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Abstract

Microwave remote sensing instrument like Soil Moisture Active Passive ranging from 1 cm

to 1 m has provided spatial soil moisture information over the entire globe. However, Soil

Moisture Active Passive satellite soil moisture products have a coarse spatial resolution

(36km x 36km), limiting its application at the basin scale. This research, subsequently plans

to; (1) Evaluate the capability of SAR for the retrieval of surface roughness variables in the

Awash River basin; (2) Measure the performance of Random Forest (RF) regression model

to downscale SMAP satellite soil moisture over the Awash River basin; (3) validate down-

scaled soil moisture data with In-situ measurements in the river basin. Random Forest (RF)

based downscaling approach was applied to downscale satellite-based soil moisture prod-

uct (36km x 36km) to fine resolution (1km x 1km). Fine spatial resolution (1km) soil moisture

data for the Awash River basin was generated. The downscaled soil moisture product also

has a strong spatial correlation with the original one, allowing it to deliver more soil moisture

information than the original one. In-situ soil moisture and downscaled soil moisture had a

0.69 Pearson correlation value, compared to a 0.53 correlation between the original and In-

situ soil moisture. In-situ soil moisture measurements were obtained from the Middle and

Upper Awash sub-basins for validation purposes. In the case of Upper Awash, downscaled

soil moisture shows a variation of 0.07 cm3 /cm3, -0.036 cm3 /cm3, and 0.112 cm3 /cm3 with

Root Mean Square Error, Bias error, and Unbiased Root Mean Square Error respectively.

Following that, the accuracy of downscaled soil moisture against the Middle Awash Sub-

basin reveals a variance of 0.1320 cm3 /cm3, -0.033 cm3 /cm3, and 0.148 cm3 /cm3 with

Root Mean Square Error, Bias error, and Unbiased Root Mean Square Error respectively.

Future studies should take into account the temporal domain of Soil Moisture Active Passive

satellite soil moisture product downscaling over the study region.
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1. Introduction

The recent advancement of microwave remote sensing opens up the possibility of retrieving

soil moisture. Active microwave remote sensing has tremendous potential for detecting soil

moisture due to the penetrating capabilities of radar signals directly into the surface. The

upcoming Synthetic Aperture Radar (SAR) sensor with the high spatial and temporal resolu-

tion is a well-known active microwave sensor for detecting soil moisture [1]. Several studies

have been conducted to retrieve soil moisture content from SAR sensors of C-band [2], X-

band [3], and L-bands [4].

Active, passive, and active-passive sensors are used in microwave remote sensing in the 1

cm to 1 m range [5]. While passive microwave sensors are known as microwave radiometers,

active microwave remote sensers include RADAR, LIDAR, and SONAR. Active-passive

microwave sensors both have a high potential for estimating surface soil moisture content [6].

Several active-passive microwave earth-observing satellites, such as SMOS, SMAP, ASCAT,

and AMSR-E, have emerged in recent years to detect soil moisture products on a global scale

[7–9]. These satellite missions provide high temporal resolution soil moisture products in a

matter of days, typically within 2–3 days. However, the spatial resolutions of these satellites

range in tens of kilometers, making them unsuitable for local hydrological monitoring [10].

SMAP L-band radiometer satellite mission detects volumetric soil moisture of the land surface

on the daily basis over a global scale. Particularly, the SMAP level 3 product provides daily vol-

umetric soil moisture content at a depth of 5cm with a spatial resolution of 36km [7]. Although

SMAP level 3 products have potential application in the hydrological process at a regional

level, the coarse spatial resolution of SMAP volumetric soil moisture product limits its applica-

tion at the basin scale. To use satellite-based soil moisture products of SMAP at the basin scale,

the product first needs to be downscaled at the desired resolution scale.

Several downscaling algorithms namely active-passive fusion, geoinformation, and model-

based have been applied to downscale coarse-resolution satellite soil moisture information to

fine resolution [11, 12]. In recent years, machine learning downscaling approaches has been

widely used to downscale coarse-resolution satellite soil moisture data to fine resolution [13].

According to studies, the relationship between land surface factors and the coarse-scale soil

moisture product is non-linear. The usefulness of these downscaling methods was, however,

limited by the complex non-linear relationship between land surface factors and coarse-scale

soil moisture products [14]. Random Forest (RF) machine learning algorithm proposed by

[15] and later modified by [16] has insights in describing the non-linear relationship between

soil moisture and other surface physical variables. Therefore, Random Forest (RF) Machine

learning approach was selected for this research work to downscale SMAP (36km x 36km) soil

moisture product over the Awash River basin. However, the Random Forest model used in

previous studies [14] only integrated Sentinel-2 SAR backscattering coefficient with MODIS

parameters. Although understanding soil surface roughness and soil moisture variability in

soil moisture estimation have great importance [17], these parameters are still neglected in the

RF model to downscale SMAP products. The scientific knowledge gap identified here is the

Random Forest (RF) model constraint which neglects soil surface roughness parameters in

downscaling satellite-based soil moisture products. Therefore, the novelty of this research

work was to improve Random Forest (RF) regression capability by integrating SAR surface

roughness parameters; which were not tested in the Random Forest model yet.

This study, therefore aims to; (1) Evaluate the capability of SAR for the retrieval of surface

roughness variables in the Awash River basin; (2) Measure the performance of Random Forest

(RF) regression model to downscale SMAP satellite soil moisture over the Awash River basin;

(3) validate downscaled soil moisture data with In-situ measurements in the river basin.
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2. Material and methods

2.1. Study area description

Awash River Basin is one of the most utilized basins on the basis of the Awash river relative to

the rest of the twelve main basins of Ethiopia [18]. The Awash River basin is located between

7˚ and 10˚ N latitudes and 38˚ and 41˚ E longitudes (Fig 1) The elevation of the river basin

ranges from 250m in the Afar valley to 3000m in the Addis Ababa highlands above mean sea

level [19]. According to [18], the Awash River basin is bounded to the west by the Blue Nile, to

the southeast by the Rift Valley lakes, and the south by Wabeshebele.

2.2. Datasets

2.2.1. In-situ measurements. A random sampling method was used for the distribution

of soil samples in the Awash River basin. Middle and Upper Awash sub-basins were selected

for the validation of downscaled soil moisture of SMAP products. Twenty soil samples were

collected from the two sub-basins in the dry season and wet season. In the Upper Awash sub-

basin, validation sites are designed and placed at Melkasa Agricultural Research Institute near

Adama for ease collection of field data. In doing so, ten soil samples were collected in the dry

season of April 01, 2021. In addition, ten soil samples were also collected from Middle Awash

sub-basin in the wet season of July 01, 2021. In the case of the Middle Awash sub-basin, valida-

tion sites are designed and placed at Amibara Agricultural Research Institute of Afar Region.

Therefore, a total of twenty soil samples were collected from the two representative watersheds

(Fig 2).

2.2.2. Soil sample collection. The characteristics of temporal and spatial variation of volu-

metric soil moisture content significantly affect the validation of satellite-based soil moisture

Fig 1. Geographic location: (A) Main Ethiopian basins, (B) Awash River Basin.

https://doi.org/10.1371/journal.pone.0279895.g001
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products [20]. Ground-based measurements of soil moisture content represent point-scale soil

moisture while satellite-based soil moisture estimation quantifies the average value of the spa-

tial grid. For this research work, twenty ground measurements were collected from the field

following SMAP satellite overpass time for effective validation. Accordingly, all ground data

collection was performed in line with the descending/ascending orbit path of the SMAP

satellite.

Since soil varies in time and space, even over a very short distance, it is not sufficient to take

samples at a single location. Therefore, a composite sampling technique was employed which

involves a mixture of sub-samples at a different location. Composite sampling is to means that,

collecting different soil sub-samples near the target location rather than taking a single soil

sample at the desired location [21]. Then, mixing collected soil sub-samples until all the sam-

pled soil retains a homogenous mixture which is going to be representative of the target loca-

tion. Soil probe, trowel, marker, notebook, sample bag, and GPS are field materials that were

used in field sample collection.

The following seven points guided the field data collection in the study area which is

adapted from [21]

1. Determine appropriate locations of sample

2. Travel to appropriate sampling location

3. At the sample location, remove any plant/crop residue

4. Insert the prove to the soil with an appropriate depth of 5cm

5. Move to the next sampling site and repeat steps 3 and 4

Fig 2. Location Map of Validation sites; (A) Amibara Stations at Middle Awash sub-basin, (B) Melkasa stations at

Upper Awash sub-basin.

https://doi.org/10.1371/journal.pone.0279895.g002
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6. Mixing different sub-sample soil with a trowel

7. Place one or two cups of mixed soil sample into the sample bag

The gravimetric method was applied to measure the amount of water content in each soil

sample. In this method, the amount of water content in soil can be determined as the differ-

ence between the mass of moist soil (Fresh weight) and dry weight after the soil dried at

105-degree Celsius in oven-dry [22].

2.2.3. Satellite data. Sentinel-1A SAR. Sentinel-1 mission was first launched by the Euro-

pean Copernicus Program in April 2014. Its operational nature is dedicated to large-scale map-

ping capability and frequently revisit time. Sentinel-1 carries C-band SAR data with a

frequency of 5.45 GHz. The advantage of Sentinel-1 SAR data is that its overpass period is min-

imal with SMAP data and this is the reason that Sentinel-1 SAR was selected in this research

work. For this study, Sentinel-1 SAR images with both VV and VH polarization were acquired

freely from (https://scihub.copernicus.eu/).

SMAP. In 2015, the National Aeronautics and Space Administration (NASA) launched the

Soil Moisture Active Passive satellite (SMAP) which provides three levels (L2, L3, and L4) of

soil moisture products [7]. SMAP satellites revolve around the entire world within 2–3 days

and collect volumetric soil moisture with 3km, 9km, and 36km spatial resolutions [23]. For

this study, level three (L3) daily soil moisture product with 36km spatial resolution was down-

loaded from NASA’s Earth Observing System Data and Information System (https://earthdata.

nasa.gov/eosdis). The main reason that 36km daily soil moisture product preference for this

research work was its coarse spatial resolution relative to others. On the other hand, the SMAP

satellite has minimal overpass time over the Sentinel-1 SAR and MODIS satellites.

MODIS. MODIS satellites have two sensors, Terra and Aqua operated on solar synchronous

orbit. Terra sensors revolve around the world at 10:30 am and 10:30 pm descending and

ascending local times respectively. While Aqua sensor revisits time was at 1:30 am and 1:30

pm descending and ascending local times respectively. A combination of Terra and Aqua sen-

sors provides MODIS data of land surface variables including LST, EVI, NDVI, LAI, etc. with

a different overpass period. MYD11A1, MOD13A2, and MCD15A3H data were downloaded

from NASA’s Earth Observing System Data and Information System (EOSDIS) to be used in

this study.

Soil Grids. International soil reference and information center (ISRIC) provided 1km spatial

resolution gridded soil data over the entire globe [24]. Soil texture data were used as predictor

variables by [25] to downscale both active and passive microwave soil moisture products.

Therefore, based on these insights five soil-gridded datasets such as clay fraction, sand fraction,

silt fraction, bulk density, and soil organic carbon were selected as predictor variables and

downloaded from (http://data.isric.org/) website freely.

Precipitation. Climate Hazard Group Infrared Precipitation (CHIRPS) data is a long-term

temporal coverage data (1981 to present). It gives precipitation data on a worldwide scale with

0.05 x 0.05 degrees, which is about five kilometers (5km) [26]. CHIRPS data archive provides

rainfall data on a daily, monthly, and annual basis. For this research work, the mean monthly

rainfall data of the year 2021 was downloaded from the (https://earlywarning.usgs.gov/fews)

site freely. Table 1 depicts satellite data type, source and resolution used in this research work.

2.3. Methods

2.3.1. Methodological design. The methodological approaches of this research work can

be seen as a five-stage process. At the first stage, land surface variables such as LST, LAI,

NDVI, EVI, Precipitation, surface roughness (surface height and effective correlation length),
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soil texture, bulk density, and soil organic carbon were retrieved from MODIS, Soil grids,

CHIRPS, and SAR products. At the second stage, Random Forest regression was constructed

between surface soil moisture of SMAP and land surface variables derived from MODIS,

CHIRPS, Soil Grids, and SAR products. At the third stage, model diagnostic was conducted to

indicate the model importance of each of the land surface variables. At the fourth stage, the

RF-based downscaling method was applied to the best fit relationship model of surface vari-

ables. Finally, validation of downscaled soil moisture of SMAP with in-situ measurement has

been applied. The flow chart in (Fig 3) depicts the general steps used in this research work that

is further described in the next section.

2.3.2. Soil surface roughness estimation. Determining and incorporating the effects of

soil surface roughness is very important for monitoring soil moisture content [27]. Soil surface

roughness is expressed in terms of effective correlation length (L) and standard deviations of

Table 1. Characteristics of satellite data collected over the study region.

Satellite Product ID Spatial resolution Temporal resolution Source

SMAP SPL3SMP 36km Daily https://earthdata.nasa.gov/eosdis

MODIS MOD11A1 1km Daily https://earthdata.nasa.gov/eosdis

MCD15A3H 1km 8-day https://earthdata.nasa.gov/eosdis

MOD13A2 1km 16-day https://earthdata.nasa.gov/eosdis

MOD13A2 1km 16-day https://earthdata.nasa.gov/eosdis

MOD16A2 1km 8-day https://earthdata.nasa.gov/eosdis

Soil Grids Soil grids 1km - http://data.isric.org/

Sentinel_1A SLC SM 10m 5-day https://scihub.copernicus.eu/

MODIS ET 1km Monthly https://earlywarning.usgs.gov/fews/

CHIPRS CHIRPS 2.0 5km Daily https://earlywarning.usgs.gov/fews/

https://doi.org/10.1371/journal.pone.0279895.t001

Fig 3. Methodological flow chart.

https://doi.org/10.1371/journal.pone.0279895.g003
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surface height (h) [28]. A semi-empirical polarized backscattering equation inverted by [29]

was used in this research work to derive the standard deviation of surface height (h). [27]

applied the inversion of this model for the estimation of soil surface height (h). Here is the [28]

model and its inversion for surface height (h) measurement in Eq 2.

q ¼
s soilVH

s soilVV
¼ 0:95ð0:13þ sin 1:5yÞ

1:4
ð1 � �� 1:3ðK:hrmsÞ

0:9
Þ ð1Þ

hrms ¼

� 1

1:3
ln 1 �

q
0:95ð0:13þsin1:5yÞ1:4

h in o1:111

k
ð2Þ

Where q is cross-polarized ratios, θ is incidence angle in degree, K is the wavelength of SAR

band, hrms is the surface height at root mean square error. The surface correlation length (L)

parameter was estimated based on the assumption that correlation length and surface height at

root mean square has a linear relationship over agricultural fields [30]. The relationship

between these surface parameters was proposed by [31] which describes effective correlation

length as a function of surface height at root mean square. For this research work, a model

developed by [32] was used for surface length estimation. Here is the equation for surface cor-

relation length (Eq 3).

Leff ¼ ða � hrmsÞ
b

ð3Þ

Where, Leff is effective correlation length, hrms is the surface height at root mean square, α,

and β are coefficients which can be calculated from incidence angle (θ) and backscattering

coefficient of VV- polarization (σsoil VV
) as follows.

a ¼ dðsinyÞm ð4Þ

b ¼ Zyþ x ð5Þ

Although δ and ξ parameters are derived from calibration coefficient of polarization, η and

μ parameters are constant and independent from polarization. In this case, the values of δ, ξ, η
and μ parameters are as follows:

δsoilvv
¼ 3:829; ξVV ¼ 1:222; ηVV ¼ � 0:0025; μVV ¼ � 1:744

2.3.3. Random Forest (RF) regression. Random Forest (RF) algorithm is an ensemble

machine learning approach proposed by [15] and later modified by [16]. Based on decision

trees, it can be used for both classification and regression of different variables. To improve the

predictability of response variables in individual decision trees, the data are split into homoge-

nous units of nodes. When bootstrapped data is predefined, the Random Forest (RF) algo-

rithm integrates separate decision trees. Consequentially, the predicted values of continuous

variables are the mean values of all fitted variables as a result of each bootstrapped sample [16].

[33] have shown that the Random Forest (RF) algorithm can be used to establish a soil mois-

ture relationship with surface variables, which is why the Random Forest (RF) approach was

used in this research. Eq 6 shows that the Random Forest (RF) model is a dependent variable

that is directly influenced by independent variables.

hðX; ytÞ; t ¼ 1; 2; 3 � � � tn ð6Þ

where: θt -Independent variable generated from regression trees
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X-Independent variable

t-Number of regression trees

2.3.4. Downscaling SMAP soil moisture as a function of land surface variables. The

non-linear function was constructed between land surface variables and coarse resolution soil

moisture data of SMAP using the Random Forest regression model. The built relationship

model is spatial scale independent and the non-linear model was directly applied to the land

surface variable resolution to predict fine resolution soil moisture data. Therefore, the pro-

posed downscaling function developed using RF-regression for satellite-based soil moisture

product of SMAP was described in Eq 7.

SM1km ¼ FRðNDVI1km; LAI1km; LST1km;EVI1km;Hrms1km; Leff1km; bld1km; cly1km;ET1km; slt1km; oc1km; prec1kmÞð7Þ

Where, SM is soil moisture at fine resolution, FR is Random Forest regression function, and

NDVI, LAI, LST, EVI, Hrms, Leff, bld, cly, ET, slt, oc, and prec are normalized difference vegeta-

tion index, leaf area index, enhanced vegetation index, surface height at root mean square,

effective correlation length, bulk density of the soil, clay fraction, evapotranspiration, silt frac-

tion, organic carbon, and precipitation at 1km spatial resolution respectively.

2.3.5. Validation with the in-situ soil moisture measurement. Downscaled soil moisture

product has been validated with in situ soil moisture measurements. The effectiveness of the

downscaled soil moisture product can be quantified with Root Mean Square Error (RMSE),

Unbiased Root Mean Square Error (ubRMSE), Bias error, and Pearson Correlation coefficient

(R). RMSE and ubRMSE which range between zero and positive infinity (0~ +1) show the

variance and unbiased variance between satellite soil moisture and in situ measurements

respectively. Bias error (-1 ~ +1) is a measure of soil moisture difference between satellite

and in situ measurements. Meanwhile, the relationship between satellite and in situ soil mois-

ture can be measured with a Pearson correlation coefficient between (-1~1). The following

equations (Eqs 8–11) show, RMSE, ubRMSE, Bias error, and Pearson correlation coefficient

(R) respectively.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðyi � ysÞ

2

N

s

ð8Þ

ubRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ððyi � BiasÞ � ysÞ

2

N

s

ð9Þ

Bias error ¼
PN

i¼ðyi� Þ

N
ð10Þ

R ¼
N
P
ðyiysÞ �

P
yi

P
ys

½� ð
P
ð�½Nð

P
ðyi

2
� ðysÞÞ�

ð11Þ

Where, θs is the soil moisture content of SMAP, θi is In-situ measurement of soil moisture,

N is the number of the sample point.

3. Results

3.1. Soil surface roughness estimation

Soil surface roughness of the study region was generated using the Oh model for April 01,

2021. The results of surface height for the Awash River basin range from a minimum of 0.13
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cm to a maximum of 2.993 cm. For ease of clarification of surface height, irrigated and non-

irrigated farmland sample plots were selected from the Awash River basin. As presented in

(Fig 4A) irrigation has the higher surface height (hrms) that ranges from a minimum of 0.99 cm

to a maximum of 2.28 cm. Whereas non-irrigated farmland experiences smooth roughness

compared to irrigated farmland with a surface height that ranges from 1.05 cm to 1.84 cm (Fig

4B). The main reason that soil surface roughness exhibited increment at irrigated farmland

was that the soil has been under influence of agricultural activities such as plowing. On the

other side, non-irrigated farmland was free from agricultural activities, hence the data collec-

tion was performed during the off-season of April 1, 2021.

The results of the correlation length of the Awash River basin range from 0.042 cm to 6.63

cm. As of the standard deviation of surface height, the correlation length of the soil surface in

the river basin was illustrated from the sample plots of irrigated and non-irrigated farmland.

As indicated in (Fig 5A), a higher number of effective correlation lengths was observed at irri-

gated farmland over non-irrigated farmland sample plots. Effective correlation (leff) length of

irrigated farmland was range from 0.74 cm to 3.87 cm. Sample plot of non-irrigated farmland

(Fig 5B) exhibited minimum effective correlation (leff) relative to irrigated farmland sample

plots that range from 0.825 cm to 2.52 cm.

3.2. Out of Bag error (OOB) in Random Forest regression

In Random Forest regression, each of the prediction trees is constructed from the original data

using Bootstrap or the subsampling technique. Observations obtained from model prediction

variables such as NDVI, LST, EVI, LAI, Precipitation, Bulk density, surface length, surface

height, Silt fraction, Soil organic carbon, Clay fraction, and Evapotranspiration are boot-

strapped or subsampled randomly. Observations that are not included in bootstrap are said to

be out-of-bag observation which is very important in computing out-of-bag error. The out-of-

Fig 4. Surface height.

https://doi.org/10.1371/journal.pone.0279895.g004
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bag error is the error that denotes the prediction performance of the Random Forest regression

model. According to [34], the out-of-bag error (OOB) was getting stabilized with a minimum

of 250 regression trees, and 1000 trees were more than enough for the wide dataset. On con-

trary, [35] argues that Random Forest regression with 500 trees and 1000 trees resulted in the

same out-of-bag error (OOB) error. Based on this literature the number of trees was set to 500

trees for this research work. The prediction performance of Random Forest regression can be

quantified with Mean Squared Error (MSE) as a function of several regression trees. As pre-

sented in (Fig 6), the Mean Squared Error (MSE) of the graph shows that the Random Forest

regression model is negligible when the number of regression trees goes to zero. As the num-

ber of regression trees increased, the Mean Squared Error (MSE) of the prediction model

decreased and the Random Forest model gets its optimal out-of-bag error (OOB).

3.3. Variable importance in RF regression

To interpret the fitted Random Forest regression model, it is important to measure the impor-

tance of predictor variables [16, 35]. Random Forest Regression produces two important mea-

sures that explain the predictive power of individual parameters. Increased Mean Squared

Error (IncMSE) and Increased Node Purity Index (IncNudePurity) are the two qualitative

measures of the prediction power of model parameters. Increased Mean Squared Error

(IncMSE) measures the effect of the individual parameter when it is permuted randomly. The

higher the values of Increased Mean Squared Error (IncMSE) mean the most important the

variable is in the Random Forest regression model. It is a measure of by how much removing

the most important variable decreases the accuracy of Random Forest regression or including

the most important variable increases the model prediction. Thirteen (13) predictors were

used to predict the coarse resolution of SMAP (36km) soil moisture products to fine spatial

resolution (1km). These predictors were; Land surface temperature (day time), Normalized

Fig 5. Effective correlation length.

https://doi.org/10.1371/journal.pone.0279895.g005
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difference vegetation index, Land surface temperature (night time), Enhanced vegetation

index, leaf area index, soil surface height, effective correlation length of the soil surface, Precip-

itation, Bulk density, Silt fraction, Soil organic carbon, Clay fraction, and Evapotranspiration.

Increased Mean Squared Error (IncMSE) measurement of predictor variables shows that Land

surface temperature (day time) was the most model importance variable. Whereas Evapotrans-

piration was the least model importance variable (Fig 7).

Besides, the Increased Node Purity Index (IncNudePurity) measures the homogeneity of

splinting bootstrapped samples to the desired variables. For the node purity importance, a split

with an increase of purity is said to be very important for model prediction. Increased Node

Purity Index (IncNudePurity) measurement of predictors indicates that Land surface tempera-

ture (night time) was persistent at splitting nodes. In increasing order of node purity index;

Leaf area index, Clay fraction, effective correlation length, soil surface height, Enhanced vege-

tation index, Evapotranspiration, Normalized difference vegetation index, Soil organic carbon,

Silt fraction, Land surface temperature (day time), Precipitation, and Land surface temperature

(night time) respectively (Fig 8).

3.4. Downscaling results

Land surface variables such as; Leaf area index, Clay fraction, effective correlation length, soil

surface height, Enhanced vegetation index, Evapotranspiration, Normalized difference vegeta-

tion index, Soil organic carbon, Silt fraction, Land surface temperature (day time),

Fig 6. Model prediction error.

https://doi.org/10.1371/journal.pone.0279895.g006
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Precipitation, and Land surface temperature (night time) were used as proxy data to downscale

the coarse resolution of SMAP (36km x 36km) to fine resolution (1km x 1km). The R software

package of Model Map was applied to create a raster layer from predictor variables at 1km spa-

tial resolution. As indicated in (Figs 9 and 10), the downscaled soil moisture of SMAP at a spa-

tial resolution of 1km range from the minimum of 0.077cm3/cm3 to the maximum of 0.139

cm3/cm3. The higher volumetric soil moisture value was observed at the south and southwest-

ern part of the river basin. The North and northwestern part of the study region was experi-

enced with low volumetric soil moisture value. The results of downscaling reveal that the

spatial heterogeneity of the SMAP soil moisture can be captured by the downscaled SMAP soil

moisture. The downscaled SMAP also has a strong spatial correlation with the original SMAP,

allowing it to provide more detailed soil water information than the original 36 km resolution.

[36] showed comparable results, demonstrating that downscaled soil moisture of SMAP

can accurately reflect soil moisture information over coarse resolution soil moisture of SMAP

Fig 7. Variable importance in model prediction.

https://doi.org/10.1371/journal.pone.0279895.g007
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Fig 8. Increased node purity index measurement from Random Forest fit.

https://doi.org/10.1371/journal.pone.0279895.g008

Fig 9. Final downscaled soil moisture of SMAP (1km x1km) over Awash River basin.

https://doi.org/10.1371/journal.pone.0279895.g009
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(36km x 36km). In this work, they used NDVI, LST, and LAI as Random Forest Model predic-

tors to estimate fine resolution soil moisture. Similarly, [37] contend that SMAP downscaled

soil moisture (1km x 1km) may efficiently characterize soil moisture information when com-

pared to in-situ data. In this regard, the findings of this study were in agreement with prior

scholarly studies to the point where soil moisture estimates at 1 km resolution can provide

extensive information on the spatial distribution and pattern over the regions under consider-

ation. For practical applications and modeling in large watersheds with limited in situ data,

such as the Awash River basin, higher-resolution soil moisture data are required.

3.5. Validation

Validation of downscaled soil moisture in the Awash River basin was conducted over two vali-

dation sites of the Upper and Middle Awash sub-basins. As a result, downscaled soil moisture

of SMAP product was well agreed with In-situ soil moisture measurements from Upper and

Middle awash sub-basins with Pearson correlation coefficients of 0.69 and 0.57 respectively.

Downscaled soil moisture of SMAP showed a variance from In-situ measurements with an

RMSE value of 0.07 cm3/cm3 over Upper Awash validation sites. The variance of downscaled

soil moisture from In-situ measurements was higher over the Middle Awash validation site

with an RMSE value of 0.1320 cm3/cm3. In addition, the Unbiased variance of both validation

sites was computed with the statistical measure of Unbiased Root Mean Squared Error

(UbRMSE). It was found out that, downscaled soil moisture of SMAP was unvaried from In-

situ measurements over Upper Awash sub-basin with UbRMSE value of 0.112 cm3/cm3 on the

date of April 01, 2021. Meanwhile, Unbiased Root Mean Square Error measurement over Mid-

dle Awash sub-basin was said to be larger than Upper Awash sub-basin; that is 0.148 cm3/cm3.

Fig 10. SMAP soil moisture; (A) original SMAP (36km x 36km) at basin scale, (B) downscaled SMAP (1km x 1km) at

basin scale; (C) original SMAP (36km x 36km) at pixel level; (D) downscaled SMAP (1km x 1km) at pixel level.

https://doi.org/10.1371/journal.pone.0279895.g010
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Table 2 summarizes statistical validation measures such as Bias error, RMSE, and UbRMSE

between downscaled soil moisture of SMAP and In-situ soil moisture measurements over the

Awash River basin.

4. Discussion

The ability of Sentinel-1A SAR data to estimate soil surface roughness was investigated in this

study. Different techniques can be used to extract surface soil moisture from SAR data because

it is sensitive to radar backscattering [38]. But in addition to soil moisture, radar backscattering

is also susceptible to other time- and space-varying factors including vegetation and soil

roughness [39, 40]. In this study, soil surface roughness was estimated using Sentinel-1 SAR

data. Surface height and length were estimated from Sentinel-1A Synthetic Aperture Radar

(SAR) with both Vertical release vertical receive (VV) and Vertical release horizontal receive

(VH) polarizations. The results showed the potential of Sentinel-1 SAR data for soil surface

roughness estimation. The Awash River basin’s surface height thus varies from a minimum of

0.13 cm to a maximum of 2.993 cm. Additionally, it was shown that the Awash River basin’s

effective correlation length ranges from 0.042 cm to 6.63 cm. According to many researchers

[17, 38], taking into account soil roughness factors might further increase the precision of soil

moisture downscaling using Random Forest (RF) regression. The Oh and Baghdadi models

were also used to calculate the research site’s surface height and effective correlation length in

order to increase the accuracy of the soil moisture downscaling. Surface roughness parameters

(surface height at root mean square error and effective correlation length) introduced in

Table 2. Summary of validation results for the downscaled soil moisture against site measurements.

Upper Awash Sub-Basin Validation results over Melkasa Station on April 01, 2021

Samples Bias error (cm3/cm3) RMSE (cm3/cm3) UbRMSE (cm3/cm3)

sample 1 -0.0024 0.0024 0.0048

sample 2 0.0002 0.0002 0.0004

sample 3 -0.0107 0.0107 0.0214

sample 4 -0.0110 0.0110 0.0220

sample 5 -0.0070 0.0070 0.0140

sample 6 -0.0018 0.0018 0.0037

sample 7 0.0002 0.0002 0.0004

sample 8 -0.0030 0.0030 0.0060

sample 9 -0.0070 0.0070 0.0140

sample 10 0.0061 0.0061 0.0123

Total -0.036 0.0702 0.112

Middle Awash Sub-Basin Validation results over Amibara Station on July 01, 2021

sample 1 -0.0119 0.0119 0.01853

sample 2 0.0051 0.0051 0.01938

sample 3 0.0037 0.0037 0.01264

sample 4 0.0550 0.0550 0.04988

sample 5 -0.0134 0.0134 0.02342

sample 6 -0.0571 0.0571 0.05531

sample 7 -0.0084 0.0084 0.00574

sample 8 0.0039 0.0039 0.00214

sample 9 -0.012 0.0127 0.02048

sample 10 0.0027 0.0027 0.01275

Total -0.0331 0.1320 0.1484

https://doi.org/10.1371/journal.pone.0279895.t002
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Random Forest regression showed good model performance. As indicated in [33, 41], the inte-

gration of MODIS land surface variables with Sentinel 1 backscattering coefficient shows good

Random Forest (RF) model performance. On contrary, this research work tried to integrate

MODIS land surface variables with Sentinel 1A derived surface roughness variables (surface

height at root mean square error and effective correlation length). As a result, surface rough-

ness parameters introduced in this research work showed satisfactory model performance.

Therefore, the newly introduced model variables (soil surface height and effective correlation

length) were increased the robustness of Random Forest (RF) regression to downscale satel-

lite-based soil moisture of SMAP to fine spatial resolution.

The predictive power of individual land surface variables was evaluated with Increased

Mean Square Error (IncMSE) and Increased node Purity Index (IncPurity). According to [42]

the higher the values of both measurements reveal the relative importance of individual land

surface variables. Supporting this statement, Land surface temperature (LST day time) was the

most model importance variable in Random Forest (RF) regression and LAI was the least

model importance variable. The main reason that LST (day time) is the most model important

variable was attributed to its strong relation with SMAP soil moisture product relative to other

land surface variables. It was found out that, SMAP satellite soil moisture was explained by

LST (day time) with a coefficient of determination (R2) value of 0.228. On the other side, the

homogeneity of splinting bootstrapped samples to the desired variable was measured with the

Increased Node Purity Index (IncNudePurity). It was found out that, Leaf Area Index (LAI)

and Land surface temperature (LST night time) were the least and the most important vari-

ables for the model prediction respectively.

Downscaled soil moisture values at fine resolution showed a very small variation from orig-

inal SMAP soil moisture values. A similar finding was reported by [43–45] that revealed valida-

tion results of SMAP soil moisture. In their study, soil moisture of SMAP showed a small

variation over core In-situ soil moisture measurements. In this research work, downscaled soil

moisture of SMAP product was validated against In-situ soil moisture measurements taken

from two main sub-basins of the Awash River basin. Considerably, downscaled soil moisture

values exhibited a variation with an RMSE value of 0.015 cm3/cm3 and 0.010 cm3/cm3 from

original SMAP soil moisture values over Upper and Middle Awash sub-basins respectively.

The main reason behind this soil moisture variation was that the coarse resolution of the

SMAP (36km) product does not fit with the natural boundary of the Awash River basin. Areas

beyond the extent of coarse resolution of SMAP (36km) were predicted from the nearest pixel

values. Although estimating soil moisture values to a specified extent is vital, predicting soil

moisture from existing cell values is not recommended due to spatial heterogeneity of soil

moisture within a small distance.

5. Conclusion

In this study, satellite-based soil moisture product of SMAP (36km x 36km) was downscaled

to fine spatial resolution (1km) over the Awash River basin. Random Forest algorithm devel-

oped by [44] was applied to predict soil moisture information at fine resolution in the river

basin. NDVI, EVI, LST, LAI, Soil grids, Precipitation, Evapotranspiration, and soil surface

roughness were used as predictor variables in the Random Forest regression model. In-situ

soil moisture measurements were taken from twenty (20) validation sites to compare down-

scaled soil moisture of SMAP (1km) with ground soil moisture measurements. Statistical tech-

niques such as RMSE, UbRMSE, Bias error, and Pearson correlation coefficient were used to

evaluate the performance of downscaled soil moisture over proposed validation sites. The con-

clusion drawn from this research findings are presented as of each of the research objectives: -
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1. The capability of sentinel 1A SAR data was evaluated to understand the surface roughness

of the Awash River basin. Soil surface roughness can be expressed in terms of surface height

(hrms) and effective correlation (leff) length. Surface height and length were estimated from

Sentinel-1A Synthetic Aperture Radar (SAR) with both Vertical release vertical receive

(VV) and Vertical release horizontal receive (VH) polarizations. The results of surface

height for the Awash River basin range from the minimum of 0.13 cm to the maximum of

2.993 cm. In addition, it was found out that, Effective correlation length of the Awash River

basin range from 0.042 cm to 6.63 cm.

2. Performance of Random Forest regression model was tested to predict soil moisture infor-

mation from coarse-scale satellite-based soil moisture product at a land surface variable res-

olution over Awash River basin. Subsequently, the Random Forest (RF) regression model

has the potential to bootstrap land surface variables to reduce the overall prediction error.

Land surface variables are ranked in order of model importance based on statistical mea-

sures of Increased Mean Square Error (IncMSE) and Increased Node Purity Index (IncPur-

ity). This model also explains the association between predicted and observed soil moisture

of SMAP with a Pearson correlation coefficient of 0.76. Predicted soil moisture values

obtained from surface variables using Random Forest regression have deviated with an

RMSD value of 0.02.

3. Statistical measures such as RMSE, UbRMSE, Bias error, and Pearson correlation coeffi-

cient were applied to evaluate the performance of downscaled soil moisture with in-situ soil

moisture measurements. As a result, downscaled soil moisture of SMAP exhibit a total vari-

ation of 0.0702 cm3/cm3 and 0.1320 cm3/cm3 over In-situ soil moisture measurements

taken from Upper and Middle Awash sub-basins respectively. Furthermore, downscaled

soil moisture of SMAP was different over In-situ soil moisture measurements taken from

Amibara stations of Middle Awash Sub-basin with a bias error of -0.033 cm3/cm3. Similarly,

the bias error estimation over Melkasa sites of Upper Awash revealed that downscaled soil

moisture from In-situ soil moisture measurements varied with a bias error of -0.036 cm3/

cm3. In addition, it was found that unbiased variance of downscaled soil moisture of SMAP

over In-situ soil moisture measurements was 0.112 cm3/cm3 and 0.148 cm3/cm3 over

Upper and Middle Awash sub-basins respectively. Validation results of findings reveal that

downscaled soil moisture of SMAP was strongly correlated with In-situ soil moisture mea-

surements from all validation sites.
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