulating levels of high insulin, leptin, sex steroids, adiponectin, C-

reactive protein) [7–10].

It is well established that the absolute or relative size of VAT differs substantially by sex and

race/ethnicity [11, 12]. In the Multiethnic Cohort-Adiposity Phenotype Study (MEC-APS)

(N = 1,861), we found that men had substantially more magnetic resonance imaging (MRI)-

measured abdominal VAT compared to women, even after adjusting for age, height, and total

adiposity [12]. Differences in sex-specific fat accumulation become evident at the onset of

puberty with women preferentially accumulating fat in the gluteofemoral region and men

accumulating more fat as visceral fat in the abdominal region [13]. In women, when estrogen

levels decrease during their menopausal transition, fat redistributes away from the gluteofe-

moral region towards more visceral fat [13]. In addition, results from an analysis of a large

extended pedigree from a genetic isolate in the Netherlands showed that genes account for sig-

nificantly more variance for waist circumference, hip circumference, and waist to hip ratio in

women (mean age = 47.5 years) than in men (mean age = 48.5) [14]: Different genes were

found contributing to the variance of the waist to hip ratio in men compared to women, and

common genes accounted for a larger magnitude of the variance for waist and hip circumfer-

ence in women than men [14].

In the MEC-APS, the amount of MRI-measured VAT also significantly differed among the

five race/ethnicities (African American, European American, Japanese American, Latino, and

Native Hawaiian), even after adjusting for age, height, and total adiposity [12]. Japanese Amer-

icans had the largest VAT area in both males and females (234 cm2 and 176 cm2, respectively)

and African Americans had the smallest VAT area in both males and females (161 cm2 and

102 cm2, respectively), adjusted for total adiposity [12]. In another study in the MEC, for simi-

lar body mass index (BMI), Japanese American women, compared to White women, had a sig-

nificantly higher MRI-measured VAT area out of the abdominal area across L4-L5 (23.9% vs.

18.5%, respectively), after adjusting for age and total adiposity [15].

Accounting for possible sex-differences in genetic susceptibility variants, several studies

have conducted sex-stratified genome-wide association studies (GWAS) of computed tomog-

raphy (CT)- or MRI-measured VAT [16–20]. Two genome-wide significant variants

(rs2842895 and rs2185405) were associated with abdominal VAT together in males and

females; another two variants (rs11118316 and rs7374732) were associated with the abdominal

VAT to SAT ratio together in males and females; three novel variants (rs1659258, rs10060123,

and rs17104731) were associated with abdominal VAT in females-only; and two variants

(rs12657394 and rs1002945) were associated with abdominal VAT in males-only [16–20]. An

additional study using 396,220 UK Biobank participants predicted VAT mass from dual

energy X-ray absorptiometry (DXA) and found 101 variants associated with predicted VAT

mass at genome-wide significance in males and females, and one additional variant in males

[21]. However, these studies have mostly been in individuals of European ancestry.

Recognizing the need to further elucidate the genetic determinants of VAT variation by sex

and race/ethnicity based on accurate measurements, we performed a sex-combined and sex-

specific GWAS study of visceral adiposity, evaluated by MRI in the MEC-APS. We, then,

PLOS ONE GWAS of visceral fat

PLOS ONE | https://doi.org/10.1371/journal.pone.0279932 January 6, 2023 2 / 21

Study (U01 CA164973 to L.L.M., L.R.W., and C.A.

H.); NCI (P30 CA071789 to University of Hawaii

Cancer Center Shared Resources for Biostatistics,

Analytical Biochemistry, Genomics, and Nutrition

Support services); and the National Center for

Advancing Translational Science, NIH, for

recruitment activities at USC (UL1TR000130 to

Southern California Clinical and Translational

Science Institute). S.A.S. was funded by a NCI

training grant (T32 CA229100). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exit.

https://doi.org/10.1371/journal.pone.0279932


examined variants that were genome-wide significant (P<5x10-8) and suggestive (P<10−7) for

association with obesity-related biomarkers in MEC-APS and for replication with VAT in the

UK Biobank data.

Methods

The MEC-APS

The MEC is an ongoing prospective study in Hawaii and Los Angeles that was established to

examine the association of lifestyle and genetic risk factors with cancer and other chronic dis-

eases. In 1993–1996, 96,810 men and 118,441 women between 45 and 75 years of age were

recruited. Participants are mainly from five main racial/ethnic groups (African American,

European American, Japanese American, Latino, Native Hawaiian) [22]. The MEC-APS was

conducted in 2013–2016 among a subset of MEC participants to identify predictors of body fat

distribution and risk factors for obesity-related cancers, as described previously [12]. Briefly,

the MEC-APS is a cross-sectional study that recruited 1,861 healthy, nonsmoking men and

women between 60 and 77 years of age with body mass index (BMI) between 17.1–46.2 kg/m2.

MEC participants were selected for the study using a stratified sampling by sex, race/ethnicity,

and six BMI categories. Exclusion criteria included reported BMI outside the range of 18.5–40

kg/m2, smoking in the past 2 years, soft or metal body implants or amputation, insulin or thy-

roid medications, and serious medical conditions (e.g., dialysis, chronic hepatitis, previous

cancer diagnosis). Study participants underwent an abdominal MRI and a whole-body dual

energy X-ray absorptiometry (DXA) scan, provided a blood sample after an overnight fast,

completed a self-administered questionnaire, and underwent anthropometric measurements

[12]. All MEC-APS participants provided written informed consent and the study was

approved by the institutional review boards (IRBs) at the University of Hawaii (UH) (CHS-

#17200), University of Southern California (USC) (#HS-12-00623), and University of Califor-

nia, San Francisco (UCSF) (#17–23399) in agreement with the 1975 Helsinki Declaration. Sev-

enty-four participants were excluded because of missing visceral fat value based on an invalid

scan due to implants, motion artifacts, or presence of a visceral mass, leaving 1,787 MEC-APS

participants in the final study population.

Anthropometric and body composition assessment

Trained technicians obtained measurements of height, weight, circumferences of the waist and

hip, and chest depth [12]. 3T MRI scanners (Siemens TIM Trio at UH and General Electric

HDx at USC) were used. An abdominal scan was acquired to quantify VAT areas (square cen-

timeters) at 4 intervertebral segments of the intra-abdominal cavity (L1–L2, L2–L3, L3–L4,

L4–L5) using an axial gradient-echo sequence with breath holds [12]. The average VAT across

the segments L1-L5 was used in analysis. Whole-body composition, including total fat mass

and muscle mass, was determined by a DXA scan (Hologic Discovery A fan-beam densitome-

ter at UH and USC, Bedford, MA) [12]. Extensive details regarding the imaging protocol, as

well as quality control calibration and estimation of VAT and SAT area were previously pub-

lished [12].

Genotyping, quality control, and imputation

Genotyping and imputation for the MEC-APS participants have been described previously

[23]. Briefly, DNA extraction from buffy coat was performed using the Qiagen QIAMP DNA

kit (Qiagen Inc., Valencia, CA). DNA samples were genotyped on the Illumina expanded

multi-ethnic genotyping array (MEGAEX) platform, which provides a large coverage of
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variants across the genome for diverse ancestral populations [24]. Variants were removed if

they had a call rate<95%, replicate concordance <100% based on 39 QC replicate samples, or

poor clustering after visual inspection. Prior to imputation, monomorphic variants, variants

with a call rate <98%, variants with estimated MAF (minor allele frequency) that deviated by

�20% in comparison to the corresponding ancestral group in the 1000 Genomes Project

Phase 3, discordance in reported vs. genotyped sex, and insertions/deletions that were not

included in the Haplotype Reference Consortium (HRC), were removed. From an initial

2,036,060 genotyped variants, 1,417,570 were available for imputation. Phasing using Eagle

v2.4 and genotype imputation using Minimac v4 were performed on the University of Michi-

gan Imputation Server with the HRC vr1.1 2016 reference panel [25, 26]. After genotype impu-

tation for MEC-APS participants, variants with an imputation quality score of< 0.4,

multiallelic variants, variants with MAF <0.01, or monomorphic variants, were excluded from

all subsequent analyses. In total, 9,542,479 genotyped and imputed variants remained after

post-imputation filtering. Principal components for ancestry adjustment were calculated with

16,621 post-quality control genotyped race/ethnic specific pruned single nucleotide polymor-

phisms using EIGENSOFT v7 [27]. A quantile–quantile plot of GWAS P-values indicated

appropriate control of type I error for the total population, males, and females, with a genomic

inflation (λ) value of 0.98, 0.98, and 0.96, respectively (S1A–S1C Fig).

Obesity-related biomarkers

Selected blood biomarkers were assayed because of their reported associations with obesity-

caused metabolic, hormonal, and inflammation dysfunctions [5]. Fasting blood samples were

collected at the time of body composition measurement, processed into components, and

stored at -80˚C [5]. Plasma or serum concentrations were determined for circulating levels of

high density lipoprotein (HDL) (mg/dL) (N = 1,822), total cholesterol (mg/dL) (N = 1,823),

glucose (mg/dL) (N = 1,821), C-reactive protein (CRP) (mg/dL) (N = 1,823), insulin (microU/

mL) (N = 1,823), sex-hormone binding globulin (SHBG) (nmol/L) (N = 1,816), triglycerides

(mg/dL) (N = 1,823), and alanine aminotransferase (ALT) (U/L) (N = 1,823) [5]. HOMA-IR

(N = 1,821) and HOMA-beta (N = 1,810) were derived from fasting glucose and insulin values

[5, 28, 29], and low-density lipoprotein (LDL; N = 1,817) cholesterol was derived from the

Friedewald equation using total and HDL cholesterol values and a valid range of triglyceride

concentrations [30].

UK Biobank

The UK Biobank participants, genotyping, imputation, and imaging have been described in

detail previously [31–33]. Briefly, the UK Biobank recruited over 500,000 individuals, aged 40–

69 years, mainly of white British ancestry from across the UK during 2006–2010 [31]. Partici-

pants were interviewed about lifestyle and disease history and underwent a physical examina-

tion that included measurements on weight, height, and waist and hip circumference [31].

Genotyping for UK Biobank participants was done with two custom genotyping arrays, UK

BiLEVE and Axiom [32]. The UK10K and 1000 Genomes Phase 3 reference panels were used

as reference panels for imputation [25, 32, 34]. Between 2014 and 2020 a subset of 43,521 UK

Biobank participants underwent MRI imaging. VAT volume (data field: 22407), measured by

summing the VAT area across images, was quantified by abdominal MRI in a subset of 25,103

participants using a Siemens 1.5 T MAGNETOM Aera scanner (Siemen, Erlangen, Germany)

with the dual-echo Dixon Vibe protocol covering neck to knees [33, 35]. This analysis of data

from the UK Biobank was performed under UK Biobank application #16447.
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Statistical analysis

Descriptive characteristics were examined in the overall study population, in males, and in

females, by race/ethnicity (African American, European American, Japanese American,

Latino, Native Hawaiian) using SAS v.9.4.

The median percent VAT area out of the overall abdominal area, averaged across L1-L5 (%

VAT) presented a greater contrast across the five race/ethnic groups compared to absolute

VAT area, averaged over L1-L5 (using Mass-Whitney U test; P = 2.3x10-31 vs. P = 2.3x10-14,

respectively); therefore, %VAT was used for the GWAS outcome. Variants (as imputed dos-

ages) were tested for associations among sex-combined (N = 1,787) MEC-APS participants

using linear regression of %VAT on SNPs using additive genetic models, adjusted for age, sex,

and principal components 1–4. Sex-specific (male n = 878, female n = 909) GWAS were also

performed using linear regressions of %VAT, adjusted for age and sex-specific principal com-

ponents 1–4 with additive genetic models. SNP associations were considered statistically sig-

nificant at the genome-wide significance threshold of P<5x10-8, and as suggestive at P<10−7.

To evaluate independent variant effects, conditional analysis was then conducted that included

variants from the same chromosome signal with P<10−7. Since %VAT was correlated, albeit

weakly, with total fat mass (r = 0.12), its associations with the independent lead variants were

rerun with additional adjustment for total adiposity. All analyses were done in PLINK v2.0.

The %VAT outcome was not transformed because the non-transformed error residuals were

normally distributed and a quantile-quantile plot of GWAS P-values of variant associations

indicated appropriate control of type I errors with genomic inflation (λ) value for GWAS was

close to 1 (S1A–S1C Fig) [36].

Lead variants associated with %VAT from the sex-combined and sex-specific GWAS were

also assessed for relationships within each MEC-APS race/ethnic group (African American

n = 301, European American n = 401, Japanese American n = 428, Latino n = 372, Native

Hawaiian n = 285) using linear regression and adjusted for age, sex (for variants associated

with %VAT in sex-combined data), and race/ethnic-specific principal components in PLINK

v2.0.

Okinawan Americans were genetically distinguished from mainland Japanese Americans

among 428 Japanese Americans in the MEC-APS using principal component analysis. The

principal component 1 vs. principal component 2 plot allowed for visualization of the spread

of Japanese Americans (S2 Fig). Identification of Okinawan Americans was based on previous

principal component analysis plots that identified Okinawans and where subject clusters

thinned [37]. Cross-check of participants in the Okinawan cluster with Okinawan last names

indicated that the majority of the last names in the Okinawan cluster were of Okinawan origin.

There were 72 genetically identified Okinawan Americans, 27 part-Okinawan and part-main-

land Japanese Americans, and 333 mainland Japanese Americans (S2 Fig). Medians and P-val-

ues of % VAT between Okinawan Americans and mainland Japanese were calculated using

SAS v.9.4.

Lead genetic variants with %VAT were also examined for association with obesity-related

blood biomarkers (HDL, LDL, total cholesterol, glucose, insulin, HOMA-beta, HOMA-IR,

CRP, SHBG, triglycerides, and ALT) among over 1,800 MEC-APS participants [5] using linear

regression of each log-transformed biomarker on each lead genetic variant adjusted for age,

sex (for variants associated with %VAT in sex-combined data), total fat mass, and principal

components 1–4 (see above in Obesity-related biomarkers for exact number of participants

analyzed for each biomarker) using R v3.6.1. The same lead genetic variants were also assessed

for replication in the UK Biobank using linear regression models of log-transformed VAT vol-

ume adjusted for BMI, age, sex, and principal components 1–4 using PLINK v.2.0.
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Results

The GWAS study population consisted of 1,787 MEC-APS participants (Table 1). The strati-

fied recruitment into MEC-APS resulted in similar numbers of study participants across sex-

race/ethnicity-BMI categories. The median overall age at clinic visit was 69.8 years. Across all

race/ethnicities males had higher %VAT compared to females (Table 1). Overall, and in males

and females, Japanese Americans (overall = 26.6%, male = 30.11%, female = 22.8%) had the

highest % VAT, followed by Latinos (overall = 25.6%, males = 30.10%, females = 22.4%),

Native Hawaiians (overall = 23.3%, males = 27.0%, females = 20.8%), and European Americans

(overall = 28.8%, males = 26.8%, females = 18.7%). African Americans had the lowest %VAT

overall (19.0%) and in males (30.11%) and females (16.6%) (Table 1).

In the sex-combined MEC-APS GWAS, there was a signal on chromosome 2q14.3, located

in intron 5 of CNTNAP5, with 11 genome-wide significant variants and five suggestive variants

(P<10−7), associated with %VAT (Figs 1A and 2A and Table 2A). The most significant associa-

tion (rs79837492) was the lead variant in a conditional analysis that included these 16 variants

with P<10−7. This 16-variant signal on chromosome 2q14.3 is located in intron 5 of CNTNAP5
(Contactin Associated Protein Family Member 5). The T allele of the lead variant, rs79837492,

was associated with a mean decrease of 4.76 in %VAT per effect allele (P = 2.62 x 10−8), inde-

pendent of age, sex, and principal components (Table 2A). With additional adjustment for

total fat mass, rs79837492 was associated with %VAT at P = 2.50 x 10−6 (Beta per effect allele =

-3.74) (S1 Table). The variant T allele of rs79837492 was most common in European Ameri-

cans (5%), present at lower frequency in African Americans (3%), Latinos (2%) and Native

Hawaiians (1%) and not observed in Japanese Americans (Table 3A). The most significant

association across race/ethnicities between rs79837492 and %VAT was in African Americans

(Beta = -6.15; P = 1.0 × 10−4) with consistent effect estimates and directions of associations in

the other non-monomorphic populations (Table 3A).

In the male-specific GWAS of %VAT, the signal on chromosome 2q14.3 gained magnitude

and strength: all 16 significant or suggestive variants from the sex-combined GWAS were sig-

nificant in men, with two additional significant variants (rs113164486 and rs76524201) and an

additional suggestive variant (rs77919433) associated with %VAT (Figs 1B and 2B and

Table 2B). The most significant association (rs2968545) was the lead variant in a conditional

analysis that included the 19 variants from the chromosome 2q14.3 signal with P<10−7 in

males. The variant C allele of the lead variant, rs2968545, was associated with a mean decrease

of 6.5 per effect allele in %VAT (P = 1.09 x 10−9), independent of age and principal compo-

nents (Table 2B). With additional adjustment for total fat mass, rs2968545 was associated with

the %VAT at P = 2.50 x 10−6 (Beta = -3.74) (S1 Table). In males, the C allele of rs2968545 was

most common in African Americans (11%), less common in European Americans (5%), pres-

ent at low frequency in Latinos (1.8%) and Native Hawaiians (0.03%), and not observed in Jap-

anese Americans (Table 3B). The most significant association across race/ethnicities among

men between rs2968545 and %VAT was in European Americans (Beta = -9.10;

P = 4.69 × 10−6) with consistent effect estimates and directions of associations in the other

non-monomorphic populations (Table 3B).

None of the 19 variants identified in the male GWAS on chromosome 2 were associated

with %VAT in females, but all betas were in the same direction (S2A and S3A Tables). In the

female MEC-APS GWAS of %VAT, there was a suggestive association with rs79926925 and %

VAT on chromosome 13q12.11 in an intergenic region between GJB6 (Gap Junction Beta 6 or

Connexin 30) and CRYL1 (crystallin lambda 1). The variant C allele of rs79926925 on chromo-

some 13q12.11 was associated with a mean increase of 6.95 in %VAT (P = 8.15x10-8) indepen-

dent of age and principal components (Fig 1C and Table 2C). With additional adjustment for
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total fat mass, the rs79926925 association was attenuated only slightly at P = 3.93 x 10−7 (Beta

per allele = 6.15) (S1 Table). In females, the C allele of rs79926925 was most frequent in

Table 1. Descriptive characteristics of MEC-APS subjects with valid visceral fat area and genotyping values, overall and by race/ethnicity (N = 1787)a.

Overall African American European American Japanese American Latino Native Hawaiian

All, N (%) 1787 301(16.7) 401 (22.4) 428 (24.0) 372 (20.8) 285 (15.9)

Age at clinic visit, years 69.1 (67.1, 71.3) 69.8 (67.9, 72.0) 68.6 (67.1, 70.9) 68.7 (66.8, 70.5) 69.7 (67.4, 72.1) 68.4 (66.5, 71.1)

Sex, n (%)

Male 878 (49.1) 126 (41.9) 207 (51.6) 227 (53.0) 187 (50.2) 131 (46.0)

Female 909 (50.9) 174 (58.1) 194 (48.3) 201 (47.0) 185(49.8) 154 (54.0)

Visceral fat to abdominal area ratio 23.5 (17.9, 29.9) 19.0 (14.9, 24.5) 21.7 (16.5, 28.2) 26.6 (20.2, 32.3) 25.6 (20.7, 26.4) 23.3 (18.1, 28.9)

Subcutaneous fat to abdominal area

ratio

32.5 (25.9, 40.7) 40.1 (32.5, 47.4) 28.8 (23.2, 38.1) 28.1 (24.0, 35.1) 34.9 (27.1, 42.9) 34.5 (27.5, 40.3)

Visceral fat area (L1-L5), cm2 157.4 (105.6,

215.0)

135.5 (94.6, 193.4) 141.2 (93.9, 204.7) 159.3 (104.4, 210.8) 188.9 (132.6,

248.1)

156.5 (107.8,

215.2)

Subcutaneous fat area (L1-L5), cm2 211.6 (154.3,

282.4)

272.5 (205.8,

359.5)

191.1 (136.0, 267.8) 166.3 (130.0, 217.1 236.4 (180.5,

312.7)

220.3 (172.0,

286.6)

Abdominal area (L1-L5), cm2 658.8 (555.9,

770.1)

700.0 (587.6,

823.3)

649.8 (552.6, 759.7) 579.5 (502.9, 686.6) 708.2 (599.3,

812.6)

665.8 (566.9,

771.9)

Visceral fat area/subcutaneous fat area 0.74 (0.48, 1.15) 0.49 (0.34, 0.61) 0.71 (0.49, 0.88) 0.96 (0.62, 1.36) 0.80 (0.53, 1.22) 0.71 (0.50, 1.05)

Total fat mass, kg 24.2 (18.8, 29.9) 29.0 (24.0, 36.2) 22.3 (17.5, 27.6) 19.8 (16.3, 24.1) 27.9 (23.2, 33.2) 23.2 (19.5, 28.0)

Body mass index, kg/m2 27.3 (24.4, 30.8) 28.9 (25.3, 32.2) 26.4 (23.5, 29.8) 25.9 (23.0, 28.9) 28.5 (25.7, 32.2) 28.2 (25.2, 31.7)

Men, n (%) 878 (49.1) 126 (14.3) 207 (23.6) 227 (25.8) 187 (21.3) 131 (14.9)

Age at clinic visit, years 69.2 (67.1, 71.4) 70.2 (67.8, 72.3) 68.3 (66.9, 70.8) 68.7 (66.8, 70.5) 69.7 (67.4, 72.3) 69.2 (66.8, 71.4)

Visceral fat to abdominal area ratio 28.1 (21.9, 33.2) 24.4 (19.8, 29.7) 26.8 (18.4, 32.2) 30.1 1 (24, 34.1) 30.1 0 (26, 35.4) 27 (20.8, 32.1)

Subcutaneous fat to abdominal area

ratio

26.2 (22.3, 30.7) 31.2 (26.3, 36.9) 24.4 (21.1, 28.5) 24.1 (20.7, 27) 27.8 (23.9, 32.4) 27.4 (23.2, 31.5)

Visceral fat area (L1-L5), cm2 198.6 (137.2,

254.4)

181 (134.1, 232.1) 187.9 (114.4, 248.7) 186.8 (130.2, 243.8) 236.8 (182.4,

283.2)

190.2 (133, 248.3)

Subcutaneous fat area (L1-L5), cm2 178.4 (136.6,

230.9)

216.6 (169.4,

295.1)

167.9 (130.5, 211.1) 148.2 (113.7, 182.3) 203.1 (153.1,

256.7)

195.4 (145, 242.3)

Abdominal area (L1-L5), cm2 688.2 (591.9,

798.5)

717.3 (642.5,

846.8)

683 (601.9, 777.5) 620.2 (519.3, 707.5) 742.8 (651.7,

842.9)

703.2 (598.4,

813.3)

Visceral fat area/subcutaneous fat area 1.1 (0.83, 1.5) 0.8 (0.6, 1.1) 1.1 (0.8, 1.5) 1.3 (1, 1.7) 1.2 (0.9, 1.6) 1.1 (0.8, 1.3)

Total fat mass, kg 22.1 (17.5, 27.1) 26.9 (22.7, 32.6) 20.5 (16.3, 25.5) 18.5 (15.1, 22.2) 26.1 (21.8, 30.5) 21.5 (17.9, 26.4)

Body mass index, kg/m2 27.1 (24.8, 30.3) 28.3 (25.8, 31.1) 26.5 (24.1, 29.5) 26 (23.1, 28.8) 28.2 (26, 31.3) 28.2 (25.7, 31.4)

Women, n (%) 909 (50.9) 175 (19.3) 154 (16.9) 201 (22.1) 185 (20.3) 194 (21.3)

Age at clinic visit, years 69.0 (67.1, 71.2) 69.5 (67.9, 71.7) 69 (67.1, 70.9) 68.7 (66.8, 70.6) 69.5 (67.3, 71.9) 67.9 (66.1, 70.8)

Visceral fat to abdominal area ratio 20.1 (16.0, 24.5) 16.6 (13, 19.8) 18.7 (14.9, 22.7) 22.8 (18, 27.8) 22.4 (18.5, 25.2) 20.8 (16.8, 24.8)

Subcutaneous fat to abdominal area

ratio

39.5 (33.9, 45.4) 45.5 (40.4, 50.7) 37.8 (30.1, 44.2) 35 (29.8, 39.1) 42.4 (37.3, 48) 38.9 (35.1, 44.1)

Visceral fat area (L1-L5), cm2 128.9 (91.5, 170.9) 114.1 (82.9, 150.1) 118 (76.7, 162.6) 128.5 (92, 176.6) 145.7 (111.2,

190.3)

140.2 (97.1, 180.6)

Subcutaneous fat area (L1-L5), cm2 246.7 (189.4

316.1)

298.5 (229.4,

401.2)

239.6 (154.1, 294.1) 192.8 (154.9, 240.2) 287.3 (222.7,

366.5)

248.8 (206.9,

310.4)

Abdominal area (L1-L5), cm2 622.9 (531.0,

736.9)

679.4 (556.8,

793.2)

642.6 (540.6, 730.2) 559 (483.1, 639.3) 677.1 (578.2,

785.1)

600.8 (488, 720.6)

Visceral fat area/subcutaneous fat area 0.51 (0.39, 0.68) 0.4 (0.3, 0.5) 0.5 (0.4, 0.7) 0.6 0.5, 0.9) 0.5 (0.4, 0.7) 0.5 (0.4, 0.7)

Total fat mass, kg 26.4 (21.2, 32.9) 33.4 (26.6, 39) 25 (18.9, 30.4) 21.8 (18.4, 25.1) 29.7 (26, 36.4) 25.5 (21.1, 30.7)

Body mass index, kg/m2 27.4 (24.1, 31.4) 29.1 (25.1, 33.6) 26.2 (22.8, 30.1) 25.5 (22.7, 28.6) 28.7 (25.4, 32.9) 28.3 (24.6, 32.4)

aCount (percentage) of categorical variables and median (interquartile range) of continuous variables are presented across race/ethnicity of MEC-APS participants.

https://doi.org/10.1371/journal.pone.0279932.t001
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Japanese Americans (5%), present at low frequency in Native Hawaiians (1.2%), and not

observed in African Americans, European Americans, or Latinos (Table 3C). The most signifi-

cant association across race/ethnicities among women between rs79926925 and %VAT was in

Japanese Americans (Beta = 6.73; P = 5.65 × 10−5) with consistent effect estimates and direc-

tions of associations in Native Hawaiians (Table 3C). Rs79926925 was not associated with %

VAT in males (Beta = 1.58, P = 0.35) (S2B and S3B Tables), but the beta was in the same direc-

tion. Okinawan Americans were found to have a higher frequency (7%) compared to mainland

Japanese (3.5%) for the variant C allele of rs79926926. In women, (Okinawan Americans

n = 23 and mainland Japanese Americans n = 54) the magnitude of association with the C

allele of rs79926926 was similar in Okinawan Americans (Beta = 4.1, P = 0.50) and in main-

land Japanese Americans (Beta = 5.5, P = 0.043), adjusted for age and sex-specific principal

components. Consistent with their greater allele frequency, Okinawan American women also

had significantly more %VAT (median = 25.1) compared to mainland Japanese Americans

(median = 22.0) (P = 0.0073).

Several biomarkers were significantly associated with the lead variant (rs79837492) in

expected directions from the sex-combined GWAS (CRP, insulin, SHBG, and triglycerides) and

the lead variant (rs2968545) from the male-only GWAS (glucose, HOMA-IR, insulin, and tri-

glycerides), at P<0.05; however, after adjusting for total adiposity, none of the biomarker associ-

ations remained statistically significant (Table 4A). Rs2968545 was not significantly associated

with any biomarkers in females (S4A Table). The lead variant from the female-only GWAS,

rs79926925, was associated with SHBG: The C allele of rs79926925 was associated with a

0.21-fold decrease (Beta = -0.24; P = 0.028) in geometric mean for SHBG in females (Table 4C).

Rs79926925 was not significantly associated with any biomarkers in males (S4B Table).

The UK Biobank VAT volume data set was comprised of 23,784 participants of white Brit-

ish or Irish ancestry, 211 of Asian ancestry (Indian, Pakistani, or Bangladeshi), 135 of African

or Caribbean ancestry, and 973 of other or mixed ancestry. In UK Biobank participants, both

rs79837492 (sex-combined Beta = -0.007, P = 0.38; male-only Beta = -0.026, P = 0.019, female-

only Beta = 0.011, P = 0.34) and rs2968545 (sex-combined Beta = -0.008, P = 0.30; male-only

Beta = -0.028, P = 0.010, female-only Beta = 0.011, P = 0.37) were significantly associated in

males, but not in females, with log-transformed MRI-measured VAT volume adjusted for

body mass index (BMI), age, sex, and principal components 1–4 (Table 5). The frequency of

the effect allele was higher in the UK Biobank compared to MEC-APS for both rs79837492

((Effect allele frequency) EAF = 0.051 vs. EAF = 0.022, respectively) and rs2968545

(EAF = 0.052 vs. EAF = 0.033, respectively) (Table 5). Consistent with MEC-APS, the allele fre-

quency for males and females was similar for both rs79837492 (male EAF = 0.050 and female

EAF = 0.050) and rs2968545 (male EAF = 0.052 and female EAF = 0.050) (Table 5). The vari-

ant C allele of rs79926925 was not observed in participants with MRI-measured VAT volume

in the UK Biobank.

Four published GWAS of VAT have detected genome-wide significant associations [16,

18–20] (S5 Table). In addition, there have been two GWAS that found genome-wide signifi-

cant variants using the UK Biobank data, one that explored predicted VAT mass derived

from DXA measurements and one MedRxiv preprint that examined MRI-measured VAT

mass [21] (S5 Table). There was evidence of replication in MEC-APS (P<0.05) for seven

variants of the 115 previously identified genome-wide significant variants: rs113658831

Fig 1. Manhattan plots of SNP P-values from the visceral fat to abdominal area ratio genome-wide association

study in the Multiethnic Cohort-Adiposity Phenotype Study (MEC-APS). The Y-axis shows the negative base ten

logarithm of the P-values and the X-axis shows the chromosomes. The genome-wide significance threshold, P<5x10-8,

is shown in red: a) Overall (N = 17,87), b) Males (n = 878), c) Females (n = 909).

https://doi.org/10.1371/journal.pone.0279932.g001
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(P = 0.031), rs2949785 (P = 0.010), rs56398417 (P = 0.031), rs10962547 (P = 0.018),

rs7942037 (P = 0.0053), rs3764002 (P = 0.041), rs4239060 (P = 0.020), and rs1329254

(P = 0.029) (S5 Table).

Fig 2. Regional plots of SNP P-values in a +/-200 kb window around rs79837429, rs2968545, and rs79926925. The X-axis shows

the chromosome and physical location (Mb), the left Y-axis shows the negative base ten logarithm of the P-values, and the right Y-axis

shows recombination activity (cM/Mb) as a blue line. Positions, recombination rates, and gene annotations are according to NCBI’s

build 37 (hg 19) and the 1000 Genomes Project Phase 3 multiethnic data set: a) Regional plot of rs79837429, b) Regional plot of

rs2968545, c) Regional plot of rs79926925.

https://doi.org/10.1371/journal.pone.0279932.g002
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Table 2. Genetic variants associated with the ratio of visceral fat to abdominal area in the MEC-APS (P<10−7).

a) Sex-combined (N = 1787)

Variant Chrc Positiond Imputed Info score Ref Allele Effect Allele EAFe Beta SE P-value

rs79837492a,b 2 125201730 0.96 C T 0.022 -4.76 0.85 2.62x10-8

rs75293929 2 125237347 0.98 A G 0.022 -4.7 0.86 2.94x10-8

rs77575492 2 125200134 0.96 A G 0.022 -4.7 0.85 3.12x10-8

rs74805958 2 125216045 0.99 T C 0.022 -4.66 0.84 3.25x10-8

rs111548554 2 125211775 0.99 A T 0.022 -4.66 0.84 3.34x10-8

rs76381612 2 125236095 0.98 A C 0.022 -4.65 0.84 3.37x10-8

rs76377414 2 125208103 1.00 A C 0.022 -4.66 0.84 3.43x10-8

rs76651976 2 125208020 1.00 A G 0.022 -4.66 0.84 3.43x10-8

rs75297301 2 125207690 genotyped T C 0.022 -4.66 0.84 3.45x10-8

rs111545964 2 125227517 0.98 G A 0.024 -4.5 0.81 3.70x10-8

rs79269543 2 125194156 0.95 C T 0.023 -4.63 0.84 4.50x10-8

rs78658619 2 125191084 0.93 T C 0.023 -4.61 0.85 6.14x10-8

rs2420864 2 125217386 0.99 C T 0.033 -4.66 0.68 8.10x10-8

rs77575492 2 125216924 0.99 A G 0.033 -4.66 0.68 8.11x10-8

rs2420858 2 125213719 0.99 G T 0.033 -4.66 0.68 8.24x10-8

rs2968545 2 125209666 0.99 A C 0.033 -4.66 0.68 8.38x10-8

b) Male-only (n = 878)

Variant Chrc Positiond Imputed Info score Ref Allele Effect Allele EAFe Beta SE P-value

rs2968545a,b 2 125209666 0.99 A C 0.033 -6.5 1.06 1.09x10-9

rs2420858 2 125213719 0.99 G T 0.033 -6.65 1.06 1.13x10-9

rs77575492 2 125216924 0.99 A G 0.033 -6.65 1.06 1.16x10-9

rs2420864 2 125217386 0.99 C T 0.033 -6.65 1.06 1.17x10-9

rs78658619 2 125191084 0.93 C T 0.023 -7.2 1.28 2.33x10-8

rs79269543 2 125194156 0.95 C T 0.024 -7.2 1.26 2.43x10-8

rs79837492 2 125201730 0.96 C T 0.023 -7.2 1.29 2.70x10-8

rs77575492 2 125200134 0.96 A G 0.023 -7.1 1.27 3.06x10-8

rs113164486 2 125173963 0.87 G A 0.024 -7.36 1.33 4.10x10-8

rs75293929a,c 2 125237347 0.98 A G 0.022 -7.03 1.28 4.49x10-8

rs76524201 2 125176877 0.88 A G 0.024 -7.3 1.32 4.55x10-8

rs75297301 2 125207690 genotyped T C 0.023 -7.16 1.26 5.08x10-8

rs76377414 2 125208103 1 A C 0.023 -6.9 1.26 5.10x10-8

rs76651976 2 125208020 1.00 A G 0.023 -6.9 1.26 5.10x10-8

rs111545964 2 125227517 0.98 G A 0.025 -6.7 1.23 5.20x10-8

rs111548554 2 125211775 0.99 A T 0.023 -6.8 1.26 5.27x10-8

rs74805958 2 125216045 0.99 T C 0.023 -6.9 1.26 5.51x10-8

rs76381612 2 125236095 0.98 A C 0.023 -6.9 1.26 6.16x10-8

rs77919433 2 125178343 0.88 C G 0.024 -7.22 1.26 6.28x10-8

b) Female-only (n = 909)

SNP Chrc Positiond Imputed Info score Ref Allele Effect Allele EAFe Beta SE P-value

rs79926925a,b 13 20891618 0.99 T C 0.013 6.95 1.29 8.15x10-8

aAdjusted for age, sex, and overall principal components 1–4. bFor rs79837492, there were approximately 79 T alleles in the overall MEC-APS population. cChr,

chromosome. dPosition according to NCBI build37. eEAF, Effect allele frequency.
aAdjusted for age, sex, and overall principal components 1–4. bFor rs2968545, there were approximately 58 C alleles in self-reported males. cChr, chromosome. dPosition

according to NCBI build37. eEAF, Effect allele frequency.
aAdjusted for age, sex, and overall principal components 1–4. bFor rs79926925, there were approximately 24 C alleles in self-reported females. cChr, chromosome.
dPosition according to NCBI build37. eEAF, Effect allele frequency.

https://doi.org/10.1371/journal.pone.0279932.t002
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Discussion

In our GWAS of the %VAT in a racially/ethnically diverse population, we observed a genome-

wide significant signal on chromosome 2q14.3 (lead variant rs79837492) in the sex-combined

Table 4. The association between lead significant and suggestive variants associated with percent visceral fat and

obesity-related biomarkers in the MEC-APS, adjusted for total fat mass.

a) Sex-combined

Variant Biomarker N Betaa,b SE P-value

rs79837492 HDL (mg/dL) 1813 -0.015 0.053 0.77

LDL (mg/dL) 1808 -0.056 0.050 0.26

Total Cholesterol (mg/dL) 1814 -0.033 0.034 0.33

Glucose (mg/dL) 1812 -0.033 0.029 0.25

HOMA-beta (%) 1801 -0.037 0.103 0.72

HOMA-IR 1814 -0.033 0.086 0.70

CRP (mg/L) 1814 -0.318 0.214 0.14

Insulin (microU/mL) 1814 -0.055 0.077 0.50

SHBG (nmol/L) 1807 0.086 0.061 0.16

Triglycerides (mg/dL) 1814 -0.082 0.056 0.15

ALT (U/L) 1814 -0.067 0.061 0.27

b) Males

Variant Biomarker N Betaa,b SE P-value

rs2968545 HDL (mg/dL) 897 -0.003 0.060 0.96

LDL (mg/dL) 894 -0.037 0.060 0.53

Total Cholesterol (mg/dL) 898 -0.033 0.041 0.43

Glucose (mg/dL) 896 -0.045 0.032 0.16

HOMA-beta (%) 894 -0.102 0.117 0.38

HOMA-IR 896 -0.119 0.095 0.21

CRP (mg/L) 898 -0.209 0.251 0.40

Insulin (microU/mL) 898 -0.126 0.090 0.16

SHBG (nmol/L) 895 0.056 0.063 0.38

Triglycerides (mg/dL) 898 -0.077 0.065 0.24

ALT (U/L) 898 -0.030 0.069 0.66

c) Females

Variant Biomarker N Betab SE P-value

rs79926925 HDL (mg/dL) 916 -0.026 0.091 0.78

LDL (mg/dL) 914 -0.055 0.079 0.49

Total Cholesterol (mg/dL) 916 -0.047 0.053 0.37

Glucose (mg/dL) 916 0.055 0.49 0.26

HOMA-beta (%) 907 0.049 0.17 0.77

HOMA-IR 916 0.23 0.15 0.12

CRP (mg/L) 916 0.47 0.35 0.18

Insulin (microU/mL) 916 0.19 0.13 0.13

SHBG (nmol/L) 912 -0.24 0.11 0.028

Triglycerides (mg/dL) 916 0.057 0.092 0.54

ALT (U/L) 916 -0.006 0.10 0.96

aAdjusted for age, sex, principal components 1–4, and total fat mass (kg). b gLog unit change per allele increase.
aAdjusted for age, sex specific principal components 1–4, and total fat mass (kg). b gLog unit change per allele

increase.

https://doi.org/10.1371/journal.pone.0279932.t004
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analysis, the same genome-wide significant signal on chromosome 2q14.3 (lead variant

rs2968545) in the male-only GWAS, and a suggestive variant (rs79926925) on chromosome

13q12.11 in the female-only GWAS. The genome-wide significant signal on chromosome

2q14.3 is located in intron 5 of CNTNAP5. The suggestive variant, rs79926925 on chromosome

13q12.11 is located in an intergenic region between GJB6 and CRYL1. Both rs79837492 and

rs2968545 were associated with a decrease in mean %VAT; rs79837492 was significantly asso-

ciated with CPR, SHBG, and triglycerides, and rs2968545 was significantly associated with glu-

cose, HOMA-IR, insulin, and triglycerides at P = 0.05 in MEC-APS without adjustment for

total adiposity, but neither variant was significantly associated with the obesity-related bio-

markers after total adiposity adjustment. The association for both rs79837492 and rs2968545

with %VAT replicated at P = 0.05 in the UK Biobank. Rs79926925 was associated with an

increase in mean %VAT and a significant decrease in mean SHBG blood levels, and was more

common in Okinawan Americans than mainland Japanese Americans.

Since rs79837492 and rs2968545 are intronic and rs79926925 is in an intergenic region,

these variants may function through mechanisms that regulate transcriptional activity. There

were no eQTLs for either variant when querying the GTEx Portal [38]. CNTNAP5 is a large

gene (~1M bases) that is part of the Caspr family, a family of genes that are involved in cell

contacts and communication in the nervous system [39]. Familial deletions, GWAS, and Mul-

tivariate and Collapsing (CMC) burden tests, in CNTNAP5 have mainly found associations

with atypical neurodevelopment and intellectual disability [40–43]. However, a genetic variant

(rs314944) just downstream of CNTNAP5 was found to be moderately negatively associated

with abdominal visceral adiposity in a Korean study (P = 4.25 x 10−5), and whole blood gene

expression of CNTNAP5 was reported to be reduced after bariatric surgery in patients with

type 2 diabetes [19, 44]. Rs79926925 was only present in Japanese American and Native

Hawaiian MEC-APS participants, and is located in an intergenic region between GJB6 and

CRYL1. CRYL1 is part of the uronate cycle, which functions as an alternative glucose metabolic

pathway, catabolizing 5% of daily glucose [45]. CRYL1 requires NAD(H) as a coenzyme to cat-

alyze the dehydrogenation of L-gulonate into dehydro-L-gulonate [45]. The variant rs7989332

in CRYL1 was found to interact with rs6455128 in KHDRBS2 (KH domain containing, RNA

binding, signal transduction associated 2) and be protective against Alzheimer’s Disease [46].

More recently, bioinformatics analysis has shown that CRYL1 is a shared susceptibility gene

between late-stage hepatocellular carcinoma and high HBA1c, and that the amount of CRYL1
is inversely related to tumor stage [47]. Additionally, experiments in rabbits show that CRYL1
is downregulated in skeletal muscle cells of obese, but not normal weight animals [48].

Recent multiethnic GWAS have found it beneficial, in a multiethnic population, to conduct

a joint GWAS, compared to meta-analyzing separate GWAS stratified by race/ethnicity [49,

50]. Wojcik and colleges (2019) showed that a joint GWAS increases power compared to a

meta-analysis approach, while maintaining the type I error rate [49]. In MEC, the first four

Table 5. The association between lead significant variants associated with visceral fat volume (cm3) in the UK

Biobanka.

Sex-combined (N = 23,699) Male (n = 11,524) Female (n = 12,175)

Variant Chr EAF Betab SE P EAF Betab SE P EAF Betab SE P

rs79837492 2 0.051 -0.007 0.007 0.38 0.050 -0.026 0.011 0.019 0.050 0.011 0.012 0.34

rs2968545 2 0.052 -0.008 0.008 0.30 0.051 -0.028 0.011 0.010 0.050 0.011 0.012 0.37

aadjusted for body mass index, age, sex, and principal components 1–4.
blog unit change per allele increase.

https://doi.org/10.1371/journal.pone.0279932.t005

PLOS ONE GWAS of visceral fat

PLOS ONE | https://doi.org/10.1371/journal.pone.0279932 January 6, 2023 15 / 21

https://doi.org/10.1371/journal.pone.0279932.t005
https://doi.org/10.1371/journal.pone.0279932


principal components are able to differentiate the five different race/ethnicities (African Ameri-

can, European American, Japanese American, Latino, and Native Hawaiian). Wang and col-

leagues (2010) showed that African American, European American, and Japanese American

MEC participants separate on principal components 1 and 2, Latinos separate on principal

component 3, and Native Hawaiians separate on principal component 4 [51]. The first four

principal components only adjusts for some intra-population structure (e.g. mainland Japanese

vs. Okinawan) associations between significant or suggestive genetic variants. However, %VAT

was also examined in race/ethnicity specific models that can account for intra-population struc-

ture by adjusting for race/ethnicity specific principal components. Related individuals (20 pairs

of first degree relatives) were not removed from the GWAS because relatedness was limited to

pairs of individuals who did not form related subpopulations within the data set. When related-

ness does not lead to the creation of subpopulations in a data set, retaining related individuals

does not cause long-range LD leading to misleading associations or loss of power [27, 52, 53].

Among Japanese Americans in the MEC, this is the first time Okinawan Americans have

been distinguished from mainland Japanese Americans. Historically, Okinawa had the highest

life expectancy from birth among all Japanese prefectures with low rates of chronic disease

[54]. Today Okinawa have some of the highest chronic disease rates in Japan, believed to be

due in part to a Westernized lifestyle/diet introduced by the US military presence since World

War II [55]. Our novel findings in Okinawan Americans may imply unidentified gene-envi-

ronment factors that warrant further investigation.

Rs79837492 and rs2968545 were genome-wide significant (P = 5x10-8) in the sex-combined

and male-only MEC-APS GWAS and significant at P = 0.05 in the male-only UK Biobank rep-

lication. Neither rs79837492 nor rs2968545 were genome-wide significant in the female-only

MEC-APS GWAS or the UK Biobank female-only replication. While these lead MEC-APS

variants replicated in the UK Biobank, there are some study differences that could explain

study-depended strengths of association. First, MEC-APS examined VAT as a proportion of

abdominal area, whereas the UK Biobank provided data on VAT volume as an absolute mea-

sure, and second, because the EAF for rs79837492 and rs2968545 differ between studies, it is

also possible that the white and black participants’ ancestry may differ between studies. The

variant rs79926925 was not found in UK Biobank participants with abdominal MRI imaging,

most likely because rs79926925 was not observed in whites and only present in Japanese

Americans and Native Hawaiians in MEC-APS, and the UK Biobank MRI imaging study

selected mainly for participants of white British and Irish ancestry [35].

Of the 115 previously identified genome-wide significant variants with VAT outcomes, only

seven replicated in MEC-APS (P<0.05) [16, 18–20]. Reasons for non-replication of 108 previ-

ously identified genome-wide significant variants may be attributed to different racial/ethnic

compositions of the study population, dissimilar VAT outcomes (i.e. absolute VAT, VAT

adjusted for BMI, VAT/SAT, and predicted VAT), and use of CT or DXA (VAT measured by

DXA only approximates VAT measured by the gold-standard MRI) for abdominal imaging [56].

To our knowledge, this is the first study to conduct GWAS for %VAT and one of the few

studies to examine the genetics of visceral fat in a multiethnic population. Additional strengths

of our study include the use of the MEGAEX genotyping array, which provides comprehensive

coverage of variants for a multiethnic population and the use of MRI to measure abdominal

adiposity, which is the gold standard method for measuring visceral fat. The study population,

however, was modest in size (N = 1,787) and, thus, statistical power to detect weak to moderate

effects was limited. A power analysis with 1,787 subjects (population mean = 24.0, standard

deviation = 8.3) shows that a GWAS would have > 80% power to detect a variant with 2%

change in mean %VAT with a MAF > 0.15 (at P = 5x10-8) [57].
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In summary, we found a significant signal on chromosome 2q14.3 in the sex-combined

(lead variant rs79837492) and male-only (lead variant rs2968545) GWAS of %VAT, and one

suggestive variant (rs79926925) in the female-only GWAS of %VAT in MEC-APS. The nega-

tively associated lead variants (rs79837492 and rs2968545) were most common in European

Americans and African Americans and the positively associated lead variant (rs79926925) was

most common in Japanese Americans: this was all consistent with the racial/ethnic %VAT dif-

ferences. The variant allele of rs79926925, associated with a mean increase in %VAT in

women, also showed an association with decreased blood levels of SHBG. These findings

should be considered as preliminary and they require replication in larger studies using gold-

standard methods (MRI or CT) to measure visceral fat.
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