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Abstract

Few studies have explored the genetic underpinnings of intra-abdominal visceral fat deposi-
tion, which varies substantially by sex and race/ethnicity. Among 1,787 participants in the
Multiethnic Cohort (MEC)-Adiposity Phenotype Study (MEC-APS), we conducted a
genome-wide association study (GWAS) of the percent visceral adiposity tissue (VAT) area
out of the overall abdominal area, averaged across L1-L5 (%VAT), measured by abdominal
magnetic resonance imaging (MRI). A genome-wide significant signal was found on chro-
mosome 2g14.3 in the sex-combined GWAS (lead variant rs79837492: Beta per effect allele
=-4.76; P =2.62 x 1078) and in the male-only GWAS (lead variant rs2968545: (Beta = -6.50;
P =1.09 x 107°), and one suggestive variant was found at 13q12.11 in the female-only
GWAS (rs79926925: Beta = 6.95; P = 8.15 x 1078). The negatively associated variants were
most common in European Americans (T allele of rs79837492; 5%) and African Americans
(C allele of rs2968545; 5%) and not observed in Japanese Americans, whereas the posi-
tively associated variant was most common in Japanese Americans (C allele of
rs79926925, 5%), which was all consistent with the racial/ethnic %VAT differences. In a vali-
dation step among UK Biobank participants (N = 23,699 of mainly British and Irish ancestry)
with MRI-based VAT volume, both rs79837492 (Beta = -0.026, P = 0.019) and rs2968545
(Beta =-0.028, P = 0.010) were significantly associated in men only (n = 11,524). In the
MEC-APS, the association between rs79926925 and plasma sex hormone binding globulin
levels reached statistical significance in females, but not in males, with adjustment for total
adiposity (Beta =-0.24; P = 0.028), on the log scale. Rs79837492 and rs2968545 are
located in intron 5 of CNTNAPS5, and rs79926925, in an intergenic region between GJB6
and CRYL1. These novel findings differing by sex and racial/ethnic group warrant replication
in additional diverse studies with direct visceral fat measurements.
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Introduction

Excess body fatness is an established risk factor for type 2 diabetes, cardiovascular disease, and
multiple common cancers [1, 2]. Abdominal visceral adipose tissue (VAT) has been shown to
be more metabolically active compared to fat stored in other areas of the body, such as subcu-
taneous adipose tissue (SAT) [3, 4]. Recent studies have shown strong associations between
VAT and type 2 diabetes, cardiovascular disease, and breast cancer [3, 5, 6]. VAT has greater
metabolic activity and direct access to the portal circulation, which promotes an abnormal
metabolic profile (i.e. circulating levels of high insulin, leptin, sex steroids, adiponectin, C-
reactive protein) [7-10].

It is well established that the absolute or relative size of VAT differs substantially by sex and
race/ethnicity [11, 12]. In the Multiethnic Cohort-Adiposity Phenotype Study (MEC-APS)

(N =1,861), we found that men had substantially more magnetic resonance imaging (MRI)-
measured abdominal VAT compared to women, even after adjusting for age, height, and total
adiposity [12]. Differences in sex-specific fat accumulation become evident at the onset of
puberty with women preferentially accumulating fat in the gluteofemoral region and men
accumulating more fat as visceral fat in the abdominal region [13]. In women, when estrogen
levels decrease during their menopausal transition, fat redistributes away from the gluteofe-
moral region towards more visceral fat [13]. In addition, results from an analysis of a large
extended pedigree from a genetic isolate in the Netherlands showed that genes account for sig-
nificantly more variance for waist circumference, hip circumference, and waist to hip ratio in
women (mean age = 47.5 years) than in men (mean age = 48.5) [14]: Different genes were
found contributing to the variance of the waist to hip ratio in men compared to women, and
common genes accounted for a larger magnitude of the variance for waist and hip circumfer-
ence in women than men [14].

In the MEC-APS, the amount of MRI-measured VAT also significantly differed among the
five race/ethnicities (African American, European American, Japanese American, Latino, and
Native Hawaiian), even after adjusting for age, height, and total adiposity [12]. Japanese Amer-
icans had the largest VAT area in both males and females (234 cm” and 176 cm”, respectively)
and African Americans had the smallest VAT area in both males and females (161 cm? and
102 cm?, respectively), adjusted for total adiposity [12]. In another study in the MEC, for simi-
lar body mass index (BMI), Japanese American women, compared to White women, had a sig-
nificantly higher MRI-measured VAT area out of the abdominal area across L4-L5 (23.9% vs.
18.5%, respectively), after adjusting for age and total adiposity [15].

Accounting for possible sex-differences in genetic susceptibility variants, several studies
have conducted sex-stratified genome-wide association studies (GWAS) of computed tomog-
raphy (CT)- or MRI-measured VAT [16-20]. Two genome-wide significant variants
(rs2842895 and rs2185405) were associated with abdominal VAT together in males and
females; another two variants (rs11118316 and rs7374732) were associated with the abdominal
VAT to SAT ratio together in males and females; three novel variants (rs1659258, rs10060123,
and rs17104731) were associated with abdominal VAT in females-only; and two variants
(rs12657394 and rs1002945) were associated with abdominal VAT in males-only [16-20]. An
additional study using 396,220 UK Biobank participants predicted VAT mass from dual
energy X-ray absorptiometry (DXA) and found 101 variants associated with predicted VAT
mass at genome-wide significance in males and females, and one additional variant in males
[21]. However, these studies have mostly been in individuals of European ancestry.

Recognizing the need to further elucidate the genetic determinants of VAT variation by sex
and race/ethnicity based on accurate measurements, we performed a sex-combined and sex-
specific GWAS study of visceral adiposity, evaluated by MRI in the MEC-APS. We, then,
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examined variants that were genome-wide significant (P<5x10"®) and suggestive (P<1077) for
association with obesity-related biomarkers in MEC-APS and for replication with VAT in the
UK Biobank data.

Methods
The MEC-APS

The MEC is an ongoing prospective study in Hawaii and Los Angeles that was established to
examine the association of lifestyle and genetic risk factors with cancer and other chronic dis-
eases. In 1993-1996, 96,810 men and 118,441 women between 45 and 75 years of age were
recruited. Participants are mainly from five main racial/ethnic groups (African American,
European American, Japanese American, Latino, Native Hawaiian) [22]. The MEC-APS was
conducted in 2013-2016 among a subset of MEC participants to identify predictors of body fat
distribution and risk factors for obesity-related cancers, as described previously [12]. Briefly,
the MEC-APS is a cross-sectional study that recruited 1,861 healthy, nonsmoking men and
women between 60 and 77 years of age with body mass index (BMI) between 17.1-46.2 kg/m”.
MEC participants were selected for the study using a stratified sampling by sex, race/ethnicity,
and six BMI categories. Exclusion criteria included reported BMI outside the range of 18.5-40
kg/m?, smoking in the past 2 years, soft or metal body implants or amputation, insulin or thy-
roid medications, and serious medical conditions (e.g., dialysis, chronic hepatitis, previous
cancer diagnosis). Study participants underwent an abdominal MRI and a whole-body dual
energy X-ray absorptiometry (DXA) scan, provided a blood sample after an overnight fast,
completed a self-administered questionnaire, and underwent anthropometric measurements
[12]. All MEC-APS participants provided written informed consent and the study was
approved by the institutional review boards (IRBs) at the University of Hawaii (UH) (CHS-
#17200), University of Southern California (USC) (#HS-12-00623), and University of Califor-
nia, San Francisco (UCSF) (#17-23399) in agreement with the 1975 Helsinki Declaration. Sev-
enty-four participants were excluded because of missing visceral fat value based on an invalid
scan due to implants, motion artifacts, or presence of a visceral mass, leaving 1,787 MEC-APS
participants in the final study population.

Anthropometric and body composition assessment

Trained technicians obtained measurements of height, weight, circumferences of the waist and
hip, and chest depth [12]. 3T MRI scanners (Siemens TIM Trio at UH and General Electric
HDx at USC) were used. An abdominal scan was acquired to quantify VAT areas (square cen-
timeters) at 4 intervertebral segments of the intra-abdominal cavity (L1-L2, L2-L3, L3-14,
L4-L5) using an axial gradient-echo sequence with breath holds [12]. The average VAT across
the segments L1-L5 was used in analysis. Whole-body composition, including total fat mass
and muscle mass, was determined by a DXA scan (Hologic Discovery A fan-beam densitome-
ter at UH and USC, Bedford, MA) [12]. Extensive details regarding the imaging protocol, as
well as quality control calibration and estimation of VAT and SAT area were previously pub-
lished [12].

Genotyping, quality control, and imputation

Genotyping and imputation for the MEC-APS participants have been described previously
[23]. Briefly, DNA extraction from buffy coat was performed using the Qiagen QIAMP DNA
kit (Qiagen Inc., Valencia, CA). DNA samples were genotyped on the Illumina expanded
multi-ethnic genotyping array (MEGA™) platform, which provides a large coverage of
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variants across the genome for diverse ancestral populations [24]. Variants were removed if
they had a call rate <95%, replicate concordance <100% based on 39 QC replicate samples, or
poor clustering after visual inspection. Prior to imputation, monomorphic variants, variants
with a call rate <98%, variants with estimated MAF (minor allele frequency) that deviated by
>20% in comparison to the corresponding ancestral group in the 1000 Genomes Project
Phase 3, discordance in reported vs. genotyped sex, and insertions/deletions that were not
included in the Haplotype Reference Consortium (HRC), were removed. From an initial
2,036,060 genotyped variants, 1,417,570 were available for imputation. Phasing using Eagle
v2.4 and genotype imputation using Minimac v4 were performed on the University of Michi-
gan Imputation Server with the HRC vr1.1 2016 reference panel [25, 26]. After genotype impu-
tation for MEC-APS participants, variants with an imputation quality score of < 0.4,
multiallelic variants, variants with MAF <0.01, or monomorphic variants, were excluded from
all subsequent analyses. In total, 9,542,479 genotyped and imputed variants remained after
post-imputation filtering. Principal components for ancestry adjustment were calculated with
16,621 post-quality control genotyped race/ethnic specific pruned single nucleotide polymor-
phisms using EIGENSOFT v7 [27]. A quantile-quantile plot of GWAS P-values indicated
appropriate control of type I error for the total population, males, and females, with a genomic
inflation (A) value of 0.98, 0.98, and 0.96, respectively (S1A-S1C Fig).

Obesity-related biomarkers

Selected blood biomarkers were assayed because of their reported associations with obesity-
caused metabolic, hormonal, and inflammation dysfunctions [5]. Fasting blood samples were
collected at the time of body composition measurement, processed into components, and
stored at -80°C [5]. Plasma or serum concentrations were determined for circulating levels of
high density lipoprotein (HDL) (mg/dL) (N = 1,822), total cholesterol (mg/dL) (N = 1,823),
glucose (mg/dL) (N = 1,821), C-reactive protein (CRP) (mg/dL) (N = 1,823), insulin (microU/
mL) (N = 1,823), sex-hormone binding globulin (SHBG) (nmol/L) (N = 1,816), triglycerides
(mg/dL) (N = 1,823), and alanine aminotransferase (ALT) (U/L) (N = 1,823) [5]. HOMA-IR
(N =1,821) and HOMA-beta (N = 1,810) were derived from fasting glucose and insulin values
[5, 28, 29], and low-density lipoprotein (LDL; N = 1,817) cholesterol was derived from the
Friedewald equation using total and HDL cholesterol values and a valid range of triglyceride
concentrations [30].

UK Biobank

The UK Biobank participants, genotyping, imputation, and imaging have been described in
detail previously [31-33]. Briefly, the UK Biobank recruited over 500,000 individuals, aged 40-
69 years, mainly of white British ancestry from across the UK during 2006-2010 [31]. Partici-
pants were interviewed about lifestyle and disease history and underwent a physical examina-
tion that included measurements on weight, height, and waist and hip circumference [31].
Genotyping for UK Biobank participants was done with two custom genotyping arrays, UK
BiLEVE and Axiom [32]. The UK10K and 1000 Genomes Phase 3 reference panels were used
as reference panels for imputation [25, 32, 34]. Between 2014 and 2020 a subset of 43,521 UK
Biobank participants underwent MRI imaging. VAT volume (data field: 22407), measured by
summing the VAT area across images, was quantified by abdominal MRI in a subset of 25,103
participants using a Siemens 1.5 T MAGNETOM Aera scanner (Siemen, Erlangen, Germany)
with the dual-echo Dixon Vibe protocol covering neck to knees [33, 35]. This analysis of data
from the UK Biobank was performed under UK Biobank application #16447.
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Statistical analysis

Descriptive characteristics were examined in the overall study population, in males, and in
females, by race/ethnicity (African American, European American, Japanese American,
Latino, Native Hawaiian) using SAS v.9.4.

The median percent VAT area out of the overall abdominal area, averaged across L1-L5 (%
VAT) presented a greater contrast across the five race/ethnic groups compared to absolute
VAT area, averaged over L1-L5 (using Mass-Whitney U test; P = 2.3x10" vs. P = 2.3x10™"%,
respectively); therefore, % VAT was used for the GWAS outcome. Variants (as imputed dos-
ages) were tested for associations among sex-combined (N = 1,787) MEC-APS participants
using linear regression of % VAT on SNPs using additive genetic models, adjusted for age, sex,
and principal components 1-4. Sex-specific (male n = 878, female n = 909) GWAS were also
performed using linear regressions of % VAT, adjusted for age and sex-specific principal com-
ponents 1-4 with additive genetic models. SNP associations were considered statistically sig-
nificant at the genome-wide significance threshold of P<5x10°®, and as suggestive at P<10~".
To evaluate independent variant effects, conditional analysis was then conducted that included
variants from the same chromosome signal with P<107”. Since % VAT was correlated, albeit
weakly, with total fat mass (r = 0.12), its associations with the independent lead variants were
rerun with additional adjustment for total adiposity. All analyses were done in PLINK v2.0.
The % VAT outcome was not transformed because the non-transformed error residuals were
normally distributed and a quantile-quantile plot of GWAS P-values of variant associations
indicated appropriate control of type I errors with genomic inflation () value for GWAS was
close to 1 (SIA-S1C Fig) [36].

Lead variants associated with % VAT from the sex-combined and sex-specific GWAS were
also assessed for relationships within each MEC-APS race/ethnic group (African American
n = 301, European American n = 401, Japanese American n = 428, Latino n = 372, Native
Hawaiian n = 285) using linear regression and adjusted for age, sex (for variants associated
with % VAT in sex-combined data), and race/ethnic-specific principal components in PLINK
v2.0.

Okinawan Americans were genetically distinguished from mainland Japanese Americans
among 428 Japanese Americans in the MEC-APS using principal component analysis. The
principal component 1 vs. principal component 2 plot allowed for visualization of the spread
of Japanese Americans (S2 Fig). Identification of Okinawan Americans was based on previous
principal component analysis plots that identified Okinawans and where subject clusters
thinned [37]. Cross-check of participants in the Okinawan cluster with Okinawan last names
indicated that the majority of the last names in the Okinawan cluster were of Okinawan origin.
There were 72 genetically identified Okinawan Americans, 27 part-Okinawan and part-main-
land Japanese Americans, and 333 mainland Japanese Americans (S2 Fig). Medians and P-val-
ues of % VAT between Okinawan Americans and mainland Japanese were calculated using
SAS v.9.4.

Lead genetic variants with % VAT were also examined for association with obesity-related
blood biomarkers (HDL, LDL, total cholesterol, glucose, insulin, HOMA-beta, HOMA-IR,
CRP, SHBG, triglycerides, and ALT) among over 1,800 MEC-APS participants [5] using linear
regression of each log-transformed biomarker on each lead genetic variant adjusted for age,
sex (for variants associated with %VAT in sex-combined data), total fat mass, and principal
components 1-4 (see above in Obesity-related biomarkers for exact number of participants
analyzed for each biomarker) using R v3.6.1. The same lead genetic variants were also assessed
for replication in the UK Biobank using linear regression models of log-transformed VAT vol-
ume adjusted for BMI, age, sex, and principal components 1-4 using PLINK v.2.0.
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Results

The GWAS study population consisted of 1,787 MEC-APS participants (Table 1). The strati-
fied recruitment into MEC-APS resulted in similar numbers of study participants across sex-
race/ethnicity-BMI categories. The median overall age at clinic visit was 69.8 years. Across all
race/ethnicities males had higher % VAT compared to females (Table 1). Overall, and in males
and females, Japanese Americans (overall = 26.6%, male = 30.11%, female = 22.8%) had the
highest % VAT, followed by Latinos (overall = 25.6%, males = 30.10%, females = 22.4%),
Native Hawaiians (overall = 23.3%, males = 27.0%, females = 20.8%), and European Americans
(overall = 28.8%, males = 26.8%, females = 18.7%). African Americans had the lowest % VAT
overall (19.0%) and in males (30.11%) and females (16.6%) (Table 1).

In the sex-combined MEC-APS GWAS, there was a signal on chromosome 2q14.3, located
in intron 5 of CNTNAP5, with 11 genome-wide significant variants and five suggestive variants
(P<1077), associated with % VAT (Figs 1A and 2A and Table 2A). The most significant associa-
tion (rs79837492) was the lead variant in a conditional analysis that included these 16 variants
with P<1077. This 16-variant signal on chromosome 2q14.3 is located in intron 5 of CNTNAP5
(Contactin Associated Protein Family Member 5). The T allele of the lead variant, rs79837492,
was associated with a mean decrease of 4.76 in % VAT per effect allele (P = 2.62 x 107%), inde-
pendent of age, sex, and principal components (Table 2A). With additional adjustment for
total fat mass, rs79837492 was associated with % VAT at P = 2.50 x 10™° (Beta per effect allele =
-3.74) (S1 Table). The variant T allele of rs79837492 was most common in European Ameri-
cans (5%), present at lower frequency in African Americans (3%), Latinos (2%) and Native
Hawaiians (1%) and not observed in Japanese Americans (Table 3A). The most significant
association across race/ethnicities between rs79837492 and % VAT was in African Americans
(Beta = -6.15; P = 1.0 x 10™%) with consistent effect estimates and directions of associations in
the other non-monomorphic populations (Table 3A).

In the male-specific GWAS of % VAT, the signal on chromosome 2q14.3 gained magnitude
and strength: all 16 significant or suggestive variants from the sex-combined GWAS were sig-
nificant in men, with two additional significant variants (rs113164486 and rs76524201) and an
additional suggestive variant (rs77919433) associated with % VAT (Figs 1B and 2B and
Table 2B). The most significant association (rs2968545) was the lead variant in a conditional
analysis that included the 19 variants from the chromosome 2q14.3 signal with P<10~ in
males. The variant C allele of the lead variant, rs2968545, was associated with a mean decrease
of 6.5 per effect allele in % VAT (P = 1.09 x 10~°), independent of age and principal compo-
nents (Table 2B). With additional adjustment for total fat mass, rs2968545 was associated with
the % VAT at P = 2.50 x 107° (Beta = -3.74) (S1 Table). In males, the C allele of rs2968545 was
most common in African Americans (11%), less common in European Americans (5%), pres-
ent at low frequency in Latinos (1.8%) and Native Hawaiians (0.03%), and not observed in Jap-
anese Americans (Table 3B). The most significant association across race/ethnicities among
men between rs2968545 and % VAT was in European Americans (Beta = -9.10;

P = 4.69 x 10~°) with consistent effect estimates and directions of associations in the other
non-monomorphic populations (Table 3B).

None of the 19 variants identified in the male GWAS on chromosome 2 were associated
with % VAT in females, but all betas were in the same direction (S2A and S3A Tables). In the
female MEC-APS GWAS of % VAT, there was a suggestive association with rs79926925 and %
VAT on chromosome 13q12.11 in an intergenic region between GJB6 (Gap Junction Beta 6 or
Connexin 30) and CRYLI (crystallin lambda 1). The variant C allele of rs79926925 on chromo-
some 13q12.11 was associated with a mean increase of 6.95 in %VAT (P = 8.15x10"®) indepen-
dent of age and principal components (Fig 1C and Table 2C). With additional adjustment for
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Table 1. Descriptive characteristics of MEC-APS subjects with valid visceral fat area and genotyping values, overall and by race/ethnicity (N = 1787)".

Overall African American | European American | Japanese American Latino Native Hawaiian
All, N (%) 1787 301(16.7) 401 (22.4) 428 (24.0) 372 (20.8) 285 (15.9)
Age at clinic visit, years 69.1(67.1,71.3) 69.8 (67.9, 72.0) 68.6 (67.1, 70.9) 68.7 (66.8, 70.5) 69.7 (67.4,72.1) 68.4 (66.5, 71.1)
Sex, n (%)
Male 878 (49.1) 126 (41.9) 207 (51.6) 227 (53.0) 187 (50.2) 131 (46.0)
Female 909 (50.9) 174 (58.1) 194 (48.3) 201 (47.0) 185(49.8) 154 (54.0)

Visceral fat to abdominal area ratio

23.5(17.9, 29.9)

19.0 (14.9, 24.5)

21.7 (16.5,28.2)

26.6 (20.2, 32.3)

25.6 (20.7, 26.4)

23.3 (18.1, 28.9)

Subcutaneous fat to abdominal area
ratio

32.5(25.9,40.7)

40.1 (32.5,47.4)

28.8(23.2,38.1)

28.1 (24.0, 35.1)

34.9 (27.1, 42.9)

34.5(27.5, 40.3)

Visceral fat area (L1-L5), cm’ 157.4 (105.6, 135.5(94.6,193.4) | 141.2(93.9,204.7) | 159.3 (104.4,210.8) 188.9 (132.6, 156.5 (107.8,
215.0) 248.1) 215.2)

Subcutaneous fat area (L1-L5), cm2 211.6 (154.3, 272.5 (205.8, 191.1 (136.0, 267.8) | 166.3 (130.0,217.1 236.4 (180.5, 220.3 (172.0,
282.4) 359.5) 312.7) 286.6)

Abdominal area (L1-L5), cm? 658.8 (555.9, 700.0 (587.6, 649.8 (552.6, 759.7) | 579.5 (502.9, 686.6) 708.2 (599.3, 665.8 (566.9,
770.1) 823.3) 812.6) 771.9)

Visceral fat area/subcutaneous fat area

0.74 (0.48, 1.15)

0.49 (0.34,0.61)

0.71 (0.49, 0.88)

0.96 (0.62, 1.36)

0.80 (0.53, 1.22)

0.71 (0.50, 1.05)

Total fat mass, kg

24.2 (18.8,29.9)

29.0 (24.0, 36.2)

22.3(17.5,27.6)

19.8 (16.3, 24.1)

27.9 (23.2,33.2)

23.2(19.5, 28.0)

Body mass index, kg/m”

27.3 (24.4, 30.8)

28.9(25.3,32.2)

26.4 (23.5,29.8)

25.9 (23.0, 28.9)

28.5(25.7,32.2)

28.2(25.2,31.7)

Men, n (%)

878 (49.1)

126 (14.3)

207 (23.6)

227 (25.8)

187 (21.3)

131 (14.9)

Age at clinic visit, years

69.2 (67.1,71.4)

70.2 (67.8, 72.3)

68.3 (66.9, 70.8)

68.7 (66.8, 70.5)

69.7 (67.4,72.3)

69.2 (66.8, 71.4)

Visceral fat to abdominal area ratio

28.1(21.9, 33.2)

24.4 (19.8,29.7)

26.8 (18.4,32.2)

30.11 (24, 34.1)

30.10 (26, 35.4)

27 (20.8, 32.1)

Subcutaneous fat to abdominal area
ratio

26.2(22.3,30.7)

31.2(26.3, 36.9)

24.4 (21.1, 28.5)

24.1 (20.7,27)

27.8(23.9,32.4)

27.4(23.2,31.5)

Visceral fat area (L1-L5), cm’ 198.6 (137.2, 181 (134.1,232.1) | 187.9(114.4,248.7) | 186.8 (130.2,243.8) 236.8 (182.4, 190.2 (133, 248.3)
254.4) 283.2)

Subcutaneous fat area (L1-L5), cm2 178.4 (136.6, 216.6 (169.4, 167.9 (130.5,211.1) | 148.2(113.7,182.3) |  203.1 (153.1, 195.4 (145, 242.3)
230.9) 295.1) 256.7)

Abdominal area (L1-L5), cm? 688.2 (591.9, 717.3 (642.5, 683 (601.9, 777.5) | 620.2 (519.3, 707.5) 742.8 (651.7, 703.2 (598.4,
798.5) 846.8) 842.9) 813.3)

Visceral fat area/subcutaneous fat area 1.1 (0.83,1.5) 0.8 (0.6, 1.1) 1.1 (0.8, 1.5) 1.3(1,1.7) 1.2 (0.9, 1.6) 1.1 (0.8, 1.3)

Total fat mass, kg

22.1(17.5,27.1)

26.9 (22.7, 32.6)

20.5 (16.3, 25.5)

18.5(15.1,22.2)

26.1 (21.8, 30.5)

21.5(17.9, 26.4)

Body mass index, kg/m*

27.1 (24.8, 30.3)

28.3(25.8,31.1)

26.5 (24.1, 29.5)

26 (23.1,28.8)

28.2 (26, 31.3)

28.2(25.7, 31.4)

Women, n (%)

909 (50.9)

175 (19.3)

154 (16.9)

201 (22.1)

185 (20.3)

194 (21.3)

Age at clinic visit, years

69.0 (67.1, 71.2)

69.5 (67.9, 71.7)

69 (67.1, 70.9)

68.7 (66.8, 70.6)

69.5 (67.3,71.9)

67.9 (66.1, 70.8)

Visceral fat to abdominal area ratio

20.1 (16.0, 24.5)

16.6 (13, 19.8)

18.7 (14.9, 22.7)

22.8(18,27.8)

22.4(18.5,25.2)

20.8 (16.8, 24.8)

Subcutaneous fat to abdominal area
ratio

39.5(33.9,45.4)

45.5 (40.4, 50.7)

37.8(30.1, 44.2)

35(29.8,39.1)

42.4(37.3,48)

38.9(35.1,44.1)

Visceral fat area (L1-L5), cm? 128.9 (91.5,170.9) | 114.1 (82.9, 150.1) 118 (76.7, 162.6) 128.5 (92, 176.6) 145.7 (111.2, 140.2 (97.1, 180.6)
190.3)
Subcutaneous fat area (L1-L5), cm2 246.7 (189.4 298.5 (229.4, 239.6 (154.1,294.1) | 192.8 (154.9,240.2) |  287.3 (222.7, 248.8 (206.9,
316.1) 401.2) 366.5) 310.4)
Abdominal area (L1-L5), cm? 622.9 (531.0, 679.4 (556.8, 642.6 (540.6, 730.2) | 559 (483.1, 639.3) 677.1 (578.2, 600.8 (488, 720.6)
736.9) 793.2) 785.1)
Visceral fat area/subcutaneous fat area 0.51 (0.39, 0.68) 0.4 (0.3, 0.5) 0.5 (0.4,0.7) 0.6 0.5,0.9) 0.5(0.4,0.7) 0.5(0.4,0.7)

Total fat mass, kg

26.4 (21.2,32.9)

33.4 (26.6, 39)

25(18.9, 30.4)

21.8 (18.4, 25.1)

29.7 (26, 36.4)

25.5(21.1, 30.7)

Body mass index, kg/m*

27.4(24.1,31.4)

29.1 (25.1, 33.6)

26.2 (22.8,30.1)

25.5(22.7, 28.6)

28.7 (254, 32.9)

28.3 (24.6, 32.4)

*Count (percentage) of categorical variables and median (interquartile range) of continuous variables are presented across race/ethnicity of MEC-APS participants.

https://doi.org/10.1371/journal.pone.0279932.t001

total fat mass, the rs79926925 association was attenuated only slightly at P = 3.93 x 10~ (Beta
per allele = 6.15) (S1 Table). In females, the C allele of rs79926925 was most frequent in
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Fig 1. Manhattan plots of SNP P-values from the visceral fat to abdominal area ratio genome-wide association
study in the Multiethnic Cohort-Adiposity Phenotype Study (MEC-APS). The Y-axis shows the negative base ten
logarithm of the P-values and the X-axis shows the chromosomes. The genome-wide significance threshold, P<5x10°®,
is shown in red: a) Overall (N = 17,87), b) Males (n = 878), c) Females (n = 909).

https://doi.org/10.1371/journal.pone.0279932.9001

Japanese Americans (5%), present at low frequency in Native Hawaiians (1.2%), and not
observed in African Americans, European Americans, or Latinos (Table 3C). The most signifi-
cant association across race/ethnicities among women between rs79926925 and % VAT was in
Japanese Americans (Beta = 6.73; P = 5.65 x 10~°) with consistent effect estimates and direc-
tions of associations in Native Hawaiians (Table 3C). Rs79926925 was not associated with %
VAT in males (Beta = 1.58, P = 0.35) (S2B and S3B Tables), but the beta was in the same direc-
tion. Okinawan Americans were found to have a higher frequency (7%) compared to mainland
Japanese (3.5%) for the variant C allele of rs79926926. In women, (Okinawan Americans

n = 23 and mainland Japanese Americans n = 54) the magnitude of association with the C
allele of rs79926926 was similar in Okinawan Americans (Beta = 4.1, P = 0.50) and in main-
land Japanese Americans (Beta = 5.5, P = 0.043), adjusted for age and sex-specific principal
components. Consistent with their greater allele frequency, Okinawan American women also
had significantly more % VAT (median = 25.1) compared to mainland Japanese Americans
(median = 22.0) (P = 0.0073).

Several biomarkers were significantly associated with the lead variant (rs79837492) in
expected directions from the sex-combined GWAS (CRP, insulin, SHBG, and triglycerides) and
the lead variant (rs2968545) from the male-only GWAS (glucose, HOMA-IR, insulin, and tri-
glycerides), at P<0.05; however, after adjusting for total adiposity, none of the biomarker associ-
ations remained statistically significant (Table 4A). Rs2968545 was not significantly associated
with any biomarkers in females (S4A Table). The lead variant from the female-only GWAS,
1s79926925, was associated with SHBG: The C allele of rs79926925 was associated with a
0.21-fold decrease (Beta = -0.24; P = 0.028) in geometric mean for SHBG in females (Table 4C).
Rs79926925 was not significantly associated with any biomarkers in males (S4B Table).

The UK Biobank VAT volume data set was comprised of 23,784 participants of white Brit-
ish or Irish ancestry, 211 of Asian ancestry (Indian, Pakistani, or Bangladeshi), 135 of African
or Caribbean ancestry, and 973 of other or mixed ancestry. In UK Biobank participants, both
rs79837492 (sex-combined Beta = -0.007, P = 0.38; male-only Beta = -0.026, P = 0.019, female-
only Beta = 0.011, P = 0.34) and rs2968545 (sex-combined Beta = -0.008, P = 0.30; male-only
Beta = -0.028, P = 0.010, female-only Beta = 0.011, P = 0.37) were significantly associated in
males, but not in females, with log-transformed MRI-measured VAT volume adjusted for
body mass index (BMI), age, sex, and principal components 1-4 (Table 5). The frequency of
the effect allele was higher in the UK Biobank compared to MEC-APS for both rs79837492
((Effect allele frequency) EAF = 0.051 vs. EAF = 0.022, respectively) and rs2968545
(EAF = 0.052 vs. EAF = 0.033, respectively) (Table 5). Consistent with MEC-APS, the allele fre-
quency for males and females was similar for both rs79837492 (male EAF = 0.050 and female
EAF = 0.050) and rs2968545 (male EAF = 0.052 and female EAF = 0.050) (Table 5). The vari-
ant C allele of rs79926925 was not observed in participants with MRI-measured VAT volume
in the UK Biobank.

Four published GWAS of VAT have detected genome-wide significant associations [16,
18-20] (S5 Table). In addition, there have been two GWAS that found genome-wide signifi-
cant variants using the UK Biobank data, one that explored predicted VAT mass derived
from DXA measurements and one MedRxiv preprint that examined MRI-measured VAT
mass [21] (S5 Table). There was evidence of replication in MEC-APS (P<0.05) for seven
variants of the 115 previously identified genome-wide significant variants: rs113658831
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Fig 2. Regional plots of SNP P-values in a +/-200 kb window around rs79837429, rs2968545, and rs79926925. The X-axis shows
the chromosome and physical location (Mb), the left Y-axis shows the negative base ten logarithm of the P-values, and the right Y-axis
shows recombination activity (cM/Mb) as a blue line. Positions, recombination rates, and gene annotations are according to NCBI’s
build 37 (hg 19) and the 1000 Genomes Project Phase 3 multiethnic data set: a) Regional plot of rs79837429, b) Regional plot of
rs2968545, c) Regional plot of rs79926925.

https://doi.org/10.1371/journal.pone.0279932.9002

(P =0.031), rs2949785 (P = 0.010), rs56398417 (P = 0.031), rs10962547 (P = 0.018),
rs7942037 (P = 0.0053), rs3764002 (P = 0.041), rs4239060 (P = 0.020), and rs1329254
(P =0.029) (S5 Table).
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Table 2. Genetic variants associated with the ratio of visceral fat to abdominal area in the MEC-APS (P<1077).

a) Sex-combined (N = 1787)

Variant Chr* Position? Imputed Info score Ref Allele Effect Allele EAF® Beta SE P-value
rs79837492%" 2 125201730 0.96 C T 0.022 -4.76 0.85 2.62x10°®
1s75293929 2 125237347 0.98 A G 0.022 -4.7 0.86 2.94x10°®
1s77575492 2 125200134 0.96 A G 0.022 -4.7 0.85 3.12x10°®
rs74805958 2 125216045 0.99 T C 0.022 -4.66 0.84 3.25x10°®
rs111548554 2 125211775 0.99 A T 0.022 -4.66 0.84 3.34x10°®
rs76381612 2 125236095 0.98 A C 0.022 -4.65 0.84 3.37x10°
1s76377414 2 125208103 1.00 A C 0.022 -4.66 0.84 3.43x10°
1s76651976 2 125208020 1.00 A G 0.022 -4.66 0.84 3.43x10°
175297301 2 125207690 genotyped T C 0.022 -4.66 0.84 3.45x10°®
rs111545964 2 125227517 0.98 G A 0.024 -4.5 0.81 3.70x10°®
1s79269543 2 125194156 0.95 C T 0.023 -4.63 0.84 4,50x10°
rs78658619 2 125191084 0.93 T C 0.023 -4.61 0.85 6.14x10°®
rs2420864 2 125217386 0.99 C T 0.033 -4.66 0.68 8.10x10°®
1s77575492 2 125216924 0.99 A G 0.033 -4.66 0.68 8.11x10°®
rs2420858 2 125213719 0.99 G T 0.033 -4.66 0.68 8.24x10°®
1s2968545 2 125209666 0.99 A C 0.033 -4.66 0.68 8.38x10°®
b) Male-only (n = 878)

Variant Chr* Position? Imputed Info score Ref Allele Effect Allele EAF® Beta SE P-value
rs2968545™" 2 125209666 0.99 A C 0.033 -6.5 1.06 1.09x107
rs2420858 2 125213719 0.99 G T 0.033 -6.65 1.06 1.13x10”
177575492 2 125216924 0.99 A G 0.033 -6.65 1.06 1.16x107°
rs2420864 2 125217386 0.99 C T 0.033 -6.65 1.06 1.17x107°
1s78658619 2 125191084 0.93 C T 0.023 -7.2 1.28 2.33x10°®
1s79269543 2 125194156 0.95 C T 0.024 -7.2 1.26 2.43x10°®
rs79837492 2 125201730 0.96 C T 0.023 -7.2 1.29 2.70x10°®
1s77575492 2 125200134 0.96 A G 0.023 -7.1 1.27 3.06x10°®
rs113164486 2 125173963 0.87 G A 0.024 -7.36 1.33 4.10x10°®
rs75293929™¢ 2 125237347 0.98 A G 0.022 -7.03 1.28 4.49x10°®
1s76524201 2 125176877 0.88 A G 0.024 -7.3 1.32 4,55x10°®
175297301 2 125207690 genotyped T C 0.023 -7.16 1.26 5.08x10°
1s76377414 2 125208103 1 A C 0.023 -6.9 1.26 5.10x10°
1s76651976 2 125208020 1.00 A G 0.023 -6.9 1.26 5.10x10°
rs111545964 2 125227517 0.98 G A 0.025 -6.7 1.23 5.20x10°
rs111548554 2 125211775 0.99 A T 0.023 -6.8 1.26 5.27x10°®
rs74805958 2 125216045 0.99 T C 0.023 -6.9 1.26 5.51x10°®
rs76381612 2 125236095 0.98 A C 0.023 -6.9 1.26 6.16x10°®
1s77919433 2 125178343 0.88 C G 0.024 -7.22 1.26 6.28x10°®
b) Female-only (n = 909)

SNP Chr* Position? Imputed Info score Ref Allele Effect Allele EAF® Beta SE P-value
rs79926925>" 13 20891618 0.99 T C 0.013 6.95 1.29 8.15x10°®

*Adjusted for age, sex, and overall principal components 1-4. PFor rs79837492, there were approximately 79 T alleles in the overall MEC-APS population. “Chr,
chromosome. “Position according to NCBI build37. °EAF, Effect allele frequency.

*Adjusted for age, sex, and overall principal components 1-4. ®For rs2968545, there were approximately 58 C alleles in self-reported males. “Chr, chromosome. “Position
according to NCBI build37. °EAF, Effect allele frequency.

*Adjusted for age, sex, and overall principal components 1-4. ®For rs79926925, there were approximately 24 C alleles in self-reported females. “Chr, chromosome.
position according to NCBI build37. °EAF, Effect allele frequency.

https://doi.org/10.1371/journal.pone.0279932.1002
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Table 4. The association between lead significant and suggestive variants associated with percent visceral fat and
obesity-related biomarkers in the MEC-APS, adjusted for total fat mass.

a) Sex-combined

Variant Biomarker N Beta™® SE P-value

1579837492 HDL (mg/dL) 1813 -0.015 0.053 0.77
LDL (mg/dL) 1808 -0.056 0.050 0.26
Total Cholesterol (mg/dL) 1814 -0.033 0.034 0.33
Glucose (mg/dL) 1812 -0.033 0.029 0.25
HOMA-beta (%) 1801 -0.037 0.103 0.72
HOMA-IR 1814 -0.033 0.086 0.70
CRP (mg/L) 1814 -0.318 0.214 0.14
Insulin (microU/mL) 1814 -0.055 0.077 0.50
SHBG (nmol/L) 1807 0.086 0.061 0.16
Triglycerides (mg/dL) 1814 -0.082 0.056 0.15
ALT (U/L) 1814 -0.067 0.061 0.27

b) Males

Variant Biomarker N Beta™® SE P-value

152968545 HDL (mg/dL) 897 -0.003 0.060 0.96
LDL (mg/dL) 894 -0.037 0.060 0.53
Total Cholesterol (mg/dL) 898 -0.033 0.041 0.43
Glucose (mg/dL) 896 -0.045 0.032 0.16
HOMA-beta (%) 894 -0.102 0.117 0.38
HOMA-IR 896 -0.119 0.095 0.21
CRP (mg/L) 898 -0.209 0.251 0.40
Insulin (microU/mL) 898 -0.126 0.090 0.16
SHBG (nmol/L) 895 0.056 0.063 0.38
Triglycerides (mg/dL) 898 -0.077 0.065 0.24
ALT (U/L) 898 -0.030 0.069 0.66

c) Females

Variant Biomarker N Beta® SE P-value

1579926925 HDL (mg/dL) 916 -0.026 0.091 0.78
LDL (mg/dL) 914 -0.055 0.079 0.49
Total Cholesterol (mg/dL) 916 -0.047 0.053 0.37
Glucose (mg/dL) 916 0.055 0.49 0.26
HOMA-beta (%) 907 0.049 0.17 0.77
HOMA-IR 916 0.23 0.15 0.12
CRP (mg/L) 916 0.47 0.35 0.18
Insulin (microU/mL) 916 0.19 0.13 0.13
SHBG (nmol/L) 912 -0.24 0.11 0.028
Triglycerides (mg/dL) 916 0.057 0.092 0.54
ALT (U/L) 916 -0.006 0.10 0.96

*Adjusted for age, sex, principal components 1-4, and total fat mass (kg). ® 8Log unit change per allele increase.
*Adjusted for age, sex specific principal components 1-4, and total fat mass (kg).  8Log unit change per allele

increase.

https://doi.org/10.1371/journal.pone.0279932.1004

Discussion

In our GWAS of the % VAT in a racially/ethnically diverse population, we observed a genome-
wide significant signal on chromosome 2q14.3 (lead variant rs79837492) in the sex-combined
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Table 5. The association between lead significant variants associated with visceral fat volume (cm®) in the UK
Biobank®.

Sex-combined (N = 23,699) Male (n =11,524) Female (n = 12,175)
Variant | Chr | EAF | Beta® | SE P | EAF | Beta® | SE P | EAF | Beta® | SE P
rs79837492 | 2 | 0.051 | -0.007 | 0.007 | 0.38 | 0.050 | -0.026 | 0.011 | 0.019 | 0.050 | 0.011 | 0.012 | 0.34
rs2968545 | 2 | 0.052 | -0.008 | 0.008 | 0.30 | 0.051 | -0.028 | 0.011 | 0.010 | 0.050 | 0.011 | 0.012 | 0.37

“adjusted for body mass index, age, sex, and principal components 1-4.
Plog unit change per allele increase.

https://doi.org/10.1371/journal.pone.0279932.t1005

analysis, the same genome-wide significant signal on chromosome 2q14.3 (lead variant
rs2968545) in the male-only GWAS, and a suggestive variant (rs79926925) on chromosome
13q12.11 in the female-only GWAS. The genome-wide significant signal on chromosome
2ql4.3 is located in intron 5 of CNTNAP5. The suggestive variant, rs79926925 on chromosome
13q12.11 is located in an intergenic region between GJB6 and CRYLI. Both rs79837492 and
rs2968545 were associated with a decrease in mean %VAT; rs79837492 was significantly asso-
ciated with CPR, SHBG, and triglycerides, and rs2968545 was significantly associated with glu-
cose, HOMA-IR, insulin, and triglycerides at P = 0.05 in MEC-APS without adjustment for
total adiposity, but neither variant was significantly associated with the obesity-related bio-
markers after total adiposity adjustment. The association for both rs79837492 and rs2968545
with % VAT replicated at P = 0.05 in the UK Biobank. Rs79926925 was associated with an
increase in mean % VAT and a significant decrease in mean SHBG blood levels, and was more
common in Okinawan Americans than mainland Japanese Americans.

Since rs79837492 and rs2968545 are intronic and rs79926925 is in an intergenic region,
these variants may function through mechanisms that regulate transcriptional activity. There
were no eQTLs for either variant when querying the GTEx Portal [38]. CNTNAP5 is a large
gene (~1M bases) that is part of the Caspr family, a family of genes that are involved in cell
contacts and communication in the nervous system [39]. Familial deletions, GWAS, and Mul-
tivariate and Collapsing (CMC) burden tests, in CNTNAP5 have mainly found associations
with atypical neurodevelopment and intellectual disability [40-43]. However, a genetic variant
(rs314944) just downstream of CNTNAP5 was found to be moderately negatively associated
with abdominal visceral adiposity in a Korean study (P = 4.25 x 10~°), and whole blood gene
expression of CNTNAP5 was reported to be reduced after bariatric surgery in patients with
type 2 diabetes [19, 44]. Rs79926925 was only present in Japanese American and Native
Hawaiian MEC-APS participants, and is located in an intergenic region between GJ/B6 and
CRYLI. CRYLI is part of the uronate cycle, which functions as an alternative glucose metabolic
pathway, catabolizing 5% of daily glucose [45]. CRYLI requires NAD(H) as a coenzyme to cat-
alyze the dehydrogenation of L-gulonate into dehydro-L-gulonate [45]. The variant rs7989332
in CRYLI was found to interact with rs6455128 in KHDRBS2 (KH domain containing, RNA
binding, signal transduction associated 2) and be protective against Alzheimer’s Disease [46].
More recently, bioinformatics analysis has shown that CRYLI is a shared susceptibility gene
between late-stage hepatocellular carcinoma and high HBA1c, and that the amount of CRYLI
is inversely related to tumor stage [47]. Additionally, experiments in rabbits show that CRYL1
is downregulated in skeletal muscle cells of obese, but not normal weight animals [48].

Recent multiethnic GWAS have found it beneficial, in a multiethnic population, to conduct
ajoint GWAS, compared to meta-analyzing separate GWAS stratified by race/ethnicity [49,
50]. Wojcik and colleges (2019) showed that a joint GWAS increases power compared to a
meta-analysis approach, while maintaining the type I error rate [49]. In MEC, the first four
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principal components are able to differentiate the five different race/ethnicities (African Ameri-
can, European American, Japanese American, Latino, and Native Hawaiian). Wang and col-
leagues (2010) showed that African American, European American, and Japanese American
MEC participants separate on principal components 1 and 2, Latinos separate on principal
component 3, and Native Hawaiians separate on principal component 4 [51]. The first four
principal components only adjusts for some intra-population structure (e.g. mainland Japanese
vs. Okinawan) associations between significant or suggestive genetic variants. However, % VAT
was also examined in race/ethnicity specific models that can account for intra-population struc-
ture by adjusting for race/ethnicity specific principal components. Related individuals (20 pairs
of first degree relatives) were not removed from the GWAS because relatedness was limited to
pairs of individuals who did not form related subpopulations within the data set. When related-
ness does not lead to the creation of subpopulations in a data set, retaining related individuals
does not cause long-range LD leading to misleading associations or loss of power [27, 52, 53].

Among Japanese Americans in the MEG, this is the first time Okinawan Americans have
been distinguished from mainland Japanese Americans. Historically, Okinawa had the highest
life expectancy from birth among all Japanese prefectures with low rates of chronic disease
[54]. Today Okinawa have some of the highest chronic disease rates in Japan, believed to be
due in part to a Westernized lifestyle/diet introduced by the US military presence since World
War II [55]. Our novel findings in Okinawan Americans may imply unidentified gene-envi-
ronment factors that warrant further investigation.

Rs79837492 and rs2968545 were genome-wide significant (P = 5x10™®) in the sex-combined
and male-only MEC-APS GWAS and significant at P = 0.05 in the male-only UK Biobank rep-
lication. Neither rs79837492 nor rs2968545 were genome-wide significant in the female-only
MEC-APS GWAS or the UK Biobank female-only replication. While these lead MEC-APS
variants replicated in the UK Biobank, there are some study differences that could explain
study-depended strengths of association. First, MEC-APS examined VAT as a proportion of
abdominal area, whereas the UK Biobank provided data on VAT volume as an absolute mea-
sure, and second, because the EAF for rs79837492 and rs2968545 differ between studies, it is
also possible that the white and black participants’ ancestry may differ between studies. The
variant rs79926925 was not found in UK Biobank participants with abdominal MRI imaging,
most likely because rs79926925 was not observed in whites and only present in Japanese
Americans and Native Hawaiians in MEC-APS, and the UK Biobank MRI imaging study
selected mainly for participants of white British and Irish ancestry [35].

Of the 115 previously identified genome-wide significant variants with VAT outcomes, only
seven replicated in MEC-APS (P<0.05) [16, 18-20]. Reasons for non-replication of 108 previ-
ously identified genome-wide significant variants may be attributed to different racial/ethnic
compositions of the study population, dissimilar VAT outcomes (i.e. absolute VAT, VAT
adjusted for BMI, VAT/SAT, and predicted VAT), and use of CT or DXA (VAT measured by
DXA only approximates VAT measured by the gold-standard MRI) for abdominal imaging [56].

To our knowledge, this is the first study to conduct GWAS for % VAT and one of the few
studies to examine the genetics of visceral fat in a multiethnic population. Additional strengths
of our study include the use of the MEGA™ genotyping array, which provides comprehensive
coverage of variants for a multiethnic population and the use of MRI to measure abdominal
adiposity, which is the gold standard method for measuring visceral fat. The study population,
however, was modest in size (N = 1,787) and, thus, statistical power to detect weak to moderate
effects was limited. A power analysis with 1,787 subjects (population mean = 24.0, standard
deviation = 8.3) shows that a GWAS would have > 80% power to detect a variant with 2%
change in mean % VAT with a MAF > 0.15 (at P = 5x10%) [57].
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In summary, we found a significant signal on chromosome 2q14.3 in the sex-combined
(lead variant rs79837492) and male-only (lead variant rs2968545) GWAS of % VAT, and one
suggestive variant (rs79926925) in the female-only GWAS of % VAT in MEC-APS. The nega-
tively associated lead variants (rs79837492 and rs2968545) were most common in European
Americans and African Americans and the positively associated lead variant (rs79926925) was
most common in Japanese Americans: this was all consistent with the racial/ethnic % VAT dif-
ferences. The variant allele of rs79926925, associated with a mean increase in % VAT in
women, also showed an association with decreased blood levels of SHBG. These findings
should be considered as preliminary and they require replication in larger studies using gold-
standard methods (MRI or CT) to measure visceral fat.

Supporting information

S1 Fig. Q-Q plot of SNP P-values from the ratio of visceral fat to abdominal area GWAS,
all MEC-APS participants, and by male and female MEC-APS participants. The Y-axis
shows the negative base ten logarithm of the observed p-values and the X-axis shows the nega-

tive base ten logarithm of the expected p-values.
(DOCX)

S$2 Fig. Principal component plot 2 vs. 1 for 432 Japanese Americans in the Multiethnic
Cohort-Adiposity Phenotye Study (MEC-APS). The vertical line demarcates separation
between Japanese Americans and part-Japanese Americans. The top horizontal line demar-
cates separation between Okinawan Americans and part-Okinawan & part-mainland Japanese
Americans and the bottom horiontal line demarcates separation between part-Okinawan &
part-mainland Japanese Americans and mainland-Japanese Americans.

(DOCX)

S1 Table. Lead variants (P<10-7) from the visceral fat to abdominal area ratio GWAS fur-
ther adjusted for total fat mass (kg).
(XLSX)

S$2 Table. Genetic variants with P<10-7 from the self-reported male and female GWAS on
the visceral fat to abdominal area ratio, in the other sex: a) Female (n = 909), b) Male (n = 878).
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$3 Table. Genetic variants with P<10~” from the self-reported male and female GWAS on
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S4 Table. The association between lead significant and suggestive variants associated with
the visceral fat to abdominal area ratio and obesity-related biomarkers in the MEC-APS,
in the other sex.

(XLSX)

S5 Table. Replication in the Multiethnic Cohort-Adiposity Phenotype Study (MEC-APS)
of previously novel significant (P<5x10"®) variant associations with visceral adipose tissue
and the ratio of visceral adipose tissue to subcutaneous adipose tissue.
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