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Abstract

Objective

Ischemic stroke (IS) with subsequent cerebrocardiac syndrome (CCS) has a poor progno-

sis. We aimed to investigate electrocardiogram (ECG) changes after IS with artificial intelli-

gence (AI).

Methods

We collected ECGs from a healthy population and patients with IS, and then analyzed par-

ticipant demographics and ECG parameters to identify abnormal features in post-IS ECGs.

Next, we trained the convolutional neural network (CNN), random forest (RF) and support

vector machine (SVM) models to automatically detect the changes in the ECGs; Addition-

ally, We compared the CNN scores of good prognosis (mRS� 2) and poor prognosis (mRS

> 2) to assess the prognostic value of CNN model. Finally, we used gradient class activation

map (Grad-CAM) to localize the key abnormalities.

Results

Among the 3506 ECGs of the IS patients, 2764 ECGs (78.84%) led to an abnormal diagno-

sis. Then we divided ECGs in the primary cohort into three groups, normal ECGs (N-Ns),

abnormal ECGs after the first ischemic stroke (A-ISs), and normal ECGs after the first ische-

mic stroke (N-ISs). Basic demographic and ECG parameter analyses showed that heart

rate, QT interval, and P-R interval were significantly different between 673 N-ISs and 3546

N-Ns (p < 0.05). The CNN has the best performance among the three models in distinguish-

ing A-ISs and N-Ns (AUC: 0.88, 95%CI = 0.86–0.90). The prediction scores of the A-ISs

and N-ISs obtained from the all three models are statistically different from the N-Ns (p <
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0.001). Futhermore, the CNN scores of the two groups (mRS > 2 and mRS� 2) were signifi-

cantly different (p < 0.05). Finally, Grad-CAM revealed that the V4 lead may harbor the high-

est probability of abnormality.

Conclusion

Our study showed that a high proportion of post-IS ECGs harbored abnormal changes. Our

CNN model can systematically assess anomalies in and prognosticate post-IS ECGs.

Introduction

Stroke is a common cerebrovascular disease, with 10.3 million incidents annually [1], and

accounts for 10% of total deaths and 5% of all disability-adjusted life years (DALYs) globally

[2]. Ischemic stroke (IS) is a typical brain injury; patients with recent IS events often have car-

diac complications, a condition defined as cerebrocardiac syndrome (CCS). CCS resulting

from IS contributes to a poor prognosis and is the second leading cause of death within the fol-

lowing few weeks after the event [3, 4]. Recent research has indicated that IS can cause

impaired cardiac function even in the absence of related risk factors (such as hypertension,

diabetes, hypercholesterolemia) or preexisting heart disease [3, 5, 6]. Some studies have found

that acute coronary syndrome, heart failure, and cardiac arrhythmia occur predominantly

within the first 3 days after the attack [7]. The underlying reasons may involve the mutual feed-

back signals linking the two organ systems; stroke induces imbalanced cerebral autoregulation,

uncoupling the neurovascular system and forcing cerebral blood flow to rely directly on car-

diac function [3, 8, 9]. This may lead to a suddenly increased burden on the heart and thus

result in several complications.

Electrocardiograms (ECGs) and nonspecific cardiac blood biomarkers are commonly used

for observing cardiac changes after ischemic stroke [4]. Since ECGs are noninvasive examina-

tions, they might be an optimal choice for poststroke monitoring. Changes in repolarization

are the most frequently observed ECG changes in the early post stroke phase. Abnormalities

include prolonged heart rate-corrected QT (QTc) time in 20–65% of patients, ST-segment

changes in 15–25% of patients, and a cerebral T wave in 2–18% of patients (inverted T waves

with altered amplitude and width) [4, 10–12]. Additionally, a long QTc can serve as a predictor

of cardiac events after IS attack [7]. From these studies, ECG changes including a prolonged

QTc and ST depression are frequently observed in post-IS patients with cardiac complications.

However, the results of these studies harbor a certain degree of heterogenicity. There is a need

for a standard system for evaluating ECG changes and prognoses in the post-IS population.

Artificial intelligence (AI) has shown great potential in identifying abnormal changes in

ECGs that are not previously noticed or that require more accurate identification. It has been

reported that AI-based ECG analysis can be used to identify left ventricular systolic dysfunc-

tion in patients with dyspnea, atrial fibrillation, and concealed long QT syndrome [13–15]. AI

applications in cardiology provide a tool for relieving cardiologists from analyzing ever-

increasing amounts of data and improve effectiveness [16]. In addition, they can help over-

come the limitations of interobserver variability, allowing arrival at a diagnostic consensus

[17].

In this study, we aimed to develop an AI-ECG approach to analyze the changes in the ECGs

of post-IS patients to explain their poor prognoses. Our research provides indications for bet-

ter medical attention and therapeutic allocation to prevent exacerbation.
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Materials and methods

Study population

We performed a retrospective analysis of patients with a first IS attack admitted between 1 Sep

2017 and 31 May 2020 to The Second Affiliated Hospital of Nanchang University. IS was diag-

nosed following a general and neurological examination, CT, blood tests, and ECG. Patients

with previous stroke history, use of drugs influencing the ECG pattern, heart diseases (cardiac

arrhythmia, myocardial infarction history), and heart-related disease (i.e., electrolyte imbal-

ance) were excluded. The ECGs of IS patients were collected within one hour of admission.

Normal ECGs were collected from a healthy population (without IS or heart diseases) from the

physical examination center of the hospital. We only collected one ECG from each participant.

The sexes, ages, and ECGs of all participants were included. All 5-second, standard 12-lead

ECGs were collected at a 25 mm/s paper speed and 1 mV/10 mm voltage setting (FX-7042 Car-

dimax ECG machine). The ECGs were initially interpreted by experienced cardiologists with

the title of deputy director or above, all having over 10 years of working experience. Patients

with ECGs with no continuous P-QRS-T waves in each lead and incomplete related clinical

data were excluded. The modified Rankin Scale (mRS) is a commonly used scale for measuring

neurological disability and predicting the clinical outcome after a stroke attack. We used the

discharge mRS scores to assess the functional outcome of post-IS patients, providing predic-

tions about the clinical endpoint. An mRS score > 2 refers to a poor outcome (severe disabil-

ity), and a score� 2 refers to a good outcome (no or slight disability). The study was approved

by the Second Affiliated Hospital of Nanchang University Medical Research Ethics Commit-

tee, and written informed consent was obtained from all participants.

ECG parameter extraction

All ECGs we collected were divided into primary and validation cohorts. The primary cohort

included 3 datasets: a normal ECG (N-N) dataset, a normal ECG after the first ischemic stroke

(N-IS) dataset, and an abnormal ECG after the first ischemic stroke (A-IS) dataset. The ECG

parameters were generated by the FX-7042 Cardimax ECG machine and recorded in the elec-

tronic medical record. Seven ECG parameters, including heart rate, P wave, P-R interval, QRS

wave, QT interval, QTc interval, and RV5+SV1 value, were extracted from the electronic medi-

cal record and checked manually.

Convolutional neural network construction

The A-IS dataset includes defined abnormal changes, while the N-N dataset is the completely

normal ECG collected from healthy individuals. We aimed to use the N-N and A-IS datasets

to train a convolutional neural network (CNN) model that can identify abnormal changes on

post-IS ECGs. Then we applied the trained CNN model to identify if the N-IS dataset harbored

some abnormal changes that are easily be ignored in routine clinical practice.

We used a supervised CNN model for intrinsic feature extraction from the ECG images.

We input the labeled ECGs (the whole image) categorized into eithor A-IS or N-N, to train a

model that could identify abnormal ECGs. All ECG images were preprocessed before model

development. We cropped the images to 2955×1680 pixels, removed all unnecessary text, and

retained only the image information. We used resize and normalize functions to preprocess

the ECG (in Python v3.6). In this process, we eliminate errors that may be caused by back-

ground pixels and avoid possible confounding factors. The images were resized to 400×400

pixels and converted to single-channel grayscale images. All images were normalized and
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standardized. The proportions of ECGs used for training, validation, and testing were 64%,

16%, and 20%, respectively.

In our study, we adjusted the hyperparameters and structure of the convolutional neural

network according to the working speed and performance of the model, based on which we

chose the optimal hyperparameters and structure for the model. The CNN structure consisted

of seven layers: two convolution layers, two max-pooling layers, and three fully connected lay-

ers. The convolution layer was used for feature extraction to generate an abstract feature map

of the raw image. Padded convolution was adopted to keep the input and output the same size.

The max-pooling layers were used to remove the surrounding redundant information and

reduce the scale of parameters and the amount of calculation. The fully connected layer used

L2 regularization and dropout to prevent overfitting and assigned weights to different features.

The network input was 400×400-pixel images. We used stochastic gradient descent (SGD)

during the training process to obtain the best fit model parameter between the predicted out-

put and actual output more efficiently. The validation dataset was used to perform hyperpara-

meter optimization on all parameters, and the test dataset was used to finally assess model

power. The optimal learning rate was adjusted to 0.001, and the batch size was 64. The rectified

linear unit (ReLU) activation function was adopted to establish the model. In the test datasets,

a predicted score from 0 to 1 was calculated for each image, indicating the probability of the

images being classified as N-N or A-IS. Additionally, we tested the performance of the CNN

model with the validation cohort. The pipeline of CNN development is shown in Fig 1A and

1B. The network structure and hyperparameters of the CNN model are shown in S1 Table.

Fig 1. Pipeline of AI model development and CNN structure. (A) Overview of the pipeline of AI model

construction. A total of 6071 ECGs from the primary cohort were included, and we trained the ML models with the

following demographics and ECG parameters: sex, age, heart rate (bpm), P wave (ms), P-R interval (ms), QRS wave

(ms), QT interval (ms), QTc interval (ms), and RV5+SV1 (mV). The CNN model was developed using the training

and validation datasets as input. After building the model, the test dataset was used to evaluate the final model

performance. (B) The structure of the CNN model, including 2 convolution layers (Conv), 2 pooling layers, and 3 fully

connected layers (FC). Note: A-IS indicates abnormal ECG after the first ischemic stroke; N-N, normal ECG; RF,

random forest; SVM, support vector machine; CNN, convolutional neural network; Conv, convolution layers; Relu,

rectified linear unit; FC, fully connected layer.

https://doi.org/10.1371/journal.pone.0279706.g001
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Machine learning

The aim of machine learning in this study was to use ECG parameters and demographics (sex

and age) of patients in the N-N and A-IS datasets to develop models that could distinguish the

two. We developed two supervised ML models: support vector machine (SVM) and random

forest (RF), which are based on feature selection. Unlike the CNN which directly takes image

inputs, these machine learning models used extracted ECG parameters to perform model

training and classification. The weight of each parameter in model development can also be

shown as an importance value, allowing some degree of model interpretation by indicating of

which parameters are the most important indicators. The ECG parameters included heart rate

(bmp), duration of P wave (ms), P-R interval (ms), QRS wave (ms), QT interval (ms), and QTc

interval (ms). The variables we used to develop the machine models are shown in Table 1. The

data were divided into 2 groups, training, and testing, using the splitting protocol shown in Fig

1A. We used 80% of the ECGs to train the model and 20% for testing. Repeated ten-fold cross-

validation was adopted for model training, and the testing dataset was used to assess model

discriminability. The scikitlearn library (available in Python v3.6) was used to establish the ML

models.

Gradient class activation map construction

We used a gradient class activation map (Grad-CAM) to reconstruct the image and localize

the intensive areas of feature extraction. This method can identify the image features that the

CNN used to perform the decision-making process, enabling us to understand what predictive

features were determined by the trained model [18]. Here, we used Grad-CAM to identify key

abnormal features in the A-IS dataset. Regions with high feature extraction intensity were

assumed to be the key points in anomaly feature identification.

Statistical analysis

The discrimination power of all the models was assessed by calculating the area under the

receiver operating characteristic (ROC) curve (AUC). The maximum Youden index derived

from the ROC curves was selected as the optimal cutoff value for classifying the ECG based on

the model prediction scores. The normality of the data was assessed with the Shapiro–Wilk

normality test, and then we used the Wilcoxon rank-sum test on the seven ECG parameters

and the prediction scores assessed by the three models between the N-N and N-IS datasets and

Table 1. Demographics and ECG parameters of participants from the primary cohort and validation cohort.

Primary cohort (n = 6744) Validation cohort (n = 616)

A-IS dataset (n = 2525) N-IS dataset (n = 673) N-N dataset (n = 3546)

Female sex, n (%) 1065 (42.18) 274 (40.71) 1498 (42.24) 252 (40.91)

Age, mean (SD), y 67.16 (11.50) 62.15 (11.29) 65.85 (12.65) 66.13 (12.15)

Heart rate, mean (SD), bpm 78 (23) 74 (10) 75 (10) 77 (20)

P wave, mean (SD), ms 88.48 (36.46) 103.07 (13.19) 102.80 (12.18) 93.24 (30.84)

P-R interval, mean (SD), ms 142.13 (61.68) 158.85 (18.65) 156.26 (19.85) 145.45 (50.45)

QRS wave, mean (SD), ms 91.04 (19.34) 88.80 (7.38) 88.37 (7.36) 89.10 (10.04)

QT interval, mean (SD), ms 382.65 (68.32) 383.96 (25.91) 380.45 (25.38) 381.91 (43.52)

QTc interval, mean (SD), ms 426.94 (61.98) 425.92 (22.92) 424.59 (22.61) 427.75 (33.79)

RV5+SV1, mean (SD), mV 2.48 (1.06) 2.32 (0.62) 2.35 (0.61) 2.45 (0.79)

Note: A-IS indicates abnormal ECG after the first ischemic stroke; N-IS, normal ECG after the first ischemic stroke; N-N, normal ECG; bpm, beats per minute.

https://doi.org/10.1371/journal.pone.0279706.t001
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between the N-N and A-IS datasets according to their distribution features. Differences in

scores between mRS categories assessed by the CNN model were also assessed by the Wilcoxon

rank-sum test. We used the matplotib library in Python to draw the ROC curves and other fig-

ures. All model development and statistical analyses were performed in Python (v3.6) and

MedCalc (v18.11.3). Ziqiang Zeng has full access to all data in this study and takes responsibil-

ity for its integrity and analysis.

Ethics statement

The study was approved by the Second Affiliated Hospital of Nanchang University Medical

Research Ethics Committee.

Results

Demographics and ECG parameter analysis

In total, we collected 7,052 ECGs from The Second Affiliated Hospital of Nanchang University

between 1 September 2017 and 31 May 2020. A total of 4,086 males and 2,966 females (42.06%)

>20 years old were included in the research, and the average age was 66.00 ± 12.17 years. Addi-

tionally, we included the ECGs of 3546 healthy individuals matched by age and sex screened

from other departments. In the primary cohort, we included 3,546 N-Ns, 673 N-ISs, and 2,525

A-ISs. In the validation cohort, we included 308 ECGs from poststroke patients with mRS score

annotations (239 A-ISs, 69 N-ISs) and 308 N-Ns (randomly picked from the primary cohort).

Among all the ECGs of IS patients, 2764 ECGs (78.84%) were considered abnormal. T-

wave and ST-T–segment changes were the most common ECG changes, accounting for

16.71% and 14.09%, respectively. Atrial fibrillation accounted for 8.76% (Table 2). Demo-

graphics and ECG parameters analyses of the 2 cohorts involved in the study are shown in

Table 1. Statistical analysis between the N-IS and N-N datasets showed that heart rate (HR,

bpm), P-R interval (ms), and Q-T interval (ms) were different (p< 0.05, Wilcoxon rank-sum

test), as shown in Fig 2. The age difference between the N-N and A-IS groups was not statisti-

cally significant. This finding shows that some changes were present in ECGs that were initially

Table 2. ECG patterns of diagnosed ischemic stroke patients.

ECG patterns of IS patients Amount Proportion

Normal 742 21.16%

T wave change 586 16.71%

ST-T segment changes 494 14.09%

Sinus bradycardia 451 12.86%

Left ventricular high voltage 425 12.12%

Atrial fibrillation 307 8.76%

Counterclockwise rotation 235 6.70%

Abnormal Q wave 224 6.39%

Atrial premature beats 199 5.68%

Clockwise rotation 180 5.13%

Sinus tachycardia 177 5.05%

Ventricular premature beat 126 3.59%

Note: The total number of IS patients was 3506. Except for patients with normal ECG, most patients have two or

more diagnosis results. Proportion of one ECG pattern = number of patients with this ECG pattern/total number of

patients with IS. This table only records the ECG patterns that occured more than 100 times.

https://doi.org/10.1371/journal.pone.0279706.t002
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classified as normal in post-IS patients. The exact p values are listed in S2 Table. We verified

that the A-ISs and N-ISs had more changes than the N-Ns.

Performance of the ML and CNN models

Two ML models and one CNN model were established to obtain a standard for indentifying

unusual changes in ECGs from the A-IS dataset. The RF and SVM models used a combination

of ECG-related variables derived from each participant (HR, P wave, P-R interval, QRS wave,

QT interval, QTc interval, and RV5+SV1 value) as well as sex and age. The CNN model took

the image of the ECG as direct input and served as an image classifier. The RF and SVM mod-

els had AUCs of 0.83 and 0.82, respectively (Fig 3A, S3 Table). As shown in Fig 3B and 3C, HR

and the QR interval were the most important variables in the RF and SVM models, respec-

tively. The CNN model exhibited the best performance among the three models, with an accu-

racy of 0.82 and AUC of 0.88 (95% CI = 0.86–0.90) (Fig 3A). In the testing dataset, 431 ECGs

were considered to be abnormal by the CNN model, and 784 ECGs were considered to be nor-

mal (recall = 0.71; precision = 0.84; F1 score = 0.77; Matthews correlation coefficient (MCC) =

0.63, shown in S3 Table). The confusion matrix of the three AI models is shown in S1 Fig.

In addition, we compared the prediction scores of the N-N, A-IS, and N-IS datasets

obtained from the three models. The Wilcoxon rank-sum test indicated a significant difference

not only between the N-N and A-IS datasets but also between the N-N and N-IS datasets (Fig

3D and S2 Fig). The ECGs with model prediction scores higher than the optimal cutoff value

were identified as abnormal ECGs. In the N-IS dataset, 145 ECGs (21.55%) were considered to

be abnormal by the CNN model, 54 (8.02%) by the RF model, and 84 (12.48%) by the SVM

model. The CNN model identified the most abnormal ECGs in the N-IS dataset.

CNN model performance in the validation cohort

The CNN model was the best-performing model among the three models, demonstrating the

best capacity to identify abnormalities (in the N-IS dataset). We then used it to identify the

Fig 2. Analysis of participant ECG parameters. (A) P values for the seven ECG parameters between the A-IS and

N-N datasets (Wilcoxon rank-sum test). (B) P values for the seven ECG parameters between the N-IS and N-N datasets

(Wilcoxon rank-sum test). (C) Heart rate (bpm) distribution of the N-N and N-IS datasets. (D) P-R interval (ms)

distribution of the N-N and N-IS datasets. (E) QT interval (ms) distribution of the N-N and N-IS datasets.

https://doi.org/10.1371/journal.pone.0279706.g002
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proportion of abnormal ECGs in the validation cohort for further confirmation. The accuracy

of the CNN model was 0.89. Importantly, 47.83% of the N-IS prediction scores were higher

than the optimal CNN model cutoff value and were identified to be abnormal (Fig 4A). This

further confirmed that there might be some concealed abnormal features in N-ISs that are

present in A-ISs.

To investigate the relationship between ECG changes and prognosis, we assessed the corre-

lation between the prediction scores of the CNN model and mRS scores. As shown in Fig 4B,

the scores of the two groups (mRS > 2 and mRS� 2) were significantly different (Wilcoxon

rank-sum test, p< 0.05). Patients with high CNN scores also had high mRS scores, indicating

that the CNN score could reflect the prognosis of post-IS patients.

Grad-CAM for feature visualization

The reconstructed feature maps enabled us to visualize the intensity of feature extraction in

the ECG image and, in turn, detect anomaly key points. As shown in Fig 5A, the example

Fig 3. Performance of the ML and CNN models. (A) Comparison of receiver operating characteristic (ROC) curves

of the CNN model and 2 ML models (RF and SVM). The area under the ROC curve (AUC) of the CNN model (0.88,

95% CI = 0.86–0.90) was higher than that of the RF model (0.83, 95% CI = 0.81–0.85) and SVM model (0.82, 95%

CI = 0.80–0.84), indicating the best performance in classification. (B) Variables used to build the RF model are ranked

according to their importance. Heart rate is ranked as the most important variable for classification. (C) In the SVM

model, the QT interval is ranked as the most important variable for classification among the demographics and ECG

parameters. (D) The score distribution of the N-N, N-IS and A-IS datasets was evaluated by the CNN model. The

scores of the A-IS dataset are concentrated around 1, while the scores of the N-N dataset are concentrated near 0. The

scores of the N-IS dataset do not show an overt central tendency. The scores between the N-N and N-IS datasets are

significantly different (p< 0.001, Wilcoxon rank-sum test), as are the scores between the A-IS and N-IS datasets.

(p< 0.001, Wilcoxon rank-sum test). Note: p<0.05; �,< 0.01, ��;< 0.001,���.

https://doi.org/10.1371/journal.pone.0279706.g003
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heatmap highlights the intensity of feature extraction, reflecting the degree of abnormality in

various regions with respect to the N-N image. Regions with a value greater than 0.8 were

assumed to be the key points in anomaly feature identification. A total of 360 A-ISs (correctly

identified by the CNN model) were evaluated by Grad-CAM, and we counted the number of

key points distributed in different leads. In all, 636 key points were identified, with the V3, V4,

and V5 leads harboring most of them. The V4 lead harbored 151 key points, indicating that it

serves as the most important factor in abnormal feature identification (Fig 5B).

Discussion

The ECG reflects the electrical activity of the heart, providing a plethora of information on pri-

mary heart and heart-related diseases. In addition, it is easy to perform, noninvasive, and

highly reproducible, making it the gold standard for heart disease monitoring and essential

clinical decision-making, for example, for cardiac arrhythmias [19]. Acute ischemic stroke is

often related to severe CCS, which can be reflected by ECGs to some extent. Previous studies

Fig 4. CNN model performance in the validation cohort and in poststroke disability assessment. (A) The

confusion matrix shows the performance of the CNN with the validation cohort. (B) The CNN score distribution of

the ECGs with prognostic annotation according to their mRS scores (> 2 poor,� 2 good); and the scores of the two

groups are significantly different (p< 0.001). Note: p< 0.05, �;< 0.01, ��;< 0.001,���.

https://doi.org/10.1371/journal.pone.0279706.g004

Fig 5. Grad-CAM feature visualization. (A) The example heatmap highlights the intensity of feature extraction from

the original ECG, which reflects degrees of abnormality in various regions with respect to the N-N image. Regions with

values greater than 0.8 are assumed to be key points in anomaly feature identification. (B) Among all important

regions, the V3, V4, and V5 leads harbor most of the key points, and the V4 lead in particular serves as the most

important factor in abnormal feature identification.

https://doi.org/10.1371/journal.pone.0279706.g005
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have analyzed the abnormal changes in post-IS ECGs and found that prolonged QTc (indicat-

ing that the heart’s electrical system takes a longer time to recharge between beats than usual)

and ST depression (the ST segment is abnormally below the baseline on ECG) are the most fre-

quently observed abnormalities. However, the proportions of abnormal changes in each ECG

feature differed notably among these studies, and no consensus has yet been reached regarding

what constitutes an abnormal pattern. The small sample size may partially explain the hetero-

geneity among these studies. We observed that T-wave and ST-T–segment changes were the

most common IS ECG changes, accounting for 16.71% and 14.09% of all cases, respectively.

Our observations confirm previous studies indicating that ECGs do change after an IS attack,

with T-wave and ST-T–segment changes being the most common features of post-IS ECGs.

Atrial fibrillation is a risk factor for stroke occurrence and is related to poor stroke prognosis

[20]. We also observed that atrial fibrillation accounts for a certain proportion of abnormal

ECG changes. which conforms with previous studies. In this study, we analyzed abnormal

ECG patterns in IS patients with a larger sample size, providing relatively more comprehensive

and reliable results.

It has been widely accepted that AI can discern subtle differences that human eyes cannot

through big data analysis. It is crucial to identify different patterns of ECG abnormalities that

might serve as hallmarks of multiple diseases. AI applications in ECG analysis have been exten-

sively reported, especially CNNs, which have excellent performance in ECG analysis [21].

Convolution enables the network to remove unnecessary information through multilayer

operations, and to preserve important features, thus greatly improving the efficiency of train-

ing. Several networks designed by the ImageNet project have achieved state-of-the-art perfor-

mance, including VGGNet, ResNet, and AlexNet [21–24]. Apart from these, more

sophisticated networks have been designed to achieve excellent performance. Zachi et al devel-

oped a CNN with ten residual blocks and two fully connected layers to develop an AI-enabled

ECG model. Each residual block uses two blocks to implement its functions, each of which

consist of a batch-normalization layer, a nonlinear ReLU activation function, and a convolu-

tion layer. This model allows the analysis of ECGs during normal sinus rhythm to achieve

atrial fibrillation screening and prediction with high AUC (0.90; 95% CL 0.90–0.91) [14].

Another CNN with six convolution layers, six maxpooling layers, and two fully connected lay-

ers was also developed by this team to identify individuals with a high risk of developing left

ventricular dysfunction,achieving a high AUC of 0.93 [25]. The abovementioned resultspro-

vide a glimpse into the current state of CNN applications on ECG analysis. We used 2 com-

monly used models VGGNet16 and ResNet50, pretrained for image classification to perform

transfer learning [24, 26]. The AUC values were 0.88, 0.87, and 0.76 for our CNN, and the

VGGNet16, and ResNet50 models, respectively (S3 Fig). Our CNN performs better than the

ResNet50, and has almost the same performance as the VGGNet16. Additionally, the convolu-

tional neural network used in this study has a simpler structure, which can result in an

increased working speed, and thusgreater computational efficiency. Moreover, the images we

used were ECGs, of which only the waveform information needs to be analyzed, so it is unnec-

essary to analyze the color and other patterns of the picture, which would require a deeper net-

work to extract enough information to achieve effective training. For example, images like

histological slides may be input into a network as RGB images, while the ECGs, carrying less

information, can be input as single-channel grayscale images. We thus developed a CNN

model that is more suitable for analyzing ECG.

In our study, CNN achieved the highest accuracy among the three models (CNN, SVM,

and RF). The nature of the CNN architecture explains its excellent performance. The CNN

effectively implements multiple convolution operations, and imaging features become more

abstract as the neural network depth increases, improving the accuracy of image classification
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[27]. Additionally, the small number of preprocessing steps greatly alleviates the heavy burden

that accompanies data extraction, and a more complete analysis of the image is possible.

We also analyzed the contributions of different variables in ML model development. HR

was demonstrated to be the most relevant factor in the generation of the RF model. Existing

studies have shown that HR serves as an important prognostic indicator in many cardiovascu-

lar diseases. One study showed that HR was a risk factor for predicting the mortality of patients

with IS, and a low HR was an indicator of a better functional outcome [28]. In the SVM

model, the QT interval was the most important variable, which represents repolarization disor-

der and increased susceptibility to cardiac arrhythmias [29]. Some studies have identified a

prolonged QTc interval in 26% of patients without a primary heart disease history and sug-

gested that it could serve as an important prognostic factor for long-term mortality [30, 31].

Additionally, the HR and QR intervals were significantly different between the N-N and N-IS

datasets in the basic demographic analysis. All these findings are highly consistent with our

study, adding credence to the feasibility of our models.

There are differences in the ECGs and basic ECG parameters between A-ISs and N-Ns.

Similarly, the ECG scores calculated by the AI models were significantly between the N-Ns

and A-Iss, as well as between the N-Ns and N-ISs, suggesting that the ECG scores can reflect

difference between the images and their parameters. As shown in Fig 3D, the ECG scores of

A-ISs were generally higher than the other datasets, suggesting that more abnormalities can be

found in high-scoring ECGs. In addition, there were some high-scoring ECGs in the N-IS

dataset, indicating that some of these abnormal patterns were also present in the N-ISs (Fig

3D), which suggests that routine approaches might overlook some concealed ECG changes.

Scores over the optimal cutoff value set by AI models were considered toindicate abnormali-

ties. In the N-IS dataset, 145 ECGs (21.55%) were identified to be abnormal by the CNN

model, 54 (8.02%) by the RF model, and 84 (12.48%) by the SVM model. The CNN model

identified the most abnormal ECGs in the N-IS dataset. Furthermore, the results for the valida-

tion cohort further confirmed our hypothesis. The generally normal ECGs of half of the post-

IS patients (47.83%) were identified to be abnormal, further confirming that routine

approaches might overlook some concealed ECG changes. Therefore, all post-IS patients with

higher scores may require greater medical attention and close monitoring, despite potentially

presenting with normal ECGs.

The mRS is used to assess the functional outcome of poststroke patients, but it is limited by

its subjectivity and relatively poor reproducibility. Additionally, interobserver variability atten-

uates the reliability of outcome measures [32, 33]. Our study demonstrated that the ECG score

assessed by the CNN model was correlated with the mRS score. We can obtain more accurate

and objective results quickly with the help of AI. We collected the mRS scores of the post-IS

patients when they were discharged from the hospital. The ECGs with higher mRS scores

(poor prognosis) also had higher CNN scores, indicating that the CNN scores derived from

our model can be used to predict the prognosis of post-IS patients. Thus, more follow-up and

medical attention should be provided to patients with higher CNN scores in clinical practice.

To further investigate the abnormal regions identified by the CNN, we applied Grad-CAM

to reconstruct the images and then captured and marked key abnormal regions. The feature

extraction intensity was presented in a heatmap, and we found that feature visualization was

most intense in the V4, V3, and V5 lead regions. The V4 lead region harbored the greatest

number of key points, so it may be an important determinant in classifying abnormalities.

Maximal T-wave inversion with widespread ST depression in V4 and V5 is a marker for assess-

ing the prognosis of acute coronary syndromes [34]. Interestingly, some studies found acute

coronary syndrome in 12.7% of patients after acute IS within 3 days [35]. An abnormal ECG

may foreshadow subsequent acute coronary syndrome or reflect its presence, which also
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explains the poor clinical outcome in some post-IS patients. These findings are in concordance

with our results, further demonstrating the good performance of our models in extracting

abnormal features from ECG in IS patients. Given various interfering factors, such as the dis-

tance between heart regions and electrodes, and some pathological conditions, measuring a

single lead would increase sensitivity and specificity in diagnosis compared to fixed lead crite-

ria [36, 37]. Lai et al hypothesized that optimal ECG-lead selection could reduce diagnostic

redundancy and increase the generalizability of deep learning-based models, and they found

that 4-lead ECG (leads II, aVR, V1, and V4) significantly outperformed 12-lead ECG in inter-

preting abnormalities [38]. Our study introduced a refined approach to ECG monitoring in

post-IS patients, indicating that focusing on a subset of ECG leads (V3, V4, V5) may optimize

abnormality detection and clinical outcome prognostication.

There are some limitations of our study. First, we did not include enough baseline charac-

teristics in this study. Some biomarkers and measurements, such as blood pressure, cardiac

troponin, and brain natriuretic peptide are important indicators for predicting the prognosis

of IS [4, 39–43]. Second, more prospective research should be carried out to track the progno-

sis of post-IS patients to further confirm our study findings. Third, clinicians can use infarct

size, a more reproducible measurement, to assess the prognosis of post-IS patients [44–46]. In

this study, we used the mRS to predict the clinical outcome of post-IS patients, which is not as

reproducible and significant as infarct size. More sophisticated algorithms will be developed in

future studies. Additionally, we did not collect ECGs before the stroke attack, which could

have induced confounding factors such as the natural variability among individuals. Finally, in

this study, we observed changes in the ECGs after IS, but due to a lack of evidence, we cannot

explain the causal relationship between cerebral infarction and ECG changes, only that there is

a relationship between the two. In the future, the multiomics analysis combined with AI will

be conducted to further investigate the inner molecular mechanisms of our findings.

Conclusion

There are four main findings in our study. We found that a large proportion of post-IS ECGs

(78.84%) had abnormal changes, most commonly T-wave changes. The three AI models we

developed also uncovered abnormalities in these ECGs, including some ignored by routine

diagnosis. The ECG scores assessed by the CNN model may be associated with prognosis in

post-IS patients. Finally, the V4 lead may harbor the highest probability of abnormality. We

successfully introduced an approach to assess the clinical outcomes and degree of disability in

post-IS patients.

Supporting information

S1 Fig. Confusion matrixes of the three AI models. The label on the left is the true label, and

the label below is the predicted label. (A) The confusion matrix of the CNN model shows the

absolute numbers of classifications made for patients belonging to the A-IS group and N-N

group. (B) The confusion matrix of the RF model shows the absolute numbers of classifications

made for patients in the A-IS and N-N groups. (C) The confusion matrix of the SVM model

shows the absolute numbers of classifications made for patients in the A-IS and N-N groups.

(TIF)

S2 Fig. Score distribution of the N-N, N-IS, and A-IS datasets evaluated by the ML models.

(A) The score distribution of the N-N, N-IS and A-IS datasets was evaluated by the RF model.

The scores between the N-N and N-IS datasets are significantly different (p< 0.001, Wilcoxon

rank-sum test), as are the scores between the A-IS and N-IS datasets. (B) The score distribution
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of the N-N, N-IS and A-IS datasets was evaluated by the SVM model. The scores between the

N-N and N-IS datasets are significantly different (p< 0.001, Wilcoxon rank-sum test), as are

the scores between the A-IS and N-IS datasets. (p< 0.001, Wilcoxon rank-sum test). Note:

p< 0.05, �; <0.01, ��;<0.001, ���.

(TIF)

S3 Fig. ROC curves for Our CNN, VGGNet16, and ResNet50 models.

(TIF)

S1 Table. Network structure and hyperparameters of the CNN model.
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