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Abstract

Research that seeks to compare two predictive models requires a thorough statistical

approach to draw valid inferences about comparisons between the performance of the two

models. Researchers present estimates of model performance with little evidence on

whether they reflect true differences in model performance. In this study, we apply two sta-

tistical tests, that is, the 5 × 2-fold cv paired t-test, and the combined 5 × 2-fold cv F-test to

provide statistical evidence on differences in predictive performance between the Fine-Gray

(FG) and random survival forest (RSF) models for competing risks. These models are

trained on different scenarios of low-dimensional simulated survival data to determine

whether the differences in their predictive performance that exist are indeed significant.

Each simulation was repeated one hundred times on ten different seeds. The results indi-

cate that the RSF model is superior in predictive performance in the presence of complex

relationships (quadratic and interactions) between the outcome and its predictors. The two

statistical tests show that the differences in performance are significant in quadratic simula-

tion but not significant in interaction simulations. The study has also revealed that the FG

model is superior in predictive performance in linear simulations and its differences in pre-

dictive performance compared to the RSF model are significant. The combined 5 × 2-fold cv

F-test has lower type I error rates compared to the 5 × 2-fold cv paired t-test.

Introduction

The advent of machine learning has provided challenges especially to the statistical community

[1]. Unlike the classical statistical models that have decision theory embedded in them, the

machine learning models are yet to have this theory embedded within them. The fears of over

fitting, type I and II errors have therefore led to criticism of machine learning models since

they were first conceived [2].
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The statistical community has for sometime ignored these models until it became categori-

cally clear that they can not be ignored especially in this era of big data. There has therefore

been a shift in research on making sure that robust tests are developed to make sure that the

machine learning and statistical models agree at least on the basics or the building blocks of

statistical theory [3].

In this study, we focus on statistical tests to evaluate whether the difference in the predictive

performance of the Fine-gray (FG) [4] and the random survival forests (RSF) [5] models for

competing risks data are significant under three low-dimensional data simulation scenarios.

Both the FG and the RSF models for competing risk outcomes, model time-to-event distribu-

tions for mutually exclusive event.

In the analysis of time-to-event outcomes, a competing risk is an event whose occurrence

precludes the occurrence of the event of primary interest [6]. This complicates the analysis of

such a dataset [6–8].

When outcomes are time-to-event in nature, the objective of prognostic models is fre-

quently focused on estimating the cumulative incidence function (CIF) [7].

The cause-specific hazard approach is the most commonly used classical statistical

approach in analysing competing risk data [4]. However, it treats events other than the event

of interest as censored. This leads to inflated survival probabilities and therefore does not result

into meaningful conclusions [9, 10]. The Fine-Gray model or the proportional hazards model

for the sub-distribution approach is known to handle competing risks well by allowing the

events that are competing with the event of interest to continue being in the risk set [4]. The

Fine-gray model also has an advantage of directly modeling the effects of the covariates on the

cumulative incidence function [10]. An alternative state of the art model in modelling compet-

ing risk events is the random survival forest for competing risks [5]. It is a machine learning

model whose goal is to also estimate the CIF. Assessing the accuracy of predictions from the

above mentioned models is an important part in their development. This is because they are

commonly used in predicting important and very sensitive biological phenomena of occur-

rence of binary outcomes like presence of disease, death within a given duration of time, or

hospital readmission within a given duration of time [11]. A study by [12] noted that methods

for assessing the calibration of prognostic models for use with competing risk data have

received little attention.

A recent study by [7] provides strong evidence that random survival forests models predict

default and prepayment risk more accurately than statistical benchmarks in the form of the

Cox proportional hazard model and the Fine and Gray model. However, no statistical tests

were used to show evidence for the significance difference in their predictive performance.

Properties of the random survival model in modeling competing risks in low and high

dimension data were studied by [5]. The authors’ results show that the Fine-gray model was

better than the random survival forest model in predictive performance in linear low-dimen-

sion settings. The results further show that that the random survival forest is better in non-lin-

ear low-dimension settings. To obtain these results, they compared the predictive performance

values of the models with all the covariates to a benchmark or threshold value. The threshold

model’s predictive performance value was obtained from the null model that ignored all the

covariates. In this study, we use two statistical tests to evaluate whether the difference in the

predictive performance of the Fine-gray and the random survival forests models for competing

risks data is significant under three low-dimensional data simulation scenarios.

We employed two statistical tests, namely; the 5 × 2-fold cv paired t-test, and the combined

5 × 2-fold cv F-test [13, 14] via a simulation study to examine whether the differences in the

predictive performance of the two models are significant in each of the three scenarios

considered.
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The rest of the article is structured as follows: Section 2, describes the nature of competing

risks data and the methods used in this study; Section 3, describes the two statistical tests; Sec-

tion 4, describes the simulation study; Section 5, presents the simulation results, and in Section

6, we discuss and present conclusions of the study.

Competing risk models in survival analysis

A competing risk is an event that, if it occurs, prevents the primary event of interest from

occurring. For competing risks, we are interested in the time Tj between the time origin and

the occurrence of an event of interest. Individuals who are subjected to competing risks are

observed from the time they enter the study to the time the competing event or the event of

interest occurs. Often, individuals are observed before the occurrence of one of the events. To

describe the nature of competing risk data let T0
j denote event time for the jth individual, and

let d
0

j be his or her event type, such that d
0

j 2 f1 . . . Kg, where K� 1. Furthermore, we let C0
j

denote the individual’s censoring time such that the actual time of event T0
j is unobserved and

one only observes Tj ¼ minðT0
j ;C

0
j Þ and the event indicator dj ¼ d

0

j IðT
0
j � C0

j Þ. When δj = 0,

the individual is said to be censored at Tj, otherwise if δj = k> 0, the individual is said to have

an event of type k at time Tj. Thus, the observed competing risk data is such that (Tj, δj,

Xj)1�j�n where Xj is a p-dimensional vector of covariates. In addition, we let t1 < t2 < . . .< tm,

m� n, be distinct event times.

Thus, the main goal of survival analysis is to estimate the survival probability of the event Tj

for a new instance using the feature predictors denoted by Xj. It should be noted that in sur-

vival analysis problems, Tj will be both continuous and non-negative.

The survival and hazard functions

The survival function S(t) is represented by:

SðtÞ ¼ PðT � tÞ : ð1Þ

Eq 1 estimates the probability that the survival probability of an event of interest does not

occur before time t [15, 16]. S(t) is non-negative and has an initial condition, (S(0) = 1), indi-

cating that 100% of the observed individuals survive when none of the events of interest has

occurred. The survival function has two important properties: S(0) = 1 (i.e., the event has not

yet occurred for any subjects at the start of the study) and limt!1S(t) = 0 (i.e., the event of

interest eventually occurs for all subjects).

The hazard function (λ(t)), is another commonly used function that is referred to as the

instantaneous death rate [17].

The hazard function is mathematically defined by [16]:

lðtÞ ¼ lim
Dt!0

Pft � T � t þ DtjT � tg
Dt

;

¼ lim
Dt!0

Fðt þ DtÞ � FðtÞ
Dt:SðtÞ

;

¼
f ðtÞ
SðtÞ

:

ð2Þ
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λ(t), is a non-negative function. According to [18], the survival function S(t) can also be

expressed as:

SðtÞ ¼ e� LðtÞ ; ð3Þ

where LðtÞ ¼
Z t

0

lðuÞdu is the Cumulative Hazard Function (CHF).

Survival probability prediction

Fine Gray model

The survival function S(t) can be estimated using traditional statistical methods and machine

learning methods. This study focuses on a semi-parametric method, the Fine-Gray (FG) [4]

model to evaluate the cumulative incidence function (CIF). Fine and Gray [4] developed the

sub-distribution hazard function defined by;

l
�

k tð Þ ¼ lim
Dt!0

Pðt � T � t þ Dt; d ¼ kjT � t [ ðT < t \ d 6¼ k \ C0 > tÞÞ
Dt

: ð4Þ

where l
�

kðtÞ is known as the sub-distribution hazard and it measures the instantaneous rate of

occurrence of the event of interest among subjects that have not yet experienced it. In this

study,

dj 2 f1; 2g ;

and our interest is modeling the cumulative incidence function for failure from cause 1 condi-

tional on the covariates.

As reported by [19], classical survival methods are not appropriate to analyse time-to-event

data in complex situations such as in a competing risk setup, in which an individual in the risk

set is exposed to multiple causes of failure. The proportional hazard (PH) model [20] is one of

the classical methods for analysing competing risk data to examine the effect of covariates on

the cause specific hazard function. The main drawback of using the PH model in a competing

risk setup is that when estimating regression parameters for a specific cause, it considers indi-

viduals failing for reasons other than the cause of interest as censored observations [19, 21]. To

address the limitation of the PH model, Fine and Gray [4] developed a survival regression

based model that uses the cumulative incidence function (CIF) and sub-distribution hazard

functions to describe the likelihood of an event occurring prior to a specific time. Unlike the

PH model, the CIF does not exclude other competing risks when a specific cause is of interest

[22].

The cumulative incidence function (CIF) is defined by CIF(k) = P(T� t, δj = k).

Furthermore, CIF(k) represents the probability of the kth event occurring before time t and

before the occurrence of another type of event [21]. This means that CIF allows for the estima-

tion of the occurrence of an event while accounting for competing risk. A key point is that, in

the competing risks setting, only one event type can occur, such that the occurrence of one

event precludes the subsequent occurrence of other event types.

Although the FG model was developed to address the limitations of Cox-based models,

there is still considerable confusion regarding how the estimates from FG models are inter-

preted [23]. The confusion arises because the regression coefficients associated with this model

are unclear or incorrectly interpreted. Also, when comparing results from different studies, an

incorrect and inconsistent interpretation of the regression coefficients can cause confusion.

Furthermore, an incorrect interpretation of the estimated regression coefficients can lead to an
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incorrect understanding of the magnitude of the relationship between exposure and incidence

of the outcome.

The predictive performance of FG, a classical statistical model, is compared to that of a

machine learning model, the random survival model (RSF). When the PH assumption is vio-

lated, survival trees and random survival forests (RSF) approaches offer an appealing alterna-

tive to Cox proportional hazards models [24]. Survival trees and RSF extend the classification

and regression trees [24]. In addition, survival tree methods are non-parametric, flexible, and

capable of dealing with high-dimensional covariate data.

Random survival forests for competing risks

In recent years, random forests [25] have been extended to regression problems and survival

outcomes. The random survival forest (RSF) algorithm [26] is a collection of survival trees that

extends the random forest to evaluate survival analysis with censored data. The RSF’s algo-

rithm implementation [26] is illustrated in a flowchart in Fig 1 below.

RSFs have also been extended to competing risks. Random survival forests for competing

risks are grown in a manner similar to the general algorithm (Algorithm 1) in Fig 1 of random

survival forests, with the main difference being the splitting rule used [27, 28]. Furthermore,

the RSF differs from the random forest method in that the RSF’s tree-growing splitting rule

takes into account both the survival time and the censoring indicator. In this study, we will

implement RSFs for competing risks Algorithm 2 outlined in the flowchart in Fig 2 that uses

the log-rank splitting rule described in detail in [29] to split nodes by maximizing the log-rank

test statistic. Before we outline the random survival forest algorithm for competing risks, we

describe the split criteria used.

The generalised log-rank split-rule. Let the number of individuals at risk in the two

daughter nodes be Rα(tj) and Rγ(tj), respectively. Then RaðtjÞ ¼
Pn

j¼1
IðTj � t; xj � sÞ,

RgðtjÞ ¼
Pn

j¼1
IðTj � t; xj > sÞ , and xj is the x-predictor for individual j = 1, 2, . . ., n. The total

number of individuals at risk at time t is R(t) = Rα(t) + Rγ(t). The number of type K events for

the left and right daughter nodes is, respectively.

dk;aðtÞ ¼
Xn

j¼1

IðTj ¼ t; dj ¼ k; xj � sÞ ; dk;gðtÞ ¼
Xn

j¼1

IðTj ¼ t; dj ¼ k; xj > sÞ ; ð5Þ

and dk(t) = dk,α(t) + dk,γ(t), is the number of type k, events at time t. Suppose that tm ; tma
; and

tmg
are the largest times of study in the root node and the two daughters, respectively. The gen-

eralised log-rank split-rule in the competing risk setting is based on a null hypothesis that the

H0: λk,α(t) = λk,γ(t), 8t� τ, where τ, is a fixed time point set by the user in accordance with the

observed follow-up period for the given dataset [5]. The split-rule at a point s on covariate x is

given as:

ik x; sð Þ ¼
1

ŝk ;aðx; sÞ
Xm

j¼1

Wk tj
� �

dk ;a tj
� �
�

dkRaðtjÞ

RðtjÞ

" #

; ð6Þ

where ŝk ;aðx; sÞ is the variance estimate given by:

½ŝk ;aðx; sÞ�
2
¼
Xm

j¼1

WkðtjÞ
2dk tj
� �RaðtjÞ

RðtjÞ
1 �

RaðtjÞ
RðtjÞ

" #
RðtjÞ � dkðtjÞ

RðtjÞ � 1

" #

: ð7Þ

Time-dependent weights, Wk(t)> 0, are used to make the test more sensitive to early or

late differences between the cause-specific hazards. The best split is found by maximizing, |
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Fig 1. Algorithm 1: The flow chart illustrates the details of Algorithm 1, that is to say, the random survival forest

algorithm. This a general algorithm for building a random survival forest. A survival tree is grown for each bootstrap

sample by splitting the node after selecting a variable that maximizes the difference between daughter nodes using a

predetermined split rule.

https://doi.org/10.1371/journal.pone.0279435.g001
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Fig 2. Algorithm 2: The flow chart illustrates the details of Algorithm 2, that is to say, the random survival forest algorithm for

competing risks. The algorithm grows a competing risk tree for each bootstrap sample by Splitting the node after selecting a variable that

maximizes the competing risk splitting rule.

https://doi.org/10.1371/journal.pone.0279435.g002
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ik(x, s)|, over all covariates and the split-points. Often the log-rank splitting rule is used to

build trees for competing risks. As earlier stated, it tests the null hypothesis H0: λk,α(tj) = λk,

γ(tj), 8tj� t, which makes it inefficient in accounting for competing risks. It is therefore rec-

ommended that one uses the Gray’s test. An approximation to the Gray’s test which is per-

formed by modifying the risk set of the log-rank test is available and implemented in R. It is a

weighted log-rank test for testing the equivalence of the subdistribution hazard functions

between two groups. It tests the null hypothesis H0: Fk,α(tj) = Fk,γ(tj), 8tj� t

Methods

Simulations

Data simulations. We used the Cox-exponential cause-specific hazard approach [5, 30] to

simulate competing risk data. This is the standard approach that is achieved by formulating

competing risk data using the hazard for each cause:

lkðtjXÞ ¼ l0kexpðb
T
k XÞ ; ð8Þ

where λk(tjX) is the cause specific hazard for event k at time t for an individual with covariates

X, λ0k is a baseline hazard function that describes the risk for individuals with no covariate

information, and expðbT
k XÞ is the relative risk for two competing events k = 1, 2, given a vector

of covariates X = (x1, x2, . . ., xp). With two competing risk events, the cause specific hazards of

event one and two given the covariates are defined using:

l1ðtjXÞ; andl2ðtjXÞ; ð9Þ

where λ1(t|X) and λ2(t|X) are the cause specific hazards for event 1 and 2 at time t, respectively.

The overall hazard is defined as:

lðtjXÞ ¼ l1ðtjXÞ þ l2ðtjXÞ : ð10Þ

In all simulations, we set λ0k = 0.01. Six continuous covariates (x1, x2, . . ., x6), were drawn

independently from a standard normal distribution and six binary predictors (x7, x8, . . ., x12),

from a binomial distribution with success probability of 50%. We considered the following

three simulation scenarios for low-dimensional data (p< n):

i) Linear simulations;

ii) Quadratic simulations; and

iii) Interaction simulations.

Linear simulations. The linear simulation scenario has an additive structure, and we set

the effect size of the covariates at:

b1 ¼ ða1; � a1; 0; 0; a1; � a1; a2; � a2; 0; 0; a2; a2Þ ;

b2 ¼ ð0; 0; a1; � a1; a1; � a1; 0; 0; a2; � a2; a2; � a2Þ :
ð11Þ

The continuous effect size was set at a1 = log(2), and the discrete effect size was set at a2 =

1.5. Covariates x1, x2, x7, x8 have an effect on the hazard of event one only, whereas, covariates

x5, x6, x11, x12 have an effect on both hazards. The covariates x3, x4, x9, x10 have an effect on the

hazard of event two only.
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Quadratic simulations. The linear additive structure was broken by introducing squared

covariates x2
1
; x2

2
; . . . ; x2

6
with their effect sizes set at:

b
Quad
1

¼ ða1; � a1; 0; 0; � a1; a1Þ ;

b
Quad
2

¼ ð0; 0; a1; � a1; a1; � a1Þ :
ð12Þ

Interaction simulations. The interaction terms are constructed as:

b
Int
k Ifxl > 0gxi for l ¼ f1; 2; . . . ; 6g and i ¼ f7; 8; . . . ; 12g :

The interaction effect sizes for the interaction terms are set at:

b
Int
1
¼ ð� a1; a1; 0; 0; a1; � a1Þ ;

b
Int
2
¼ ð0; 0; � a1; a1; � a1; a1Þ :

ð13Þ

Experiments

Model training for each simulation experiment

In this simulation experiment, we consider two models, the RSF and the FG models. The R

packages randomForestSRC [31] and cmprsk [32] were used to implement the random survival

forest for competing risks and the Fine-Gray model, respectively. Six datasets with sample

sizes; 200, 300, 400, 500, 2000 and 3000 are used. For each simulation experiment the dataset is

divided into two equal-sized sets, and the models are trained on one set and tested on the

other. The difference between the error rates (integrated Brier scores) of the models are com-

puted. The t-statistics, the F-statistics and the p-values associated with the tests are evaluated

in each experiment. For the random survival forest, 500 trees are trained using the “log-

rankCR” splitting rule. A default terminal node size, n0 = 15 is used. Randomized splitting as

described above is used, that is to say, at each parent node, for each of the randomly selected

subset of covariates, “nsplit” randomly selected split points were chosen. The tree node is then

split on that variable and random split point maximizing the absolute value of the split-statis-

tic. For this simulation study, nsplit is set at 2 (nsplit = 2) because the simulation study has

both continuous and discrete covariates. A small nsplit value is recommended in cases where

there are both discrete and continuous covariates [5, 24]. The number of randomly selected

subsets of the covariates to split on at each node known as “mtry” is set at
ffiffiffipp .

Model evaluation for each simulation experiment

Evaluation metrics. The integrated Brier score (IBS) [33] is used as a measure of predic-

tive performance for both models. The IBS is the squared difference between actual and pre-

dicted outcome.

Integrated Brier score (IBS). The Brier score is used when one is investigating the overall

performance of survival models. It is desirable to have a model that is both discriminative

(high concordance) and calibrated [34]. The Brier score is desirable because it measures both

calibration and discrimination.

The Brier score is the average squared distances between the observed survival status and

the predicted survival probability. For example, at a given time point t, the Brier score for a sin-

gle subject is the squared difference between the observed event status (e.g., 1 = alive at time t
and 0 = dead at time t) and a model based prediction of surviving to time t. For a test sample
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of size ntest, the Brier score at time t, is given by:

BSðtÞ ¼
1

ntest

Xntest

l¼1

½0 � ŜðtjxÞ�2
Iðtl � t; dl ¼ 1Þ

ĜðtljxÞ

(

þ½1 � ŜðtjxÞ�2
Iðtl > tÞ
ĜðtjxÞ

)

:

ð14Þ

Where ĜðtjxÞ � PðC > tjX ¼ xÞ, is the Kaplan-Meier estimate of the conditional survival

function of the censoring times. These are weightings of the Brier score to adjust for the pre-

secnce of censored survival times. The integrated Brier score (IBS) is often used and it is given

by:

IBS ¼
R maxðtÞ

0
BSðtÞdt : ð15Þ

The IBS gives an average Brier score across a time interval, and we use it as a metric to com-

pare the performance of the FG and RSF models. As stated above, the Brier score is used to

measure both calibration and discrimination. This implies that it can be employed when one is

evaluating the overall performance of survival models or when the goal is to find a model that

performs well on both calibration and discrimination.

The 5 × 2-fold cv paired t-test, and the combined 5 × 2-fold cv F-test statistics are calculated

based on the differences of the values of IBS scores.

Approximate statistical tests for comparing the Fine-Gray model and the

random survival forest

Statistical hypothesis tests can be used to evaluate whether the difference in performance

between two models is statistically significant. Two tests, that is, the 5 × 2-fold cv paired t-test

[13], and the combined 5 × 2-fold cv F-test [14] were used in this study to determine whether

the difference in the predictive performance between the FG and RSF models are significant.

5 × 2-fold cv paired t-test. The K-fold cross-validated paired t-test is the most commonly

used method for comparing the performance of two models. The problem with this method,

however is that the training sets overlap and it is therefore not recommended to be used in

practice [13]. The 5 × 2-fold cv paired t-test solves the problem of overlap in the training data-

sets that is prevalent in K-fold cross-validation paired t-test [13]. In addition, the 5 × 2-fold cv

paired t-test yields larger test data and training data sets that do not overlap. Thus, the 5 × 2-

fold cv paired t-test becomes a more powerful test compared to the k-fold cross-validated

paired t-test. This is because it measures directly the variation that is brought about by the

choice of the training data set. The 5 × 2-fold cv paired t-test is therefore used as a post-hoc

analysis to test whether the differences in the mean Brier scores of the FG and RSF models are

statistically significant. The test statistic ~t , for the 5 × 2-fold cv paired t-test is calculated as:

~t ¼
pð1Þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

5

X5

i¼1
s2

i

r
ð16Þ

where pð1Þ1 is the difference in the Brier Scores of the FG and RSF models for the first fold of the

first iteration, s2
i is the variance of the Brier Scores differences of the ith iteration. The variance
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Fig 3. Algorithm 3: The flow chart illustrates the details of Algorithm 3, that is to say, 5 × 2-fold cv paired t-test algorithm. The algorithm calculates the

difference between two sets of performance measures by estimating the mean and variance of the differences and then computes the t-statistc.

https://doi.org/10.1371/journal.pone.0279435.g003
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is computed using:

s2
i ¼ ðpð1Þi � �piÞ

2
þ ðpð2Þi � �piÞ

2
: ð17Þ

In addition, pðjÞi is the difference in the Brier Scores of the FG and RSF models for the ith

iteration and fold j. Note that:

�pi ¼ ðp
ð1Þ

i þ pð2Þi Þ=2 : ð18Þ

The flowchart in Fig 3 below is Algorithm 3 for the 5 × 2-fold cv paired t-test.

Although the 5 × 2-fold cv paired t-test described in Fig 3 produces acceptable Type I

errors, it fails in situations where performance metric’s scores that are measured in the various

2-fold cross-validation replications vary wildly [14].

Combined 5 × 2-fold cv F-test. A study by [14] proposed a variant, the combined 5 × 2-

fold cv F test, that combines the results of the 10 possible statistics to get a more robust test.

The test statistic of the combined 5 × 2-fold cv F-test is computed using:

f ¼
P5

i¼1

P2

j¼1
ðpðjÞi Þ

2

2
P5

i¼1
s2
i

: ð19Þ

The statistic f is approximately F distributed with 10 and 5 degrees of freedom, and the

hypothesis that the FG and RSF algorithms have the same value of the evaluation measurement

is rejected if the statistic f is greater than 4.74 at α-level equal to 0.05. To compare the perfor-

mance of FG and RSF models, the integrated Brier score (IBS) is used in this study.

Type I error. To control Type I error, that is, the likelihood of rejecting the null hypothe-

sis that is true at some level α, we should reject the null hypothesis when the observed p-value

is less than α:

PH0
ðp � value � aÞ ¼ a : ð20Þ

The p-value is a random variable that depends on the observed data used to compute it.

From the definition of the cumulative distribution function of any random variable, when the

null is true, the p-value has a uniform distribution on the interval 0� p-value� 1 klam-

mer2009statistical. If the null is true, the sample of the p-values will look exactly like a sample

of uniform random variables from the interval [0, 1]. To calculate the the Type I error of the

5 × 2-fold cv paired t-test, and the combined 5 × 2-fold cv F-test. The null and alternative

hypotheses are such that:

Hypothesis H0: There is no significant difference in performance between the two models.

Hypothesis H1: There is a significant difference in performance between the two models.

Results

The simulations were repeated 100 times at ten different seeds for each of the sample sizes con-

sidered in the study. For each sample size, there is therefore a total of 1000 independent

simulations.

Figs 4 to 6 present a comparison of the mean cross-validated Integrated Brier Scores (IBS)

for the linear, quadratic and interaction simulation results of the FG, and the RSF models. The

results of the linear simulations are shown in Fig 4 indicate that for the different sample sizes,

the mean cv IBS scores of the FG model are lower than those of the RSF model. The figure
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further shows that the mean cv IBS scores for the RSF model decrease markedly for larger sam-

ple sizes. These results therefore indicate that for the linear simulations, the FG outperforms

the RSF model as it produced the lowest mean IBS for the different sample sizes. It is also

important to note that the mean cv IBS scores are below 0.25, which indicates that both models

are predictive on the datasets given. The results of the quadratic simulations are shown in Fig

5. They indicate that for different sample sizes, the mean cv IBS scores of the FG model are

higher than those of the RSF model. In addition, Fig 5 shows that the mean cv IBS scores for

the RSF model decrease with the increase in the sample size. These results show that for the

quadratic simulations, the RSF outperforms the FG model as it produced the lowest mean IBS

for the different sample sizes. Furthermore, Fig 5 shows that for the quadratic simulations, the

IBS results of the RSF model are more consistent than those of the FG model. Fig 6 shows sum-

marises of the results of the interaction simulations. The summary indicates that the RSF

model has lower mean cv IBS scores compared to the RSF model. It is also important noted

that for large samples (greater than 500) the results for the interaction simulations are indistin-

guishable. Figs 4 to 6 also show that the variability in the predictive performance of the two

models decrease with increase in the sample size. Our results are consistent with previous stud-

ies that indicated that variability in predictive performance decreases with increasing sample

size [35, 36]. Table 1 summarises all the simulations of the linear, quadratic and interaction

results based on the FG and the RSF models. The results for the linear simulations show that

the mean cv IBS scores for the FG model are on average between 0.16–0.18 across all sample

Fig 4. The boxplots present the mean cross-validated integrated brier scores from the 1000 simulations for each of the sample sizes for the linear

simulations. The boxplots show the performance of the two models at six different sample sizes, 200, 300, 400, 500, 2000 and 3000. The mean IBS

values show that for the linear simulations, the FG performs better than the RSF model because it produced the lowest values for the different sample

sizes considered.

https://doi.org/10.1371/journal.pone.0279435.g004
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sizes, which is lower compared to the mean cv IBS scores for the RSF model which are betwen

0.19–0.22 across all sample sizes.

The F and t-statistics show that the proportion of significant tests largely increases as the

sample sizes increase for the linear simulations. This means that for larger sample sizes, the

two models have an even large significant difference in their predictive performance. For

example, up-to 95% of the simulated samples have significant F-statistics and t-statistics for

the sample size N = 3000. The results imply that the FG model is superior in predictive perfor-

mance in linear simulations compared to the RSF model because it has a lower mean IBS

scores for linear simulations in larger sample sizes as shown in Table 1.

The results further show that, the mean cv IBS scores for the FG model on the quadratic

simulations are on average between 0.24–0.27 across all sample sizes. In contrast, the mean cv

IBS scores for the RSF model are on average much lower and between 0.21–0.23 across all sam-

ple sizes. The table shows that 100% of the samples considered have significant F and t-statis-

tics for a sample size of N = 3000. This indicates that the performance of the RSF model on the

quadratic simulations is statistically significant and better than that of the FG model especially

in larger sample sizes.

The results in Table 1 also indicate that the mean cv IBS scores for the FG range from 0.23

to 0.25 for the interaction simulations compared to 0.22 to 0.23 for the RSF model. The results

for the interaction simulations further suggest that this difference in the predictive perfor-

mance of the two models is not statistically significant. This is because, the percentage of statis-

tically significant t-statistics for the samples considered range from 1.80% to 21.40%. The

percentage of significant F-statistics range from 0.10% to 10.20%. Large sample simulations

confirm the result that the two model’s predictive performance is not significantly different

Fig 5. The boxplots present the mean cross-validated integrated brier scores from the 1000 simulations for each of the sample sizes for the

quadratic simulations. The boxplots show the performance of the two models at six different sample sizes, 200, 300, 400, 500, 2000 and 3000. For the

quadratic simulations, the RSF has lower mean IBS values compared to the FG model for the different sample sizes.

https://doi.org/10.1371/journal.pone.0279435.g005
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with approximately 1.8% samples with significant t-statistics and 0.10% samples with signifi-

cant F-statistics for the samples of size of N = 3000.

Table 1 states performance values together with the statistical tests results to tell whether

these differences that exist in predictive performance are significant or not. This type of report-

ing is a good practice in clinical research especially when deciding on the best model to use

when the choice is between a more interpretable (classical statistical) and a machine learning

(black box) type of model. This is because the researcher can use the statistical test results to

justify their model choice.

The study further investigated the Type I error of the 5 × 2-fold cv paired t-test, and the

combined 5 × 2-fold cv F-test. Fig 7 shows that the 5 × 2-fold cv paired t-test, has a higher

Type I error compared to the combined 5 × 2-fold cv F-test. This is expected because the com-

bined 5 × 2-fold cv F-test combines the results of the 10 possible statistics rather-than using

only one of them. The observed p-values tend to have a uniform distribution for the larger

sample sizes. The large type I error of the two tests in smaller sample sizes needs to be investi-

gated further. However, the most plausible explanation of this phenomena arises from the

assumptions made when constructing the tests. One of the assumptions is that the difference

of two identically distributed predictive performance values (pðjÞi ) are assumed to be indepen-

dent when in-fact they are not independent. The differences are also assumed to be indepen-

dently normally distributed which is not strictly true because the training and test sets are not

Fig 6. The boxplots present the mean cross-validated integrated Brier scores from the 1000 simulations for each of the sample sizes for the

interaction simulations. The boxplots show the performance of the two models at six different sample sizes, 200, 300, 400, 500, 2000 and 3000. The

boxplots show that the RSF model has lower mean cv IBS scores compared to the RSF model. Also, the variability in the predictive performance of the

two models decreases with increasing sample sizes.

https://doi.org/10.1371/journal.pone.0279435.g006
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drawn independently of each other [14]. The strict assumption could be very amplified in the

smaller sample sizes than in larger sample sizes. The independence assumption affects the

combined 5 × 2-fold cv F-test where the assumption is that
P5

i¼1

P2

j¼1
ðpðjÞi Þ

2
and

P5

i¼1
s2
i are

independent which is not technically true [14].

Another explanation is the fact that machine learning models trained on a small dataset are

more likely to see patterns that do not exist, which results in high variance and very high error

on a test set. These are the common signs of overfitting. A study by [37] used datasests to train

supervised ML methods to classify healthy individuals and individuals with brain disorders.

The study used datasets with smaller sample sizes with a median number of samples equal to

88 and interestingly, the overall reported accuracy was higher in the datasets with smaller sam-

ple sizes [37, 38]. A study by [38] trained machine learning and classical statistical methods

using simulations at different sample sizes to provide an insight into whether the tendency to

report higher performance estimates with smaller sample sizes could be due to insufficiently

reliable validation. They used the K-Fold CV and their results showed that the machine learn-

ing model accuracies were considerably higher than the theoretical chance level of 50%. The

highest difference was observed with smaller sample sizes; however, the difference was still evi-

dent even at the sample size of N = 1000. The results from these two studies agree with the

results from our study as demonstrated in Fig 8 below. The RSF model which is a machine

learning model has unexpected smaller IBS values compared to the FG model under the null

hypothesis for smaller sample sizes. This implies that the RSF model was seeing patterns that

did not exist as shown in Fig 8.

Table 1. Summary of the simulations results.

Sample sizes % of significant t-statistics % of significant F-Statistics IBS FG model IBS RSF model

Linear simulations

200 20.10 8.80 0.18 0.22

300 38.40 21.60 0.17 0.21

400 47.90 32.60 0.17 0.21

500 60.10 43.10 0.16 0.21

2000 91.40 88.50 0.16 0.20

3000 94.90 95.40 0.16 0.19

Interaction simulations

200 21.40 10.20 0.25 0.22

300 16.80 6.70 0.24 0.22

400 15.00 5.70 0.23 0.22

500 12.80 3.30 0.23 0.22

2000 1.10 0.20 0.23 0.23

3000 1.80 0.10 0.23 0.23

Quadratic simulations

200 39.40 25.70 0.27 0.23

300 47.50 38.60 0.26 0.22

400 55.90 49.60 0.25 0.22

500 68.60 63.20 0.25 0.22

2000 99.90 99.90 0.24 0.21

3000 100.00 100.00 0.24 0.21

The mean CV IBS scores of the RSF and the FG model presented with the F and t-statics to show whether there is significant difference in performance for the two

models.

https://doi.org/10.1371/journal.pone.0279435.t001
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The bar charts in Fig 8 compare the validation performance of the RSF and the FG model

under the null hypothesis. Under the null, the models are expected to have an IBS value of

0.25. The bar charts confirm that the RSF model had smaller mean cv IBS values especially for

lower sample sizes compared to the FG model. The FG model model however, had higher

mean cv IBS as expected under the null. That is to say, values close to 0.25.

The study further investigated the distribution of the two test statistics under the null. The

histograms in Figs 9 and 10, present the distribution of the these test statistics under the null

hypothesis. Fig 9 shows that the F-statistics values are close to 1.0 for the large sample sizes

N = 2000 and N = 3000.

This is an indication that the F-statistic is “hovering around” 1 after repeatedly computing

the F-statistic for situations when the null is true. Fig 10 shows that the t-statistics under the

null is normally distributed but the peak of the graph is not at zero, for most of the sample

sizes except for the one where N = 3000. This indicates that obtaining a sample value close to

the null hypothesis is most likely in a larger sample size.

Discussion and conclusion

This study explores the existing statistical tests that can be used to identify a significant differ-

ence between classical and machine learning models in the analysis of survival data. The study

trained two models, that is the Fine-Gray and the Random survival forests for competing risks

in three low-dimensional data scenarios namely; the linear, the quadratic and the interaction

models. The Fine-Gray is a classical statistical model while the random survival forest model

Fig 7. The histograms present the observed Type I error for the 5 × 2-fold cv paired t-test, and the combined 5 × 2-fold cv F-test under the null.

The p-values for the two statistical tests under the null were obtained at six different sample sizes, 200, 300, 400, 500, 2000 and 3000. Under the null

hypothesis, the 5 × 2-fold cv paired t-test, has a higher Type I error compared to the combined 5 × 2-fold cv F-test. The distribution for its observed p-

values is uniform especially for larger sample sizes.

https://doi.org/10.1371/journal.pone.0279435.g007
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for competing risks is a machine learning model. The study revealed that the FG model is

superior in predictive performance in the linear-low-dimension data simulation scenarios and

that the difference in the predictive performance in comparison to the RSF is significant.

The study further revealed that the RSF model has lower IBS values in the interaction low-

dimension simulations but the two statistical tests showed that there is no significant differ-

ence in the predictive performance of this model in comparison with the FG model in the

interaction simulations.

Furthermore, the study showed that the RSF model is superior in predictive performance in

quadratic low-dimension data simulation scenarios compared to the FG model. The F and the

t-statistics tests also revealed that the difference in this predictive performance is highly signifi-

cant especially in large data samples.

This study confirms that in the presence of complex relationships between the outcome

and the predictors, the machine learning model (RSF) is superior in predictive performance.

In linear simulations, however, the FG model model is superior. These results are similar to

those obtained in the study by [5]. However, this study goes further to state whether this differ-

ence in predictive performance is significant or not.

The results revealed that sometimes there is no significant difference between the classical

statistical model and the machine learning model. Having knowledge of this can guide clini-

cians to use the most interpretable model. This result is important especially if the goal of any

Fig 8. The bar charts compare the validation performance of the RSF and the FG model under the null hypothesis. Under the null hypothesis, the

bar-charts are expected to have a height of 0.25. Under the null hypothesis, the bar charts show that the RSF model has smaller mean cv IBS values

compared to the FG model for lower sample sizes. The charts also indicate that the RSF model has higher mean cv IBS as expected.

https://doi.org/10.1371/journal.pone.0279435.g008
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Fig 9. The histograms present the F statistics for the combined 5 × 2-fold cv F test under the null at the six different sample sizes considered in

this study. Under a true null hypothesis, the F-statistic is “hovering around” 1 after repeated computations.

https://doi.org/10.1371/journal.pone.0279435.g009

Fig 10. The histograms present the t statistics for the the 5 × 2-fold cv paired t-test under the null at six different sample sizes considered in this

study. Under the null, the t-statistics are approximately normally distributed, however, the peak of the graph is not at zero, for most of the sample sizes

except for the largest sample size.

https://doi.org/10.1371/journal.pone.0279435.g010
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given study is not to predict the outcome which is usually the motivation for using a machine

learning model.

The study recommends that statistical tests such as the ones used in this study that is, 5 × 2-

fold cv paired t-test, and the combined 5 × 2-fold cv F-test become part of regular practice in

justification for the use of both machine learning and classical statistics models for data analy-

sis in medical studies.
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