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Abstract

To reduce adverse drug events (ADEs), hospitals need a system to support them in monitor-

ing ADE occurrence routinely, rapidly, and at scale. Natural language processing (NLP), a

computerized approach to analyze text data, has shown promising results for the purpose of

ADE detection in the context of pharmacovigilance. However, a detailed qualitative assess-

ment and critical appraisal of NLP methods for ADE detection in the context of ADE monitor-

ing in hospitals is lacking. Therefore, we have conducted a scoping review to close this

knowledge gap, and to provide directions for future research and practice. We included arti-

cles where NLP was applied to detect ADEs in clinical narratives within electronic health rec-

ords of inpatients. Quantitative and qualitative data items relating to NLP methods were

extracted and critically appraised. Out of 1,065 articles screened for eligibility, 29 articles

met the inclusion criteria. Most frequent tasks included named entity recognition (n = 17;

58.6%) and relation extraction/classification (n = 15; 51.7%). Clinical involvement was

reported in nine studies (31%). Multiple NLP modelling approaches seem suitable, with

Long Short Term Memory and Conditional Random Field methods most commonly used.

Although reported overall performance of the systems was high, it provides an inflated

impression given a steep drop in performance when predicting the ADE entity or ADE rela-

tion class. When annotating corpora, treating an ADE as a relation between a drug and non-

drug entity seems the best practice. Future research should focus on semi-automated meth-

ods to reduce the manual annotation effort, and examine implementation of the NLP meth-

ods in practice.

1. Introduction

Adverse drug events (ADEs) represent a significant clinical problem in healthcare, owing to

the increasing multimorbidity and complexity of medical treatement. Therefore, improving
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medication safety has been set as a global patient safety challenge, with a goal to reduce the

level of severe, avoidable harm related to medication by 50% over 5 years [1]. Since the pooled

prevalence of ADEs in the hospital setting is twice as hight as the pooled prevalence in primary

care (19% versus 8%) [2, 3], we focus on this more vulnerable patient population. In order to

improve medication safety in hospitalized patients, hospitals need to have accurate and contin-

uous insight into what type of ADEs occur in their inpatients including which subpopulations

are at high ADE risk. Such information is crucial in order to gain better understanding of the

medication, patients, and clinical processes that are most amenable to medication safety inter-

ventions and on which of these to focus their efforts.

One of the major barriers for gaining such insight is lack of a monitoring system that can

routinely, rapidly and at scale detect ADEs in hospitalized patients [4]. Such a system would

help to obtain information about ADEs that have occurred in hospitalized patients. Subse-

quently, this information could be used to predict ADE occurrence in future inpatients, sup-

porting clinicians in timely ADE recognition. At present, most hospitals rely on voluntary

reporting of ADEs by healthcare staff, yet numerous studies have shown that this approach

detects less than 1% of all ADEs [5]. The more comprehensive ADE identification method—

patient chart review by pharmacists–can identify up to 20 times more ADE but is prohibitively

expensive and time-consuming [6, 7].

The widespread adoption of electronic health record (EHR) systems has led to repositories

of digital patient data, creating the potential to use information technology to generate com-

puterized ADE monitoring systems in hospitals for routine, rapid and continuous analysis of

the vast amounts of data [8]. However, since most information about ADEs tend to be regis-

tered in EHRs as free text mentions in clinical narratives (such as progress notes or discharge

letters), extensive processing and formatting of this data is needed in order for a computer to

accurately analyse it [9, 10]. The use of natural language processing (NLP) may help to address

these challenges.

NLP is a domain of computer science that uses computers to manipulate free text data in

the context of a specific task [11]. NLP has been investigated in the clinical domain for a range

of tasks, from extracting information on medication dosage to classifying cancer staging from

pathology reports [12]. Regarding the task of detecting ADEs, the majority of NLP efforts

focus on pharmacovigilance [9, 11]. Two recent literature reviews, one systematic and one nar-

rative, on this topic have provided a strategic overview of the progress that has been made with

NLP on pharmacovigilance using EHR data, as well as the challenges pertaining to such a task

[9, 11]. Challenges highlighted in these studies include limited data sharing between healthcare

organizations and in detecting ADEs that arise from polypharmacy (drug-drug interactions)

[9, 11]. In addition, a recent scoping review on key use cases for artificial intelligence to reduce

the frequency of ADEs, promising NLP applications are presented [13]. However, these

reviews lack a detailed description of the steps needed to apply NLP for ADE detection using

EHR data in the context of ADE monitoring in hospitalized patients, including critical

appraisal of NLP methods used.

Furthermore, most previous studies on ADE detection using NLP have investigated

detection of separate clinical entities such as diagnoses, drug names and associated attri-

butes such as dose, route, frequency, or looked at ADEs in the context of pharmacovigilance

and post-market surveillance using predominantly spontaneous reporting databases. How-

ever, when detecting ADE mentions in clinical notes, both the drug and adverse event must

be detected as well as the causality that links them. This causal element is missing when

searching for separate entities. This complexity is often overlooked. In addition, spontane-

ous reporting databases include data which differ greatly from clinical narratives in EHR

databases.
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Therefore, we have conducted a scoping review to close this knowledge gap. Our aim is

to examine the use of NLP methods in detecting ADE mentions in clinical notes in order

to improve medication safety in hospitalized patients. We examine supervised learning

methods since these are the most common type of machine learning applied in the medical

domain. Focusing on the hospital setting enables a better comparison of the NLP methods

presented in our scoping review. This work also includes a structured framework and crit-

ical appraisal of the included studies. The results give insight into strengths and limita-

tions of current NLP applications for the task of ADE detection in hospitalized patients,

and provide guidance on how to move forward to create NLP-based systems fit for pur-

pose of monitoring medication safety in hospitals. Overall, this paper aims to serve as a

reference point for both data scientists, clinicians and pharmacists as well as for decision-

makers in the clinical medication safety domain, particularly from the methodological

point of view.

2. Methods

2.1 Approach

Our approach for conducting the scoping review is based on a set of recommendations out-

lined by Arksey and O’Malley [14] and the additional recommendations on this framework

proposed by Levac et al. [15]. We further implemented recommendations specific to method-

ology scoping reviews, including identification of search terms, iterative search technique, and

features to extract [16]. For reporting we have used the Preferred Reporting Items for System-

atic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist [17].

The checklist can be found in S1 Checklist. The corresponding PRISMA flow diagram is

shown in Fig 1 and further explained in Section 3.1.

To create a framework for the review and critical appraisal of the included articles, we have

used the Cross-industry standard process for data mining (CRISP-DM) [18] as a reference

model to describe the stages and steps of the workflow to use NLP for ADE detection in hospi-

talized patients. This framework for NLP workflow is depicted in Fig 2. Box 1 provides a glos-

sary of NLP terms used in this review.

2.2 Information sources

We used two types of information sources. The first type of source was peer-reviewed litera-

ture databases (MEDLINE and EMBASE). The search in these databases was most recently

conducted on 1st July 2021.

The second type of source was an open access archive and pre-print server for scholarly arti-

cles in the fields of computer science, statistics, and quantitative biology (among others), named

arXiv. Articles submitted to arXiv are not peer-reviewed. This source was included to look for

state-of-the-art technical literature. This search was most recently conducted on 1st July 2021.

2.3 Search strategy

The search strategy was centred on three key themes, namely natural language processing,

clinical narratives, and adverse drug events. Our choice of search terms was made following

testing of individual search terms and consulting other reviews in NLP of clinical narratives

[12, 25]. We did not employ any date or other types of filters to the search queries. The full

search strategy is available in S1 File.
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2.4 Selection of sources of evidence

The initial search results were sequentially de-duplicated in EndNote [26]. The title and

abstract screening was performed using Rayyan, a web-based tool that facilitates collaboration

Fig 1. PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0279842.g001
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in the screening process [27]. The screening was conducted by RMM with MCS reviewing

20% of the decisions to ensure that concordance was achieved. MCS was not blinded to the

decisions made by RMM. Where decisions differed or were uncertain, JEK made the final

decision.

The full text of the remaining articles was then reviewed to identify those that matched the

inclusion and exclusion criteria. The full text review was performed by RMM, with a 10% sample

blind reviewed by JHL. Where decisions differed or were uncertain, JEK made the final decision.

2.5 Eligibility criteria

To keep the information retrieved relevant and specific to our aim of detecting ADE mentions

in clinical notes in order to improve medication safety in hospitalized patients, we chose to

exclude articles that use clustering methods to find patterns of ADEs in clinical notes–this is

commonly done with unsupervised learning. The output of such methods is primarily groups

of patients with a distinguishing adverse event. Such output does not align with our aim. Simi-

larly, we also chose to exclude articles that used data from the primary care setting and data

from pharmacovigilance sources, as this data differs in several ways from inpatient clinical

notes. Pharmacovigilance data, such as spontaneous reporting system data or drug labels, tend

to have more formal and structured language, and the data is documented for a different pur-

pose (signal detection or information dissemination rather than communicating with col-

leagues). The spontaneous reporting system data can be semi-structured (i.e. the drug name

may be selected from a predefined list), unlike clinical notes where reference to the drug could

be given by the brand name, drug name, drug group, or simply an abbreviation (e.g. “AKI due

to AB”, meaning “acute kidney injury due to antibiotics”). Notably, the purpose is to report an

ADE; therefore each spontaneous report should contain an ADE mention. In contrast, most

inpatient clinical notes will not contain an ADE mention. Primary care and hospital care nar-

ratives differ greatly in terms of their frequency, structure, style, and language used, which

Fig 2. A framework for NLP workflow in clinical setting according to CRISP-DM reference model [18].

https://doi.org/10.1371/journal.pone.0279842.g002
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Box 1. Glossary of natural language processing and technical terms used in this review.

Term Definition

NLP terms and tasks
Supervised machine learning Task of learning a model from labeled training data consisting of a set of training examples.

Unsupervised machine

learning

Task of learning from data that does not have any labels; therefore it seeks patterns that naturally occur in the dataset.

Corpus A collection of texts forming a dataset.

Text pre-processing A range of techniques designed to clean and format the data so that it can be further analyzed, for example, sentence boundary

detection, tokenization, part-of-speech tagging. Examples of frequently used libraries and tools for these purposes include

StanfordNLP [19], Natural Language ToolKit (nltk) [20], openNLP [21] and spaCy [22].

Sentence boundary detection A technique to determine where one sentence ends and the next sentence begins; also known as sentence segmentation.

Tokenization Breaking down text into units known as tokens; a token may be a word, part of word, or punctuation.

Part-of-speech (POS) tagging Categorizing tokens in a text with their corresponding part of speech, such as noun, verb, adjective, et cetera.

Annotation The process of applying predefined labels or categories to text data; can be performed at the level of documents, sentences, phrases,

or words. At the document or sentence level, labels are typically binary, for example: presence or absence of an ADE mention in the

text; at the word or phrase level assigned labels are commonly multi-category (see Entity and Relation).

Classification Assigning a category to data; can be binary (positive/negative) or multi-class (for example, “drug”, “diagnosis”, “symptom”).

Entity A term or phrase in the text representing information to be extracted; in the clinical context this often includes diagnoses (“acute

myocardial infarction”), symptoms (“fever”), and drug names (“morphine”).

Named entity recognition

(NER)

A task of identifying and classifying entities in the text using a model. Examples of frequently used tools for NER include

StanfordNLP [19], Natural Language ToolKit (nltk) [20], openNLP [21] and spaCy [22].

Named entity normalization

(NEN)

Also called medical concept normalization, this is the task of matching entities to concepts in a medical terminology such as

SNOMED-CT or ICD-10.

Entity attribute A characteristic which describes an entity; for example, negation (“denies chest pain”), speculation (“possible lung neoplasm”),

laterality (“right eye”).

Entity attribute labelling A task of identifying and classifying attributes of entities in the text using a model; sometimes called concept attribute labelling.

Relation A relationship that exists between two entities; for example, between a symptom entity and a drug entity possible relations include

ADE and Indication.

Relation extraction Identifying and classifying relationships between named entities using a model.

Performance measures and dataset characteristics
True positives A true positive (TP) is an instance that is correctly classified as positive; for example, the correct identification of an ADE in a text.

False positives A false positive (FP) is an instance that is incorrectly classified as positive; for example, the identification of an ADE in a text where

the text does not mention an ADE.

True negatives A true negative (TN) is an instance that is correctly classified as negative; for example, the correct identification that a text does not

mention an ADE.

False negatives A false negative (FN) is an instance that is incorrectly classified as negative; for example, the incorrect identification that a text does

not mention an ADE when the text does refer to an ADE.

Confusion matrix A table of TP, FP, TN, and FN that is used to cross-tabulate the true and predicted classes that is used in machine learning to show

the performance of a classification model.

Accuracy Also called classification accuracy.

TPþTN
TPþFNþTNþFP

Precision Also called Positive Predictive Value (PPV).

TP
TPþFP

Recall Recall minimizes the impact of False Negatives and is a good metric for imbalanced data because it focuses on the minority class.

Also referred to as sensitivity.

TP
TPþFN

F1 score The harmonic mean of precision and recall. The harmonic mean uses the reciprocals of the values and therefore minimizes the

impact of large outliers; therefore, in order to have a high F1 score, you need to have both a high precision and a high recall.

ROC curve This plot illustrates how well a binary classifier performs as its discrimination threshold is varied between 0 and 1. It compares the

true positive rate and the false positive rate as the threshold changes. The area under this curve is often used in machine learning to

quantify the discriminative ability of a model and to compare models.

(Continued)
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merits a separate review of NLP methods applied to primary care and hospital care narratives.

While these other types of data can contribute to the overall performance of an NLP pipeline

for ADE detection, we chose to focus on the articles that use only clinical narratives from

EHRs, to align closely with our aim.

We applied the following eligibility criteria to our search results.

1. Articles that describe NLP application for ADE detection in clinical narratives in EHRs of

hospitalized patients were included.

2. Articles that used a list of terms to search for ADEs in clinical narratives were excluded.

3. Articles with NLP where the underlying method was not described were excluded.

4. Articles describing clustering methods on unlabelled data were excluded.

5. Conference papers were included, but conference abstracts that were insufficiently detailed

were excluded.

6. Articles that used literature databases, drug labels, or spontaneous reporting systems as the

ADE data source were excluded.

7. Articles that used primary care or community care narratives were excluded.

8. Articles that combined clinical narratives with spontaneous reporting systems to detect sig-

nals in pharmacovigilance were excluded.

2.6 Data charting and critical appraisal process

The data extraction form was based on relevant items from the CHecklist for critical Appraisal

and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) and

Prediction model Risk Of Bias Assessment Tool (PROBAST) reporting guidelines [28, 29]. In

addition we included items recommended by Kersloot et al. [30] for the evaluation and valida-

tion of NLP algorithms.

Feedback from MCS and JEK on a sample extraction was used to produce the final data

extraction chart. RMM completed the data charting and critical appraisal. The data was

charted in Microsoft Excel and summarized using Microsoft Excel and RStudio.

(Continued)

Term Definition

Other terms
Imbalanced data A dataset with data belonging to distinct classes, where the size of one class is much larger than the other class (the precise difference

between the groups in order to qualify as imbalanced data is not explicitly defined, but often data with a ratio of 1 (or less) to 10 is

considered imbalanced). Imbalance data are common in ADE research.

Internal validation Quantifies the performance of a model on unseen data from the same population as the training data.

External validation Demonstrates how well a trained model performs on an external dataset. Important because it shows how well a model generalizes to

new data.

Overfitting and underfitting Overfitting is where a model learns the training data too well, which negatively impacts its performance on new data and means it

cannot generalize well. In contrast, underfitting is where a model does not sufficiently learn from the training data. An underfit

model performs poorly on the training data and also cannot generalize well to new data. Ideally the aim is to select a model that

neither under- nor overfits to the training data.

Shared task challenge A competition in which a common dataset is provided to participants with the goal of applying a technique to achieve a specific task,

usually with the aim to increase engagement with the problem. For example: 2018 National NLP Clinical Challenges (n2c2) [23], and

First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic

Health Record Notes (MADE 1.0) [24].
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2.7 Data items

The full list of items for which we sought to extract data is shown in Table 1. When extracting

data relating to clinical involvement, we looked for any explicit mention in the manuscript of a

clinical role (physician, pharmacist, nurse, medical student, or allied health professional) con-

tributing in any way to the study.

3. Results

3.1 Selection of sources of evidence

The final search yielded 1,550 articles. We removed 485 duplicates leaving 1,065 articles for

title and abstract screening. We excluded 967 articles during title and abstract screening and

69 articles during full text screening, leaving 29 articles for data extraction. Fig 1 illustrates the

selection process.

The main reason to exclude articles during the screening stages was that the data used in

the article was not clinical narratives (n = 570). Other common reasons for exclusion were that

the articles were not about ADEs (n = 243) or not about NLP (n = 77).

3.2 Characteristics of sources of evidence

The 29 included articles were published between 2011 and 2021 (see Fig 3a); note that we did

not apply date filters to the searches. The journal category was identified as per the procedure

outlined by Sheikhalishahi et al. [25] Studies were undertaken primarily in the United States

(n = 17; 58.6%); three studies involved international collaboration (Fig 3b).

Table 1. List of items extracted.

Topic Item

Article characteristics Year of publication

Country of origin

Author affiliations

Journal or publication

Business understanding Clinical involvement

Data understanding Origin of data

Language of data

Type of data

Quantity of data

Data preparation Annotation

Pre-processing

Modelling Named entity recognition

Relation extraction

Entity attribute labelling

Classification (other)

Evaluation Performance evaluation measures

Validation strategy

Error analysis

Deployment Implementation of the system in clinical practice

https://doi.org/10.1371/journal.pone.0279842.t001
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3.3 Summary of main findings

To summarize, Table 2 outlines the number of articles reporting items in the framework for

NLP workflow (Fig 2) that we created to appraise the papers.

Fig 3. a. Number of articles published each year; search was conducted on 1st July 2021. b. Number of articles by country of author institution.

https://doi.org/10.1371/journal.pone.0279842.g003
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3.4 Business understanding

3.4.1 Clinical involvement. Types of clinical consultation or involvement mentioned

included annotation of notes, annotation scheme design, and clinical chart review.

3.5 Data description

Publicly available datasets were used in 15 (51.7%) of the studies, while 14 (48.3%) studies

made use of data from their own institutions. The vast majority of datasets have a size of hun-

dreds or thousands documents (see Table 3). Only one (2.6%) study used tens of thousands of

clinical narratives, despite the fact that machine learning approaches are data hungry in the

sense that their performance is strongly correlated with the amount of training data available

[60]. The number of ADEs in the datasets (where reported) was in the hundreds (range 144–

1,940, see Table 3).

Just over one third of the studies (n = 10; 34.5%) did not state the clinical domain or patient

type studied. Of the studies that did report this information, oncology (n = 9; 31%) and critical

care (n = 6; 20.7%) were the most studied clinical domains (see Fig 4). The most commonly

specified note type was a discharge summary or discharge letter (n = 10; 34.5%).

A total of seven (24.1%) of the studies wrote about participation in the 2018 n2c2 challenge

[34, 43, 44, 48, 53, 56, 57] and four (13.8%) described participation in the MADE 1.0 challenge

[49, 54, 56, 58] (see glossary). A further three studies (10.3%) did not participate in either chal-

lenge but used one or both of these challenge datasets [45, 50, 59]. Table 3 provides details on

the datasets used in the studies.

3.6 Data preparation

3.6.1 Annotation. While some studies had access to labelled data (most notably those par-

ticipating in the shared task challenges), ten studies (34.5%) reported annotating their own

datasets. For the studies using entities, there were two approaches to defining ADEs. Some

defined an ADE entity, and some defined an ADE as a relation between a drug entity and a

non-drug entity (see Fig 5).

Two studies provided detailed accounts of creating a gold standard annotated corpus in a

language other than English, and both made their annotation guidelines available. Oronoz

Table 2. Operational assessment of the included articles against the proposed framework.

Topic Item Number of articles References

Business understanding Clinical involvement 9 (31%) [31–39]

Data understanding Dataset description 29 (100%) All included articles

Data preparation Annotation 10 (34.5%) [31–33, 36–42]

Pre-processing 25 (86.2%) [31, 33–39, 42–58]

Modelling Named entity recognition 17 (58.6%) [33, 34, 37, 41, 43–49, 53–58]

Relation extraction 15 (51.7%) [33–35, 38, 39, 43, 45, 49–53, 56, 58, 59]

Entity attribute labelling 3 (10.3%) [31, 33, 38]

Classification (other) 5 (17.2%) [31, 32, 36, 40, 42]

Evaluation Performance evaluation measures 29 (100%) All included articles

Validation strategy–internal 18 (62.1%) [32, 33, 35, 36, 39, 42–44, 46–49, 51, 52, 54, 57–59]

Validation strategy–external 1 (3.4%) [50]

Error analysis 12 (41.4%) [33, 34, 36, 37, 39, 41, 43, 45, 49, 50, 57, 58]

Deployment Implementation in practice 0

https://doi.org/10.1371/journal.pone.0279842.t002
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et al. reported creation of a gold standard Spanish corpus of 75 documents, the creation of

which took approximately one year [39]. Henriksson et al. did not state the length of time

taken to create their corpus of 400 Swedish clinical narratives [33].

Five studies defined ADEs neither as entities nor relations, but at a higher level (sentence,

document, or patient). Two studies annotated their data at the patient level, marking

each patient as positive or negative for experiencing an ADE [36, 42]. For the studies with

Table 3. Dataset characteristics.

Definition of ADE in the

dataset

Lead author Data

language

Dataset size in number of

notes

Number of labelled

documents

Number of ADEs

Named entities Belousov, M. [57] English 505 505 1,584

Chapman, A.B. [58] English 1,089 1,089 1,940

Chen, L. [43] English 505 505 1,579a

Dai, H.J. [44] English 505 505 1,568a

Dandala, B. [45] English 505 505 1,584

Guan, H. [59] English 1,092 [dataset 1] 1,092 [dataset 1] Not stated
505 [dataset 2] 505 [dataset 2]

Jagannatha, A.N. 2016a

[46]

English 1,154 1,154 1,807

Jagannatha, A.N. 2016b

[47]

English 780 780 905

Ju, M. [48] English 505 505 959b

Kim, Y. [34] English 505 505 1,584

Li, F. 2018 [49] English 1,089 1,089 Not stated
Li, F. 2019 [50] English 1,089 [dataset 1] 1,089 [dataset 1] Not stated

485 [dataset 2] 485 [dataset 2]

1,243 [dataset 3] 1,243 [dataset 3]

Mitra, A. [37] English 1,079 1,079 Not stated
Munkhdalai, T. [41] English 791 791 Not stated
Wei, Q. [53] English 505 505 Not stated
Wunnava, S. [54] English 1,089 1,089 Not stated
Yang, X. 2020 [56] English 505 505 1,584

Yang, X. 2019 [55] English 1,089 1,089 Not stated
Relations between entities Henriksson, A. [33] Swedish 3,690 400 144

Oronoz, M. [39] Spanish 75 75 228

Santiso, S. 2019a [51] Spanish 75 75 147

Santiso, S. 2019b [35] Spanish 75 [dataset 1] 75 [dataset 1] 110 [dataset 1] 338

[dataset 2]267 [dataset 2] 267 [dataset 2]

Sohn, S. [38] English 237 237 335

Taewijit, S. [52] English 50,998 Not stated Not stated
Patient labelling Gupta, S. [36] English 9,924 724c 335

Rebane, J. [42] Swedish Not stated Not stated Not stated
Document annotation Boyce, R.D. [31] English 1,944 1,035 675

Foufi, V. [40] French 300 87 441

Sentence annotation Gaebel, J. [32] German 5 5 Not stated

a These studies used the dataset from the n2c2 shared task challenge. According to the challenge organizers, there were 1,584 ADEs in the 505 notes: 959 in the training

set and 625 in the test set [23]. The numbers reported by the authors do not seem to match with the numbers reported by the challenge organizers.
b This study used the dataset from the n2c2 shared task challenge and reported only the number of ADEs in the training set.
c Refers to number of patients.

https://doi.org/10.1371/journal.pone.0279842.t003
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document-level classification, either documents or sentences were assigned binary labels

indicating presence or absence of an ADE.

3.6.2 Pre-processing. Most of the studies (n = 25; 86.2%) reported some form of typical

NLP pre-processing tasks including sentence boundary detection, tokenization, and part-of-

speech tagging. Some commented on difficulties encountered when applying off-the-shelf

Fig 4. Patient type studied in each article (chord diagram from circlize [61]).

https://doi.org/10.1371/journal.pone.0279842.g004
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generic pre-processing tools to clinical text. Dandala et al. observed that sentence boundary

detection and tokenization are difficult issues in clinical text as sentence ends are frequently

denoted by newline characters rather than punctuation [45]. This was echoed in another paper

where it was noted that several generic sentence segmentation tools did not perform well due

to differences in punctuation patterns and the use of newline characters in formatting [43].

Four studies overcame this by building their own custom tokenizer or sentence splitter [36, 45,

48, 54].

3.6.3 Other data preparation tasks. Four studies used tools for named entity normaliza-

tion to match tokens in their data to a corresponding medical concept from a standardized

ontology [31, 38, 41, 58]. These studies all had English language data. Tools used included

cTAKES [62], NOBLE [63], MedEx [64], and MetaMap [65] and terminologies included SNO-

MED-CT (n = 2), ICD-9 (n = 1), MedDRA (n = 1), MeSH (n = 2), and RxNorm (n = 1).

Other data preparation tasks related to complexities in the data, such as class imbalance,

duplicate sentences (due to copy-paste from previous notes), or overlapping entities. Class

imbalance in particular was mentioned in several studies [33, 35, 39, 47, 51, 57, 59]. Santiso

et al. reported an imbalance ratio of 1:222, where for each related drug-disease pair that is an

adverse drug reaction, they had 222 such pairs that were not adverse drug reactions [51]. Class

imbalance was tackled using a variety of methods including undersampling [42, 59], resam-

pling [39], edge sampling [59], cost-sensitive learning [51], ensemble learning [51], and one-

class classification [51].

3.7 Modelling

Tasks that were frequently described included named entity recognition (n = 17; 58.6%) and

relation extraction and classification (n = 15; 51.7%). A diverse array of machine learning

methods and models were reported in the studies. Several studies compared different methods

or used ensembles of models in their tasks. Long Short Term Memory (LSTM) (n = 16; 55.2%)

and Conditional Random Field (CRF) (n = 11; 37.9%) were the methods most frequently used.

These methods are particularly suitable for NLP; LSTM because of its feedback connections

Fig 5. Definition of an ADE as an entity or as a relation in the text; solid coloured rectangles represent entities and dashed line boxes over linking

arrows represent relationships between entities.

https://doi.org/10.1371/journal.pone.0279842.g005
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which allow it to process sequences of information, and CRF because it does not assume that

variables (in this case, words) are independent, and can therefore take context into account in

making its predictions. Table 4 lists the methods.

3.8 Evaluation

3.8.1 Performance evaluation. Just over half (n = 16; 55.2%) of the articles reported the

rationale for choice of performance metric, with metric used in challenge (n = 11; 37.9%) and

standard or commonly used metric (n = 4; 13.8%) given as the main reasons. One article chose

their metric given the unequal distribution of classes in the dataset, as the metric allowed them

to highlight the positive class [51]. In total, nine (31%) articles reported an evaluation metric.

Performance and evaluation methods for each article are described in Table 4.

The articles reported either precision and recall, or F1 score, or both. Some reported

micro-averages of precision, recall, and F1 score which are useful when a system is applied to a

multi-class classification problem, and gives an impression of the performance on individual

classes (for example, ADE entity or ADE relation). Eight articles (27.6%) reported these perfor-

mance measures under either strict or lenient matching or both; the other articles did not state

whether strict or lenient matching was applied.

All articles reported the overall performance of their models across all prediction classes,

whether it was entities (for example Diagnosis, ADE, Drug, Strength, Dose), relations (Drug-

Dose, Drug-Symptom, Drug-Disease), or a combination of both (end-to-end performance).

Additionally, some articles reported the performance on predicting just the ADE entity or

ADE relation class; in all cases this was lower than the performance across all entities or rela-

tions (see Table 5).

Many methods were employed to account for model complexity such as hyperparameter

tuning and regularization, and for measuring unbiased model performance, including k-fold

cross validation. None of the articles indicated a cut-off value for determining a good perfor-

mance in advance of performing the analysis.

3.8.2 Validation strategy. Of the articles reporting performing internal validation on

their models, seven (24.1%) reported k-fold cross validation [32, 35, 36, 46, 47, 52] and 11

(37.9%) reported using a holdout validation set [39, 42–44, 48, 49, 51, 54, 57–59]. The need for

external validation was mentioned by five articles (17.2%) [31, 41, 45, 49, 58].

3.8.3 Error analysis. In total 12 articles (41.4%) report an analysis of errors made by their

models. Table 6 provides examples of errors reported by at least two articles. Of those who

gave details of an error analysis, five discussed possible changes to their methods on the basis

of this analysis.

3.9 Deployment

None of the articles described implementation of their NLP application in clinical practice, but

two did mention plans for implementation as part of future work [31, 41]. To our knowledge,

neither has published follow-up articles detailing a deployed system.

4. Discussion

4.1 Main findings

We identified 29 studies that matched our inclusion criteria that reported on the application of

NLP for the detection of ADEs. Our scoping review shows that at present the limiting step in

creating NLP-based systems for ADE detection in hospitalized patients is data preparation

including annotation and pre-processing of text. This seems especially problematic for languages
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Table 4. Methods, performance and evaluation measures.

Lead author Method(s) Model Performance measure

(s)

Evaluation measure(s) How is over/underfitting and optimism in model performance

handled/assessed?

Belousov, M. [57] BiLSTM-CRF RNN,

Gr

P, R, F1 - Hold-out cross validation, early stopping

Boyce, R.D. [31] RF DTE P, R, F1, AUROC - Feature selection strategies, 10-fold cross validation

CART DT

Chapman, A.B. [58] CRF Gr F1 - Hold-out validation

RF DTE

Chen, L. [43] BiLSTM RNN P, R, F1 - Hyperparameter tuning (dropout, regulation, hidden unit size, learning

rate)

Dai, H.J. [44] Ensemble CRFs Gr P, R, F1 - Hold-out development set, hyperparameter tuning

Dandala, B. [45] BiLSTM-CRF RNN,

Gr

P, R, F1 Statistical significance

(significance level 0.05)

-

Foufi, V. [40] SVM, Naïve Bayes, Linear PC P, R, F1, accuracy - -

Gaebel, J. [32] SVM LC P, R, F1 - 10-fold cross validation

Guan, H. [59] BERT TLM P, R, F1, ΔF, ERR McNamara testa Parameter tuning

Gupta, S. [36] BiLSTM RNN P, R, F1, AUROC - Parameter tuning

Henriksson, A. [33] CRF Gr P, R, F1, accuracy McNemar’s test 10-fold cross validation, hyperparameter tuning, L2 regularization

Jagannatha, A.N.

2016a [46]

BiLSTM, BiLSTM-CRF, BiLSTM-CRF

with pairwise modelling

RNN,

Gr

P, R, F1 Pairwise t-test for each fold in

cross-validation

Cross validation, early stopping

Jagannatha, A.N.

2016b [47]

LSTM and GRU RNN P, R, F1 - Early stopping, dropout, L2 regularization

Ju, M. [48] BiLSTM RNN P, R, F1 - -

Kim, Y. [34] Ensemble of CRF, CRFext, BiLSTM,

Searn

RNN,

Gr

P, R, F1 Paired t-test L1 and L2 regularization, 10-fold cross validation

Li, F. 2018 [49] BiLSTM-CRF with multitask learning RNN,

Gr

P, R, F1 - Parameter regularization

Li, F. 2019 [50] MLP ANN P, R, F1 - -

Mitra, A. [37] BiLSTM-CRF RNN,

Gr

P, R, F1 - Hyperparameter tuning, dropout, early stopping

Munkhdalai, T. [41] SVM LC P, R, F1 - Hyperparameter tuning (SVM), dropout (LSTM)

LSTM, BiLSTM RNN

Oronoz, M. [39] RF DTE P, R, F1 Mean and standard deviation

on 500 replications

10-fold cross validation, parameter tuning

Rebane, J. [42] RETAIN RNN F1, AUC - Dropout, regularization

Santiso, S. 2019a [51] RF DTE TP, FN, FP, TN, P, R,

F1, AUC

- Bagging, boosting, stacking, weighting voting, majority voting

Santiso, S. 2019b [35] Joint AB-LSTM RNN P, R, F1, AUC Friedman test L2 regularization, dropout

Sohn, S. [38] Rules + decision tree DT P, R, F1 - -

Taewijit, S. [52] Multiple-instance learning with

expectation maximization

G P, R, F1 - Parameter settings

Wei, Q. [53] BiLSTM RNN P, R, F1 - 5-fold cross validation

CRF Gr

SVM LC

Wunnava, S. [54] BiLSTM RNN P, R, F1 Pairwise t-test Dropout, validation set (10%) to determine early stopping

Yang, X. 2020 [56] LSTM Gr P, R, F1 Statistical tests Validation set, hyperparameter optimization (LSTM), 5-fold cross

validation (SVM, RF, GB), grid search (SVM, RF, GB)
SVM LC

RF DTE

GB DT

Yang, X. 2019 [55] LSTM-CRF RNN,

Gr

P, R, F1 - Dropout (LSTM), Validation set (LSTM), 5-fold cross validation (SVM,

RF), grid search (SVM, RF)

SVM LC

RF DTE

AB: attention-based bidirectional, BERT: Bidirectional Encoder Representations from Transformers, Bi: bidirectional, LSTM: long short term memory, CART:

classification and regression tree, CRF: conditional random field, GB: gradient boosting, GRU: gated recurrent unit, MLP: multilayer perceptron, RETAIN: Reverse

Time Attention, RF: random forest, SVM: support vector machine.

ANN: artificial neural network, DT: decision tree, DTE: decision tree ensemble, G: generative model, Gr: graphical model, LC: linear classifier, PC: probabilistic

classifier, RNN: recurrent neural network, TLM: transformer-based language model.

P: precision, R: recall, F1: F1 score, ΔF: absolute F measure difference, AUC: area under the curve, AUROC: area under the receiver operator characteristic curve
a Article states ‘McNamara test’ but related reference is for McNemar’s test.

https://doi.org/10.1371/journal.pone.0279842.t004
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Table 5. Summary of single best reported result for overall performance and ADE entity or relation class performance by task.

Task Best performing method Performance metric Best overall result Best ADE entity/ relation result

NER Ensemble CRF-BiLSTM-CRF-Joint [53] Lenient F1 score 0.9345 0.5295

Positional-Joint BiLSTM-CRF [45] Lenient F1 score 0.934 0.518

RCNN-KB [56] Lenient F1 score 0.9292 -

NN [48] Lenient micro-F1 score 0.9278 -

Stacked ensemble CRF-Searn-RNN [34] Lenient micro-averaged F1 score 0.9266 0.2711

CNN-BiLSTM-CRF [44] Lenient F-score 0.913 0.3875

BiLSTM-CRF [57] Lenient micro-averaged F1 score 0.9123 0.405

SVM [41] F1 score 0.891 0.85

Skip-chain RNN-CRF [46] Relaxed micro-averaged F-score 0.8632 -

BiLSTM-CRF [43] Lenient micro-averaged F1 score 0.8497 0.4329

HardMTL [49] Micro-averaged F1 score 0.845 0.455

CRF [33] Micro-averaged F1 score 0.835 -

DLADE (BiLSTM-CRF) [54] Micro-averaged F1 score 0.829 -

MADEx (BiLSTM-CRF) [55] F1 score 0.8233 -

CRF [58] Micro-averaged F1 score 0.809 0.511

GRU [47] Micro-averaged F-score 0.8031 -

LM-BiLSTM-CRF with BioBERT/RoBERTa [37] Micro-averaged F1 score 0.76 -

RE RF [51] Micro-averaged F1 score 0.998 -

SVM [56] Lenient F1 score 0.9635 -

Joint + rule-based post-processing [53] Lenient F1 score 0.963 0.8502

Transductive learning approach [52] F1 score 0.954 -

Att-BiLSTM [43] Lenient micro-averaged F1 score 0.9442 -

Joint AB-LSTM [35] Micro-averaged F1 score 0.938 -

SVM [34] Micro-averaged F1 score 0.9359 -

Positional-Joint BiLSTM-CRF [45] Lenient F1 score 0.894 0.46

RF [58] Micro-averaged F1 score 0.881 -

MLP [50] F1 score 0.872 -

BERT + Edge sampling [59] F-measure 0.83 -

Rules + decision tree [38] F score 0.745 -

HardMTL [49] Micro-averaged F1 score 0.667 -

RF [39] F1 score 0.426 -

RF [33] Macro-averaged F1 score 0.343 0.202

End-to-end/integrated NER-RE task CNN-RNN + rule-based post-processing [53] Lenient F1 score 0.8905 0.4755

LSTM-CRF+GB [56] Lenient F1 score 0.888 -

BiLSTM-CRF-Att-BiLSTM [43] Lenient micro-averaged F1 score 0.7938 0.3303

CRF-RF [58] Micro-averaged F1 score 0.612 -

Patient labelling RETAIN-TERF [42] Micro-averaged F1 score 0.83 -

CNN [36] F1 score 0.752 -

Document labelling Linear classifier [40] Accuracy 0.94 -

CART [31] F-measure 0.74 -

Sentence annotation SVM [32] F-measure 0.577 -

AB: attention-based bidirectional, BERT: Bidirectional Encoder Representations from Transformers; Bi: bidirectional, CART: classification and regression tree, CNN:

convolutional neural network, CRF: conditional random field, DLADE: dual-level embedding for adverse drug event detection, GB: gradient boosting, GRU: gated

recurrent unit, KB: knowledge embedding; LM: language modelling, LSTM: long short term memory, MLP: multilayer perceptron, MTL: multi-task learning, NER:

named entitiy recognition, RETAIN-TERF: an interpretable RNN model with Text features and Early Retain Fusion, RE: relation extraction, RF: random forest, RNN:

recurrent neural network, SVM: support vector machine.

https://doi.org/10.1371/journal.pone.0279842.t005
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other than English. Also, although many off-the-shelf tools exists for data pre-processing, their

usefulness for pre-processing clinical text is limited. These findings may explain the limited evi-

dence of externally validated models or implementation of NLP applications in clinical practice.

Although the included studies encompass diverse clinical domains, setting, narratives and meth-

ods used, LSTM and CRF (or a combination of these) methods are most frequently used in ADE

detection from clinical narratives.

4.2 Business understanding

Just under one third of the studies explicitly reported clinical involvement. This involvement

was limited to annotation of notes, annotation scheme design, and clinical chart review. None

of the studies reported clinical involvement in areas such as overall design or interpretation of

the results, although it is possible that this is a gap in reporting. These findings are similar to a

recent review on clinical involvement in the development of machine learning clinical decision

support systems, in which 21% of the studies on component development involved clinical

experts in their process [66]. Simon et al. have strongly recommended that collaboration

between technical and clinical teams is not only important but should be clinician-led when

developing artificial intelligence solutions for medicine, as the two perspectives may not always

agree [67].

4.3 Data preparation

Many of the difficulties encountered by the studies occurred at the data preparation stage

when annotating and pre-processing the data. Off-the-shelf pre-processing tools perform

poorly on clinical text for several reasons. The language is domain-specific, abbreviations and

jargon are frequently used, words which can be inferred from context are skipped, and white-

space and new lines rather than punctuation are used in formatting [68]. This differs from the

Table 6. Common errors described in error analyses.

Error Error description and example References

Intersentential relations missed Relation between drug and related entities missed due to entities in different sentences or long distance

between entities in the text

[33, 34, 43, 45,

49, 50]

“Haldol and Tradazone have been attempted at rehab without good effect and were discontinued due the
drowsiness as well as (per ED report) some symptoms of lip smacking that were thought to be tardive
dyskinesia.”–relation between tradazone and tardive dyskinesia missed [43]

Entity confusion by model or

annotator

Similar entities mislabelled as each other, such as dosage and strength, route and form, ADE and indication/

reason, ADE and sign/symptom

[34, 45, 49, 57,

58]

“She received one litre of normal saline”–annotators had difficulty determining if “one litre” is a Dose or a

Strength entity [57]

Omission in annotation Model predicts entity that is not annotated in corpus, or entity annotated in one instance but not in another

instance

[43, 57, 58]

“Gabapentin 300 mg 3 times daily”–Frequency was missed during annotation [58]

Failure to take account of

attributes

One of the entities is negated, speculative, or resolved but the relation is still identified [36, 37, 45]

“no source of bleeding”–‘bleeding’ annotated as bleeding event [37]

Inconsistent annotation Entity span boundaries differed within the corpus for the same entity [37, 57]

In one note “acute bleeding” annotated, but in another note only the word “bleeding” annotated [37]

Entity missed Entity not identified due to misspelling or abbreviation [34, 45]

“. . .acute kidney injury due to genta”–drug entity missed due to use of abbreviation “genta” for gentamicin

Multiple entity labels apply to the

same entity

Multiple labels can apply to an entity depending on the context of its related entities [45, 58]

“She was on furosemide and became hypotensive requiring norepinephrine”–“hypotensive” is an Indication

for norepinephrine but an ADE for furosemide [45]

https://doi.org/10.1371/journal.pone.0279842.t006
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text used to train the standard pre-processing tools, which generally follow accepted grammar

and punctuation rules. Some studies tackled this problem by building their own custom pre-

processing tools. Other pre-processing tasks such as named entity normalization were only

performed in studies where the language of the data is English. The majority of the tools avail-

able for this task are for English; therefore, researchers seeking to match their clinical narra-

tives to standard terminologies in other languages face the additional barrier of building own

tools from scratch. Joining efforts on national level in creating custom tools for clinical narra-

tives in a specific language could partly circumvent this barrier [69]. Adapting tools that work

well for English to another language could be another promising path [70]. Studies in which

pre-processing tools for clinical narratives are compared are needed to support researchers in

making a choice between the growing number of such tools [12, 71].

The few studies that described in detail the creation of an annotated gold standard corpus

describe a large effort to create relatively small datasets [33, 39]. A 2020 review of studies on

clinical NLP similarly noted that annotation is a bottleneck step in the use of clinical text data

[60]. The effort required could be reduced by employing semi-automated methods to augment

the annotation process. Such methods have demonstrated relatively small time savings of

13.85% to 21.5% per entity by employing dictionary-based pre-annotations, which were then

checked (and corrected if necessary) by a human annotator [72]. Another study found that

pre-annotations reduced the number of hand annotations necessary by 28.9% with consequent

lower annotation time and higher inter-annotator agreement [73]. The availability of labelled

data from the shared-task challenges greatly enhanced the efforts in applying NLP for ADE

detection. Luo et al. [9] anticipated the significant impact of shared-task challenges in promot-

ing and accelerating efforts in this area, the datasets from which were the basis for many of the

articles included in this review. Just like for pre-processing tools, joining forces in creating

annotated gold standard corpora for a specific task via shared-task challenges especially for

languages other than English, should be encouraged.

The error analyses reported by the studies point to the importance and difficulty of the

annotation task. Choices in annotation scheme design and accuracy of annotation scheme

application both contributed to errors found in the studies, while other errors arose where

annotators could not easily identify the correct clinical entity label to apply. These issues can

be partly tackled by treating an ADE as a relation between a drug and non-drug entity and by

making annotation schemes detailed and explicit. In particular, the representation of an ADE

as an entity rather than as the relationship between a drug and non-drug entity led to avoidable

errors. Where ADE is treated as an entity, the same symptom can be an adverse event in the

context of one drug, but an indication in the context of another drug [45]; this makes it more

difficult to accurately identify the ADE entity. For this reason we suggest that ADE should be

treated as a relation between a drug and symptom entity, and not as an entity in itself. Treating

an ADE as a relation between a drug and symptom entity reflects how clinicians think about

such patterns in clinical data.

In their review of NLP in incident reporting and adverse event analysis, Young et al. noted

that manual annotation is treated as a gold standard, yet the accuracy of the annotations deter-

mines the validity of the model accuracy measurements [74]. We agree that annotation accu-

racy plays an important role and also that annotation scheme design and choice of entity labels

contributes to the validity of the results. The issues described in the studies could be tackled by

involving clinicians in the process of designing and implementing an annotation scheme. Clin-

ical narratives are designed to be interpreted by clinical readers, and clinicians have the requi-

site knowledge to interpret clinical text so as to derive maximum meaning from the annotated

corpora. Clinicians also have the medical knowledge to apply these schemes correctly or to

train lay annotators in their correct application. Clinicians can act as an interpreter between
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the written narrative and the process of automated extraction of data to ensure information is

extracted as accurately as possible.

4.4 Modelling and evaluation

The included studies describe a variety of methods for the NER and RE tasks, and although

variations of LSTM and CRF were most frequently seen, making a fair comparison between

the reported methods is difficult. Factors such as dataset size, annotation quality and degree of

model tuning affect performance of the methods. Additionally, variations on performance

metric calculation and reporting make it difficult to compare between publications; although

most papers reported the F1 score, the types of F1 score (micro- or macro-averaged) and the

conditions under which it was reported (strict or lenient matching) varied, if they were

reported at all. Indeed, even where the same type of metric appears to be reported, it may not

have been calculated in the same way; a recent technical note highlighted that there are two dif-

ferent methods to calculate the macro-averaged F1 score which can differ in outcome by as

much as 0.5 [75]. Both methods have each been described in a widely cited paper [76, 77] and

the choice of formula is seldom reported when using the macro-averaged F1 score. In addition,

some studies did not focus on optimizing performance of their model, but on other factors rel-

evant to ADE detection such as correcting for class imbalance, annotation scheme design, or

corpus creation. The performance of the model also depends on the task, as a model may be

well suited to RE but be less suited to NER. Comparison of optimized model performances for

the same task, on the same dataset, and using the same evaluation script (such as occurs with

the shared task challenges) is the most fair way to evaluate which models are suitable for the

particular task of ADE detection in clinical narratives [23, 24].

Overall performance of the systems was generally high but a steep drop in performance was

reported when focusing on only the ADE entity or ADE relation class. This is because non-

ADE entities such as drug names are relatively consistent in the data (“furosemide” will always

refer to a drug name in the text) but this is not the case for ADEs, as “cough” can be an ADE in

the context of lisinopril, but an indication in the context of codeine, or a symptom in the con-

text of tuberculosis. This makes an ADE more complex to identify. Given that we are inter-

ested in detecting ADEs, the ability of systems to detect these ADE mentions in the text is

more important than overall performance. When assessing performance it is therefore impor-

tant to take into account performance on the ADE class and not just overall performance, as

overall performance gives an artificially inflated impression of the ability to identify of ADEs

in the text. This also reinforces our assertion that an ADE should be represented in data anno-

tation as a relation between a drug and non-drug entities, to allow for accurate and consistent

labelling of the data.

It is worth mentioning that in many of the studies where ADE is treated as an entity, the

number of ADE entities can be over 1,000 [34, 43, 44, 56–58, 78, 79], and is usually higher

than the number of notes included in the dataset. For example, the 2018 n2c2 challenge

dataset used by seven studies [34, 43, 44, 48, 53, 56, 57] consists of 505 annotated documents.

These 505 annotated documents contain 1,584 ADE entities (according to the challenge orga-

nizers [23]). At first glance this may seem like an extraordinarily high number of ADEs since

the prevalence of ADEs varies between 1.9 to 57.9 ADEs per 100 patients [2]. However, as

studies included in this review focus on NLP methods, several carefully preselected their data-

sets so that the notes would be more likely to contain ADE mentions [31, 33, 37, 40]; Henry

et al. in describing the preparation of the n2c2 dataset ensured that each of the 505 discharge

summaries include at least one ADE mention [23]. Therefore the number of ADE entities

reported in the datasets does not necessarily reflect the number of ADEs in the studied patient
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populations. Additionally, none of the studies included in our review conducted a formal cau-

sality assessment between drug and adverse events found in the notes such as Naranjo proba-

bility scale or the World Health Organization Collaborating Center for International Dug

Monitoring, the Uppsala Monitoring Center (WHO-UMC) criteria [80, 81]. Also, in the study

by Boyce et al. [31] as illustrated in Fig 1 notes were labeled as containing ADE mentions in

cases bleeding and a drug known to cause bleeding were both mentioned in the same note, yet

without the relation mentioned between them by the clinician. Both such practice and lack of

formal causality assessment may explain the inflated ADE numbers. We strongly advise to use

best practices for assessing whether or not ADEs are present in the clinical notes, in order to

create a corpus to learn on. At present, most used best practice is a manual chart review by

medical experts using formal causality assessment criteria [80]. Furthermore, although there

are 1,584 ADE entities in the n2c2 dataset, the same dataset contains over 26,000 drug entities

and over 80,000 entities overall, making the ADE entities a small portion of the total [23],

which is similar in other datasets across the included studies. This disparity between the total

number of entities/relations and ADE entities/relations made class imbalance a consideration

in many of the studies [33, 35, 39, 47, 51, 57, 59].

While the proportion of papers reporting internal validation steps was high, only one paper

reported external validation. Similar to the lack of external validation seen here, Spasic and

Nenadic noted no hard evidence of generalizability or transferability in the studies included in

their clinical NLP review [60]. Opportunities for external validation may be limited by the

availability of data. Luo et al. in their 2017 paper noted that almost all of their studies focus on

EHRs limited to within their own institutions [9]. We noted a shift in this trend, with a close

to 50/50 split between the use of data from own institutions and from publicly available data-

sets. Shared tasks challenges such as n2c2 and MADE 1.0 in 2018 have increased the availabil-

ity of labelled data, which are invaluable resources in this domain that can be used for external

validation of other English language datasets.

4.5 Deployment

None of the included articles discussed the practical application of NLP models for ADE detec-

tion in the clinical setting. Boyce et al. state that their model could be deployed as a trigger tool

to detect drug-related bleeding mentions in Emergency Department notes, after it had been

externally validated [31]. To carry out any such implementation one would require not just

buy-in from the EHR vendors, but also clinical involvement in the design and implementation

of such a system. This is essential to ensure that any such systems aligns with the needs and

workflows of clinicians and therefore is taken up and not a wasted investment. Researchers in

the United Kingdom have demonstrated the utility of a deployed NLP system both in identify-

ing patients for clinical trial participation and for converting clinical narratives to structured

data in real-time (thereby removing the need for double data entry) [82]; more such projects

are needed to generate interest and enthusiasm for the implementation of NLP systems to

exploit the rich data hidden in clinical narratives.

4.6 Strengths and limitations

We created a framework for NLP workflow (Fig 1) based on CRISP-DM for this review and

this framework can be understood as a supervised machine learning pipeline for NLP. The

sequential steps of the pipeline can be applied to detect ADEs in clinical narratives.

We identified strengths and limitations of current research, and promising direction for

future studies. Furthermore, both quantitative and descriptive data, including details of error

analysis, are reported. This knowledge is crucial for data scientists to optimize performance of
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NLP pipelines for the task of ADE detection. It also helps clinicians and pharmacists to under-

stand the value of NLP for their practice and how they could contribute to the development of

more robust and clinically valuable NLP pipelines for ADE detection. In addition to standard

literature databases MEDLINE and EMBASE, the pre-print server, arXiv, is included in our

search strategy to look for state-of-the-art technical literature.

A limitation of this review is that we critically appraised the methods in the papers based on

our own choice of tools. However, currently no validated assessment tool or reporting guide-

line specific to publications on clinical NLP exists. The upcoming artificial intelligence exten-

sion to the Transparent Reporting of a multivariable prediction model of Individual Prognosis

Or Diagnosis (TRIPOD) statement and PROBAST tool (TRIPOD-AI and PROBAST-AI) [83]

may provide more clarity on this issue, but at this time there is a gap for assessing clinical NLP

models.

4.7 Future directions

Future work should investigate semi-automated methods to reduce the manual effort required

to create annotated corpora to train NLP models, and examine how NLP can be deployed to

detect ADEs in clinical practice. Making annotated corpora available for others to use will

facilitate the training of data-hungry deep learning models and enable external validation. Fur-

thermore, adding clinicians and pharmacists as team members when applying NLP for ADE

detection should be a standard practice, since their expertise is needed to ensure high quality

annotated data is created, and to elicit best suited strategies to implement NLP models into

clinical practice. In order to assess the value of the future NLP pipelines, the reporting pratices

must align with available and future reporting standards. Lastly, the recent advances in weakly

supervised machine learning methods present new and exciting opportunities worth exploring

to support NLP application for ADE detection, for example, helping in the annotation task

[84].

4.8 Conclusions

The studies included in the review demonstrate that it is feasible to extract information on

ADEs from clinical narratives using NLP. This is especially useful given that these data has

the potential to be reused for multiple purposes, including routine ADE monitoring, clinical

decision support, and research. Clinical involvement appears low and there is potential for cli-

nicians to play an active role in the design and implementation of these types of systems. Per-

formance on the ADE entity or ADE relation class is low compared to overall performance.

The studies examined here demonstrate that multiple modelling approaches are available,

but more work is needed in data preparation and deployment stages of the NLP process. Espe-

cially for languages other than English, extra barriers are present like lack of ontology-match-

ing tools. When annotating corpora, treating an ADE as a relation between a drug and non-

drug entity seems the best practice. Although the included studies encompass diverse clinical

domains, setting, narratives and methods used, LSTM and CRF (or a combination of these)

methods are most frequently used in ADE detection from clinical narratives.
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