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Abstract

The SARS-CoV-2 virus, the agent of COVID-19, caused unprecedented loss of lives and

economic decline worldwide. Although the introduction of public health measures, vaccines,

diagnostics, and therapeutics disrupted the spread of the SARS-CoV-2, the emergence of

variants poses substantial threat. This study traced SARS-CoV-2 variants circulating in

Uganda by July 2021 to inform the necessity for refinement of the intervention medical prod-

ucts. A comprehensive in silico analysis of the SARS-CoV-2 genomes detected in clinical

samples collected from COVID-19 patients in Uganda revealed occurrence of structural pro-

tein variants with potential of escaping detection, resisting antibody therapy, or increased

infectivity. The genome sequence dataset was retrieved from the GISAID database and the

open reading frame encoding the spike, envelope, membrane, or nucleocapsid proteins

was translated. The obtained protein sequences were aligned and inspected for existence

of variants. The variant positions on each of the four alignment sets were mapped on pre-

dicted epitopes as well as the 3D structures. Additionally, sequences within each of the sets

were clustered by family. A phylogenetic tree was constructed to assess relationship

between the encountered spike protein sequences and Wuhan-Hu-1 wild-type, or the
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Alpha, Beta, Delta and Gamma variants of concern. Strikingly, the frequency of each of the

spike protein point mutations F157L/Del, D614G and P681H/R was over 50%. The furin and

the transmembrane serine protease 2 cleavage sites were unaffected by mutation. Whereas

the Delta dominated the spike sequences (16.5%, 91/550), Gamma was not detected. The

envelope protein was the most conserved with 96.3% (525/545) sequences being wild-type

followed by membrane at 68.4% (397/580). Although the nucleocapsid protein sequences

varied, the variant residue positions were less concentrated at the RNA binding domains.

The dominant nucleocapsid sequence variant was S202N (34.5%, 205/595). These findings

offer baseline information required for refining the existing COVID-19 vaccines, diagnostics,

and therapeutics.

Introduction

Severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) caused the outbreak of

the coronavirus disease 2019 (COVID-19) pandemic [1, 2], which has affected millions of lives

around the world, and continues to cause deaths nearly three years after the emergence of the

disease. The World Health Organization (WHO) estimated confirmed cumulative cases and

deaths, as of the 2nd September 2022, at 601,189,435 and 6,475,3346, respectively; with new

cases per day at 618,970 [3]. Global excess deaths associated with COVID-19 for the period

January 2020 –December 2021 were estimated at 14.91 million [4]. According to the World

Bank [5], COVID-19 has affected 1.6 billion workers so far, especially in the wholesale and

retail businesses, food and hospitality, tourism, transport and manufacturing industries. Key

interventions, which reduced COVID-19 hospitalization and deaths were public health mea-

sures [6], COVID-19 tests [7], vaccines [8] and therapeutics [9]. Sustainability of this achieve-

ment will be guaranteed by conducting constant surveillance as well as evaluating

performance of the existing interventions.

The SARS-CoV-2 virus belongs to lineage 2b of the genus Betacoronavirus and the subge-

nus Sarbecovirus [2, 10]. The genome of this virus shares 87.99% identity with the bat SARS-

like CoV (bat-SL-CoVZC45, MG772933.1) [2]; however, the new virus was named 2019-new

coronavirus (2019-nCoV) by the WHO [11] because the identity of its conserved replicase

domains (ORF1ab) is less than 90% of the beta coronavirus. Six other human coronaviruses

(HCoVs) are HCoV-HKU1, HCoV-MERS, HCoV-SARS-CoV, HCoV-229E, HCoV-OC43

and HCoV-NL63. Whereas HCoV-HKU1, HCoV-MERS, and HCoV-SARS-CoV belong to

the genus Betacoronavirus, HCoV-229E, HCoV-OC43 and HCoV-NL63 belong to the genus

Alphacoronavirus [12].

The morphology of SARS-CoV-2 is that of a spherical virus decorated with spike, envelope

and membrane structural proteins traversing the virus envelope. Encased within the virus core

is a 26 to 32 kb linear positive-sense, single-stranded RNA genome tightly bound by nucleo-

capsid protein. The genome of SARS-CoV-2 has 5’-cap structure, 17 open reading frames

(ORFs) (1a, 1b, S, 3a, 3c, 3d, 3b, E, M, 6, 7a, 7b, 8, N, 9b, 9c and 14) and a 3’ poly adenine tail

[13]. The 5’- cap structure protects the genome from degradation by the host cytoplasmic

endonucleases. ORF 1ab is translated into a polyprotein, which is proteolytically cleaved into

16 non-structural proteins (replicase complex). Subsequent ORFs are individually transcribed

into sub-genomic RNAs prior to translation [14]. Aware of the diverse roles of SARS-CoV-2

proteins reviewed by Yadav et al. [13], we only highlighted the roles of structural proteins are

herein. The spike protein attaches the virus particle onto a cell surface receptor angiotensin-
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converting enzyme 2 (ACE2) [15] and its cleavage by furin as well as transmembrane serine

protease 2 (TMPRSS2) are essential for proteolytic activation of SARS-CoV-2 permitting host

cell entry [16]. The envelope protein forms a transmembrane ion channels [17], membrane

protein is required for virus assembly [18], and nucleocapsid protein protects the virus genome

[17]. Although membrane protein is the most abundant virus structural protein [13], Poran

et al. [19] showed that nucleocapsid protein is the most abundant protein inside SARS-CoV-2

infected host cells.

SARS-CoV-2 proteins form the basis of the existing COVID-19 vaccines, immunoassays,

and immunotherapies. Indeed, vaccine developments are constructed around 11 protein engi-

neering platforms namely protein subunit, non-replicating Viral Vector (VVnr), DNA, Inacti-

vated Virus, RNA, replicating Viral Vector (VVr), Virus Like Particle, VVr and Antigen

Presenting Cell combination, Live Attenuated Virus, VVnr and Antigen Presenting Cell com-

bination, and Bacterial antigen-spore expression vector. Viral protein(s) engineered through

these platforms either evoke neutralizing antibodies or induce CD4 and CD8-cell responses.

Heinz and Stiasny [20] comprehensively reviewed mechanisms of first-generation COVID-19

vaccines. COVID-19 immunoassays such as Panbio™ (Abbott), Standard Q COVID-19 Ag

Home Test (SD Biosensor) and Biocredit COVID-19 Ag Home Test Nasal (BioVendor R&D™)

are some of the commercial tests targeting SARS-CoV-2 proteins. Monoclonal antibody prod-

ucts targeting SARS-CoV-2 spike proteins are also in use [21].

Evidence shows that emerging SARS-CoV-2 variants [22] undermine vaccines [23, 24],

escape detection by diagnostic tests [25–27], or resist antibody therapies [24, 28–30]. Variants

are classified into lineages/families based on their observed similarity in amino acid substitu-

tion/deletion at the same mutation site(s) [31, 32]. Furthermore, classification is based on spe-

cific attributes such as resulting public health action, changes to receptor binding, reduced

neutralization by antibodies generated against previous infection or vaccination, reduced

treatment efficacy, potential diagnostic impact or predicted increase in transmissibility or dis-

ease severity. These include variants of concern (VOC), Variants of High Consequence

(VOHC), Variants of Interest (VOI) and Variants Being Monitored (VBM) [22]. Note that

first-generation COVID-19 medical products losing performance against emerging variants

were developed based on information acquired from Wuhan-Hu-1 reference strain

(NC_045512.2) genome. Therefore, surveillance of SARS-CoV-2 mutation profiles would

unequivocally inform the refinement of the existing COVID-19 medical products to effectively

tackle challenges imposed by these emerging variants. As such, the WHO advocates for “con-
tinual assessment of genomic diversity, including in antigenically important sites that may be
under selection, to help identify plausible candidate sites that might affect the efficacy of serologi-
cal assays” [33]. To this effect, a comprehensive retrospective analysis of the heterogeneity of

SARS-CoV-2 structural proteins derived from genome sequences originating from Uganda

was conducted.

Materials and methods

Dataset retrieval

SARS-CoV-2 genome sequences (n = 600) were retrieved from the Global Initiative on Sharing

All Influenza Data (GISAID) database [34]. The downloaded sequences were those deposited

by Medical Research Council/Uganda Virus Research Institute, London School of Hygiene &

Tropical Medicine Uganda Research Unit, Entebbe (MRC/UVRI & LSHTM) (n = 572), and

Makerere University College of Health Sciences (MAKCHS) (n = 28), and represented the

totality of the then available sequences submitted to GISAID from Uganda. These sequences

were derived from samples collected from the 21st March 2020, when the first case of COVID-
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19 was detected in Uganda, to 24th June 2021. This dataset was accessed from the 23rd June to

9th August 2021. Data processing and analyses were sequentially performed as outlined below

(Fig 1).

Translation of open reading frames

SARS-CoV-2 genome sequences were translated into structural proteins using getorf software

(EMBOSS, version 6.4.0.0) [35], and further validated with both Geneious Prime1 software

(Biomatters, version 2022.2.2) [36], and the National Center for Biotechnology Information

(NCBI) ORF finder [37] with ORF set to a minimum length of 150 nucleotides. The tri-nucleo-

tides ATG and UAG delineated the ORF start and stop codons, respectively. Those ORFs with

amplicon drop-outs were removed from the analysis. Translated sequences were imported to

BioEdit Sequence Alignment Editor software (Tom Hall, version 7.2.5) [38] where the

sequences were inspected for defects including truncations.

Multiple sequence alignment and analysis of variant positions

The Geneious Alignment package was used at the default setting (gap opening penalty = 12,

gap extension penalty = 3, and refinement iterations = 2) during global alignment of translated

sequences. Each of the alignment sets was exported to BioEdit where the extent of the variabil-

ity of amino acid residue (entropy) at every position was calculated. The entropy values gener-

ated, per alignment set, by the BioEdit were plotted usingMicrosoft Excel version 2019.

Fig 1. SARS-CoV-2 structural protein heterogeneity analysis scheme. SARS-CoV-2 whole genome sequences were retrieved from GISAID. ORFs were

translated into structural protein followed by multiple sequence alignment. (1) Point mutations on positions on the alignments were analysed for residue

composition and frequencies. (2) Variant positions were mapped on predicted epitopes and 3D structures. (3) Protein sequences sharing identity (100%) were

clustered into families. (4) Phylogenetic analysis was conducted to probe the relationship between Ugandan spike protein sequences and Wuhan-Hu-1 wild-

type (wt) or Alpha, Beta, Delta and Gamma the four spike variants of concern.

https://doi.org/10.1371/journal.pone.0279428.g001
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Thereafter, frequencies of residues occupying each of the variant positions, per alignment set

were plotted usingMicrosoft Excel.

Mapping mutations within the epitopes and on the 3D structures

To have insight into the possible effects of the mutations encountered on performance of vac-

cines, immunodiagnostics and antibody-based therapies, mutated positions were mapped

onto epitopes predicted in previous studies [39–42]. Also conducted was mapping of the

mutant positions on 3D structures accessed from the PDB [43] and the NCBI [44] databases.

RasWin Molecular Graphics software (GNU GPL, version 2.7.5.1) [45] was used for viewing

the downloaded structures prior to cleaning water and heteroatoms using the BOVIA Discov-
ery Studio client molecular software modelling (Dassault Systemes1, version 2021) [46]. The

PDB IDs 7DDD, 6VYO, 6WJI and 7K3G were used for mapping point mutations on spike

protein, nucleocapsid N-terminal domain (NTD), nucleocapsid C-terminal domain (CTD),

and envelope protein, respectively. Although 3-D structure of membrane protein is not yet

fully understood [47]; the structure was predicted from its primary sequence using the Alpha-
Fold2 protein 3D structure prediction software (Alphabet-DeepMind, version 2.1) [48] built in

UCSF ChimeraX software (University of California, version 1.4) [49]. Afterwards, annotations

of point mutations on the PDB structures were performed using UCSF ChimeraX.

Classification of sequence families

The diversities of sequence families existing within each of the aligned protein sets were estab-

lished. Alignments were imported to BioEdit and the sequences that were 100% identical were

clustered into a family. Afterwards, the number of sequence families and the number of

sequences per family (family size) were counted.

Phylogenetic analysis of spike protein

The relationship between the Ugandan spike protein sequences and wt, or the Alpha, Beta,

Delta and Gamma VOCs was investigated. A representative sequence was selected from each

of the Ugandan spike sequence families to generate less crowded tree. To this sequence data,

reference sequences i.e., Wuhan-Hu-1 wt (sp|P0DTC2|SPIKE SARS2), Alpha (QWE88920.1),

Beta (QRN78347.1), Delta (QWK65230.1) and Gamma (QVE55289.1) sequences were added.

The selected sequences were then analyzed usingMolecular Evolutionary Genetics Analysis
(MEGA) software (Pennsylvania State University, version 11) [50]. Briefly, the sequences were

first aligned byMultiple Sequence Comparison by Log-Expectation (MUSCLE) software

(drive5, version 3.8.31) using the default parameters. All the identified gaps were removed.

The evolutionary history was then inferred by using the Neighbor-Joining and Maximum

Likelihood methods with 1000 bootstrap. The evolutionary distances were computed using the

Dayhoff matrix-based method [51].

Ethics statement

This study was approved by the MAKCHS School of Biomedical Sciences Research Ethics

Committee (Approval number: SBS-2021-38), and the Uganda National Council for Science

and Technology (Approval number: HS1706ES). Given that secondary data was used, the need

for consent was waived by the MAKCHS Sciences School of Biomedical Sciences Research

Ethics Committee.
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Results

Mutations on SARS-CoV-2 structural proteins

Six hundred genome sequences, which constituted 0.03% of the total SARS-CoV-2 genome

sequences in GISAID nucleotide database (n = 2,264,896) as of 9th August 2021 were down-

loaded. Five Hundred and Seventy-Two (95.3%) of the sequences originated from MRC/UVRI

& LSHTM, and 28 (4.7%) from the MAKCHS. Full-length ORFs on the genome coding for

spike (n = 550), envelope (n = 545), membrane (n = 580), and nucleocapsid protein (n = 594)

were translated into respective proteins. On inspection of the translated protein sets, N-termi-

nally truncated membrane (n = 2) and nucleocapsid protein (n = 1) were discovered. The

three defective sequences were dropped from the analysis reducing the number of membrane

and nucleocapsid protein sequences to 578 and 593, respectively. Following alignment, posi-

tions harbouring variant amino acid residues were detected on spike (n = 137), envelope

(n = 3), membrane (n = 9), and nucleocapsid protein sequences (n = 68). Entropy (H(x)) plot

was generated to display positions harbouring variant residues and the degree of variability is

shown as spiking bars (Fig 2). Spike protein sequence variant positions peak heights ranged

from 0.01329 to 1.07852. The S1 subunit particularly the NTD, receptor binding domain

(RBD) and the neighbouring region proximal to S1/S2 junction had higher density of tall

peaks than the S2 subunit (Fig 2A). Specifically, conspicuous peaks were observed at positions

Fig 2. Entropy (Hx) plot showing location of positions having residue mismatch on alignment of SARS-CoV-2 structural proteins and the distribution of

variant positions over different domains/regions constituting the structural protein. (A) Residue changes affected 137 of 1273 positions on spike protein.

S1 subunit particularly the N-terminal domain (NTD), distal end of receptor binding domain (RBD), and positions proximal to the S1/S2 junction had higher

concentration of tall peaks than the S2 subunit. (B) Envelope protein had only 3 of 75 positions affected by residue changes. (C) Multiple residue changes

affected 9/222 positions across the membrane protein sequence. Except for position 82, residue changes on membrane proteins had low peak heights. (D)

Residue changes on nucleocapsid sequence affected 68/419 positions. Whereas tall peaks were concentrated at the extremities (N and C-terminals) and centre

of the nucleocapsid sequence, low peaks characterized the two RNA-binding domains. Table below each of the graphs shows the frequency of positions affected

by point mutations along the entire length of the protein by region/domain/site. Definition of abbreviations used for salient domains/regions: SP, signal

peptide; TMPRSS2, transmembrane serine protease 2; FP1, fusion peptide 1; FP2, fusion peptide 2; HR1, heptad repeat 1; HR2, heptad repeat 2; TM,

transmembrane domain; IC, intracytoplasmic C-terminal domain of spike protein.

https://doi.org/10.1371/journal.pone.0279428.g002
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19 (T19I/R, entropy 0.56595), 142 (G142D, entropy 0.57827), 156 (E156G, entropy 0.55317),

157 (F157L/del, entropy 1.07852), 158 (R158S/del, entropy 0.56595), 367 (V367S, entropy

0.67074), 452 (L452R, entropy 0.55932), 478 (T478K, entropy 0.55524), 613 (Q613H, entropy

0.67074), 614 (D614G, entropy 0.69076), 681 (P681H/R, entropy 0.82789), and 950 (D950N,

entropy 0.55317). Remarkably, in all the 550 spike protein sequences analysed both furin and

TMPRSS2 cleavage sites were unaffected by point mutations. The envelope protein had short

sparely distributed peaks confined to the transmembrane domain on position 21 (L21F,

entropy 0.01339) and at the CTD on positions 68 (S68P, entropy 0,06059) and 71 (P71L,

entropy 0.11268) (Fig 2B). The membrane protein had few randomly distributed variant posi-

tions with peak heights ranging from 0.01273 to 0.61174. The tallest peak was located at the

transmembrane domain 3 (TM3) on position 82 (I82S, entropy value 0.61174). Interestingly,

neither TM1-TM2 nor TM2-TM3 junction bore point mutation (Fig 2C). Peak heights on var-

iant positions at the nucleocapsid protein sequence ranged from 0.01245 to 0.89423 (Fig 2D).

Compared to the two RNA binding domains of the nucleocapsid protein sequence, tall entropy

peaks were more concentrated at the N-arm, SR rich motif and C-arm. Specifically, these tall

peaks were on positions 63 (D63G, entropy 0.53643), 202 (S202N, entropy 0.68944), 203

(R203K/M/N, entropy 0.89423), 215 (G215C, entropy 0.52377), and 377 (D377G/Y, entropy

0.55049).

Composition and frequency of amino acid residues at variant positions

Amino acid changes at variant positions were either substitutions, deletions (Del) or both. A

position X was said to be variant when at least one sequence from a collection of given struc-

tural protein sequences has a residue substitution or deletion. Except for positions 157, 614

and 681 on spike, wt residues predominated the variant positions of all the four structural pro-

teins. For spike proteins, positions 157 (F157L/Del; 37.09% F, 38.73% L, and 24.18% Del), 614

(D614G; 46.55% D, and 53.46% G), 681 (P681H/R; 46% P, 3.82% H, and 50.18% R) had the

least number of wt residue occupancy (<50%) followed by positions 367 (V367F; 60.55% V,

and 39.45% F) and 613 (Q613H; 60.55% Q, and 39.45% H) at 60%, and then positions 19

(T19I/R; 75.6% T, 0.18% I, and 24.18% R), 142 (G142D/Del; 75.27% G, 24.36% D, and 0.36%

del), 156 (E156G; 75.82% E, and 24.18% G), 158 (R158S/Del; 75.64% R, 0.18% S, and 24.18%

del), 452 (L452R; 75.27% L, and 24.73% R), 478 (T478K; 75.64% T, and 24.73% K), and 950

(D950N; 75.82% D, and 24.18% N) at 75% (Fig 3A). None of the three variant positions on the

envelope protein (L21F, S68P and P71L) had less than 90% wt residue occupancy, and position

82 (I82T; 69.9% I and 30.1% T) on membrane protein sequence had 70% wt residue occupancy

(Fig 3B and 3C). On inspection of nucleocapsid protein sequences, a marked reduction in the

number of wt residue was noticed at variant position 202 (S202N; 54.3% S and 45.7% N) fol-

lowed by 203 (R203K/M/S; 64.25% R, 12.65% K, 22.93% M, and 0.17% S) and then positions

63 (D63G; 77.23% D, 22.77% G); 215 (G215C; 78.25% G, and 21.75% C), and 377 (D377G/Y;

76.9% D, 0.17% G, 22.93% Y). The rest of variant positions had�80% wt residue occupancy

(Fig 3D).

Mapping variant positions within the epitopes and spatial location on 3D

structures

An assessment was conducted to predict the possible effects that these encountered point

mutations may have on vaccines, immunoassays, and immunotherapies on the basis of their

locations on the epitope sequences as well as 3D structures of each of the four structural pro-

teins. Indeed, most mutated positions occurred within the predicted epitopes. We found that

91/137 mutated positions on spike protein were located within the epitopes, envelope had 3/3,

PLOS ONE Mutation profiling of SARS-CoV-2 structural proteins circulating in Uganda

PLOS ONE | https://doi.org/10.1371/journal.pone.0279428 December 22, 2022 7 / 21

https://doi.org/10.1371/journal.pone.0279428


Fig 3. A: Composition and frequency of residues, represented with one letter code, occupying each of the 137 variant positions on SARS-CoV-2 spike

protein. A1, composition and frequency of residues occupying variant positions 5–159; A2, composition and frequency of residues occupying variant positions

181–532; A3, composition and frequency of residue occupying variant positions 534–936; A4, composition and frequency of residues occupying variant

positions 938–1273. Height of light blue bars qualifies the frequency of wt-like residues. Heights of pink, grey and yellow bars qualify the frequency of amino

acid residue variants 1, 2 and 3, respectively. The arrows are on positions where substantial reduction in the frequency of wt-like residues occurred. The red,

orange and yellow arrows are on positions where frequency of wt residues is below 50%, at 60±5%, and at 70±5%, respectively. It is worthy noting that at any

variant position there is Wuhan type residue and a substitution and/or Del being referred to as wild-type residue and variant residue type, respectively. As an

example, at position 69 of spike protein sequences analyzyed, there were 486 sequences bearing Wuhan type residue (Wild-type residue), one sequence had

H69Y substitution point mutation (Variant residue type 1) and 63 sequences had H69Del (Variant residue type 2). Numerical assignment of variant residue

types 1, 2 and 3 was random. B and C: Composition and frequency of residues, represented with one letter code, occupying each of the three variant

positions on the SARS-CoV-2 envelope protein (B) and nine variant positions on membrane protein (C). Height of the light blue bars qualifies the

frequency of wt-like residues. The pink, and grey bars qualify the frequency of variant residue type 1 and 2, respectively. B, three variant positions occurred on

envelope protein on positions 21 (L21F), 68 (S68P) and 71 (P71L). C, nine variant positions were detected on the membrane protein. The yellow arrow on

position 82 shows wt-like residue occupancy is within 70 ± 5%. At any variant position there is Wuhan type residue and a substitution being referred to as wild-
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membrane had 6/9, and the nucleocapsid had 46/68. Two spike variants, G446V and L452R,

previously shown to resist convalescent sera and monoclonal antibody therapies, respectively

[52] are surprisingly located within the predicted T-cell epitopes [40]. This information is

summarized (Table 1).

Next, we mapped the variant sites on the 3D structures (Fig 4). PDB ID: 7DDD used for

locating variant sites on the 3D of spike protein had 110/137 (80%) of variant positions.

Whereas 55 of these variant sites were solvent exposed, 55 were located inside the protein core.

The exposed variant sites were dispersed all-over the spike protein but the density was higher

at the periphery of the dorsal surface (Fig 4A). Envelope protein had three variant sites; how-

ever, we were able to locate L21F only on the PDB ID: 7K3G luminal surface (Fig 4B). Due to

the lack of available experimental structures, the structure of the membrane protein was pre-

dicted using AlphaFold. The structural model was perceived to be reliable based on the rela-

tively high AlphaFoldmodel confidence (pLDDT) scores (S1 Fig). All the nine variant

positions could be located on the predicted structure. The S2F is located on the extravirion

NTD; A69S, V70F, I82T and A85S are located on the transmembrane helix; and positions

M109I, H155Y/N and Q185H are located on the intravirion CTD (Fig 4C). For the nucleocap-

sid protein, 36.8% (25/68) variants sites were located. Fourteen of these 25 variant sites were

located on the NTD (PDB ID: 6VYO), and 11 were located on the CTD (PDB: 6WJI) (Fig 4D).

While 11 out of the 14 variant sites located on the NTD were surface exposed, 10 of the 11 vari-

ant sites on CTD were surface exposed.

SARS-CoV-2 structural protein sequence variants circulating in Uganda

Structural protein sequences that were 100% identical with respect to residues occupying a

given position were clustered into a family. Each of the four structural proteins had multiple

clusters depicting sequence heterogeneity. The spike protein formed the most numerous clus-

ters (n = 141) followed by nucleocapsid (n = 81), membrane (n = 11) and envelope protein

(n = 4). Further analysis was conducted to establish the size of each of the sequence families.

For the spike protein, family 109 comprising typical Delta VOC was the largest and accounted

for 16.5% (91/550) of the sequences followed by family 17 characterized by F157L, V367F and

Q613H combined mutation (10.5%, 58/550); family 27 characterized by F157L, V367F,

Q613H and P681R combined mutation (9.3%, 51/550); family 2 characterized by D614G single

mutation (7.6%, 42/550); family 28 characterized by R102, F157L, V367F, Q613H and P681R

combined mutation (7.1%, 39/550); family 1 comprising typical Wuhan-Hu-1 wt (4.4%, 24/

550); family 79 characterized by Q52R, A67V, HV69-70 Del, Y144 Del, E484K, D614G,

V551H and F888L combined mutation (4%, 22/550); and family 126 characterized by T19R,

G142D, E156G, FR157-158 Del, L452R, T478K, D614G, P681R, D950N and A1078 combined

mutation (2.5%, 14/550). The rest of the sequence families (n = 133) had fewer sequences rang-

ing from 8 to 1 (1.5% to 0.2%). Among the notably small-sized spike sequence families were

family 78 comprising typical Beta VOC (1.5%, 8/550) and family 96 comprising typical Alpha
(1.1%, 6/550) (S1 Table). For the envelope protein, family 1 comprising only Wuhan-Hu-1 wt
sequences was the most abundant (96.3%, 525/545) followed by family 4 characterized by

type residue and variant residue type, respectively. D: Composition and frequency of amino acid residues, represented with one letter code, occupying each

of the 68 variant positions on SARS-CoV-2 nucleocapsid protein. D1, composition and frequency of residues occupying variant positions 2–207; and D2,

compositions and frequency of residues occupying variant positions 208–418. Height of the light blue bars qualifies the frequency of wt-like residues. Heights

of pink, grey and yellow bars qualify the frequency of variant residue type 1, 2 and 3, respectively. Five positions (63, 202, 203, 215 and 377) with low frequency

of wt-like residues are shown. Positions 202 and 203 (orange arrows) had 54.3% and 64.2% wt residue, respectively. Positions 63, 215, and 377 (yellow arrows)
had 77.2%, 78.2% and 76.9% wt residues, respectively. At any variant position there is Wuhan type residue and a substitution and/or Del being referred to wild-
type residue and variant residue type, respectively.

https://doi.org/10.1371/journal.pone.0279428.g003
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Table 1. Point mutations located within the predicted epitopes on SARS-CoV-2 Wuhan-Hu-1 wt structural proteins.

Protein Mutation (s) encountered on predicted

epitopes

Sequence of the epitope affected Start-

End

Epitope type Location on structural protein domain/

region

Reference

Spike L5F, V6F, V11I FVFLVLLPLV 2–11 T cell (MHC-I) S1 [39]

H49Y, Q52I/R HSTQDLFLPF 49–58 T cell (MHC-I) S1 [39]

R102G/I/K, I105V, D111N IRGWIFGTTLDSKTQSLL 101–

118

T cell (MHC-II) S1 [40]

N122S QSLLIVNNATNVVIK 115–

129

T cell (MHC-II) S1 [39]

D138H/Y, L141Del, G142D/Del, V143Del,
Y144Del, H146Q, N148T, M153I, E154K,

E156G, F157L=Del, R158S/Del, V159A

KVCEFQFCNDPFLGV Y YHKNNKSWMESEF RVY 129–

160

B & T cell S1 [42]

V143Del, Y144Del, H146Q, N148T VYYHKNNKS 143–

152

B cell S1 [39]

G181E, G184V QPFLMDLEGKQGN 173–

185

T cell (MHC-II) S1 [40]

T240I, L241Del, L242Del, A243Del, W258R TRFQTLLALHRSYLTPGDSSSGW 236–

258

T cell (MHC-II) S1 [40]

W258R, G261V, V267L GDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGT 252–

284

B & T cell S1 [42]

T307A DAVDCALDPLSETKCTLKSFTVEKGIYQTSN 287–

317

B cell S1 [40]

KSFTVEKGIYQTSNFRVQ 304–

321

T cell (MHC-II) S1 [40]

P330S VRFPNITNLCPFGEVFN 327–

343

B & T cell S1 [41]

P384L SASFSTFKCYGVSPTKL 371–

387

T cell (MHC-II) S1 [40]

K417N RQIAPGQTGK 408–

417

T cell (MHC-I) S1 [39]

D427Y KLPDDFTGCV 424–

433

T cell (MHCI) S1 [40]

G446Va, Y451H, L452Rb NLDSKVGGNYNYL YRLFR 440–

457

T cell (MHC-II) S1 [40]

Y451H, L452R, K462I YLYRLFRKSNLKPFERDI 451–

468

T cell (MHC-II) S1 [40]

K462I KPFERDISTEIYQ 462–

474

T cell (MHC-II) S1 [40]

K462I, G476S, T478K, E484K=Q, F490S, S494P KPFERDISTEIYQAGSTPCNGVE GFNCYFPLQS 462–

494

B & T cell S1 [42]

F490S, S494P CYFPLQSYGF 488–

497

T cell (MHC-I) S1 [39]

A520S FELLHAPATV 515–

524

T cell (MHC-I) S1 [39]

N532T, V534A, K558N, A570D, T572I, A575S,

E583D

VCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVI 524–

598

B cell S1 [40]

Q613H, D614G, P621S, V622F, S640F GTNTSNQVAVLYQD VNCTEVPVAIHADQLTPTWRVYSTGS 601–

640

B cell S1 [40]

Q677H/R DIPIGAGICASYQTQTNS 663–

680

B & T cell S1 [41]

P681H/R, A684T/V, A688S SPRRARSVAS 680–

689

T cell (MHC-I) Overlaps S1 & S2 [39]

A701V, S704L, V705F QSIIAYTMSLGAENSVAY 690–

707

T cell (MHC-II) S2 [40]

SLGAENSVAY 698–

707

T cell (MHC-I) S2 [39]

K786E, P793L, I794F, D796H/Y VKQIYKTPPIKDFGGFNF 785–

802

T cell (MHC-II) S2 [40]

F888G, A899S FGAGAALQIPFAMQMAYRFNGI 888–

909

B cell S2 [40]

A899S GAALQIPFAMQMAYRFN 891–

907

B & T cell S2 [41]

PFAMQMAYRF 897–

906

T cell (MHC-I) S2 [39]

PFAMQMAYRFNGIGVTQ 897–

913

B & T cell S2 [41]

D936V, L938F, S939F, D950N DSLSSTASALGKLQDVV 936–

952

T cell (MHC-II) S2 [40]

S982A VLNDILSRL 976–

984

T cell (MHC-I) S2 [40]

I1018V QLIRAAEIRASANLAATK 1011–

1028

T cell (MHC-I) S2 [40]

T1066N VVFLHVTYV 1060–

1068

B & T cell S2 [41]

T1066N, A1070V, Q1071H HVTYVPAQEK 1064–

1073

T cell (MHC-I) S2 [39]

H1101Y, E1111Q HWFVTQRNFYEPQII 1101–

1115

T cell (MHC-I) S2 [40]

P1162S KNHTSPDVDLGDISGIN 1157–

1173

B & T cell S2 [41]

A1174V, V1176F DLGDISGINASVVNIQK 1165–

1181

B & T cell S2 [41]

E1202Q, K1205N EIDRLNEVAKNLNESLIDLQELGKYEQY 1182–

1209

B & T cell S2 [41]

G1219V KWPWYIWLGF 1211–

1220

T cell (MHC-I) S2 [39]

E1262G, V1264L, T1273I CKFDEDDSEPVLKGVKLHYT 1254–

1273

B & T cell S2 [41]

(Continued)
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Table 1. (Continued)

Protein Mutation (s) encountered on predicted

epitopes

Sequence of the epitope affected Start-

End

Epitope type Location on structural protein domain/

region

Reference

Envelope L21F FL AFVVFLLV 20–29 T cell (MHC-I) Helical TM [39]

S68P, P71L SRVKNLNSSRVP 60–71 B cell CTD [39]

Membrane A2S MADSNGTITVEELKKLLEQWNLVI 1–24 B cell Overlaps NTD & Helical TM1 [40]

A69S, V70F TLACFVLAAV 61–70 T cell (MHC-I) Helical TM2 [39]

M109I ASFRLFARTRSMWSF 98–112 T cell (MHC-II) Overlaps Helical TM3 & CTD [39]

FRLFARTRSM 100–

109

T cell (MHC-I) CTD [39]

FARTRSMWSF 103–

112

T cell (MHC-I) CTD [39]

H155N/Y HLRIAGHHL 148–

156

T cell (MHC-I) CTD [40]

Q185H TSRTLSYYKLGASQRV 172–

187

B & T cell CTD [41]

Nucleocapsid D3L/Del, A12G/V, P13S DNGPQNQRNAP 3–13 B cell N-arm [39]

A55S PQGLPNNTASWFTALTQHGKE 42–62 B cell Overlaps N-arm & RNA binding domain [40]

V72L FPRGQGVPIN 66–75 T cell (MHC-I) RNA binding domain [39]

A90T IGYYRRATRRIRGGD 84–98 T cell (MHC-II) RNA binding domain [39]

D103Y GGDGKMKD 96–103 B cell RNA binding domain [39]

A138S, N140Y, T141I, P142A, D144Y ALNTPKDHI 138–

146

T cell (MHC-I) RNA binding domain [40]

T166I NNNAATVLQLPQGTTLPKGF 153–

172

B cell RNA binding domain [40]

LQLPQGTTL 159–

167

T cell (MHC-I) RNA binding domain [40]

A182V, S186F, S194L, R195I/K AEGSRGGSQASSRSSSRSRNSSRNS 173–

197

B cell Overlaps RNA binding domain & SR-rich

motif

[39]

A182V, S186F SRGGSQASSRSSSRSR 176–

191

B & T cell SR-rich motif [41]

G215C AGNGGD 211–

216

B cell Inter SR-rich motif–Dimerization domain

RNA binding

[39]

G215C, A217V GDAALALLLL 215–

224

T cell (MHC-I) Inter SR-rich motif–Dimerization domain

RNA binding

[40]

Q229H LLLDRLNQL 222–

230

T cell (MHC-I) Inter SR-rich motif–Dimerization domain

RNA binding

[40]

Q229H, M234I RLNQLESKM 226–

234

T cell (MHC-I) Inter SR-rich motif–Dimerization domain

RNA binding

[40]

M234I, S235F, G236V ESKMSGKGQQQQGQT 231–

245

B cell Inter SR-rich motif–Dimerization domain

RNA binding

[39]

E253A QQQGQTVTKKSAAEASKK 240–

257

B & T cell Overlaps Inter SR-rich motif–

Dimerization domain RNA binding &

Dimerization domain RNA binding

[41]

T265I, A267T ATKAYNVTQAFGRRG 264–

278

T cell (MHC-II) Dimerization domain RNA binding [39]

TKAYNVTQAF 265–

274

T cell (MHC-I) Dimerization domain RNA binding [40]

Q294K, H300Y IRQGTDYKHWPQIAQFA 292–

308

B & T cell Dimerization domain RNA binding [41]

P326L/S, S327L AQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAI 305–

337

T cell (MHC-II

& I)

Dimerization domain RNA binding [42]

FFGMSRIGMEVTPSGTW 314–

330

B & T cell Dimerization domain RNA binding [41]

MEVTPSGTWL 322–

331

T cell (MHC-I) Dimerization domain RNA binding [39, 40]

D348Y NFKDQVILL 345–

353

T cell (MHC-I) Dimerization domain RNA binding [40]

A359T, K361I, T362I, P364L, P365L/S, E367D,

P368T, K373N, D377G/Y, P383L/S, R385K,

T391I, A398S, D399Y

KHIDAYKTFPPTEPKKDKKKKTDEAQPLPQRQKKQPTVTLLPAADLD 355–

401

B cell Overlaps Dimerization domain RNA

binding & C-tail

[40]

K361I, T362I, P364L, P365L/S, E367D, P368T,

K373N

YKTFPPTEPKKDKKKK 360–

375

B & T cell Overlaps Dimerization domain RNA

binding & C-tail

[41]

K361I, T362I, P364L, P365L/S, E367D, P368T KTFPPTEPKK 361–

370

T cell (MHC-I) Overlaps Dimerization domain RNA

binding & C-tail

[39]

D415A QSMSSADS 408–

416

B cell Overlaps Dimerization domain RNA

binding & C-tail

[39]

The underlined amino acid residues located on epitope sequences have either undergone substitution or deletion. Potential influential positions annotated on the 3D

structures are coloured.
aMutation (G446V) shown to resist convalescent serum [52]
b Mutation (L452) shown to resist neutralizing monoclonal antibody [52].

https://doi.org/10.1371/journal.pone.0279428.t001
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P71L single mutation (2.4%, 13/545), family 2 characterized by L21F single mutation (1.1%, 6/

545), and the least being family 3 characterized by S68P single mutation (0.2%, 1/545) (S2

Table). Likewise, sequence family 1 in the membrane protein group comprising typical

Wuhan-Hu-1 wt had the largest size (68.4%, 397/580) followed by family 9 characterized by

I82T single mutation (28.4%, 165/580); family 5 characterized by I82T and M109I combined

mutation (1%, 6/580); and family 8 characterized by A38S single mutation (0.9%, 5/580). The

rest of families comprised of single member each contributing 0.2% of the entire membrane

protein sequence collection. We characterized family 5 by V70F and H155Y combined muta-

tion, family 3 by A2S and I82T combined mutation, family 4 by I82T and H155N combined

mutation, family 6 by I82T and Q185H combined mutation, family 7 by A2S single mutation,

family 10 by A69S single mutation and family 11 by A85S single mutation (S3 Table). Of the

nucleocapsid protein sequences, family 2 characterized by S202N single point mutation, had

the largest size (34.5%, 205/594) followed by family 71 characterized by D63G, R203M,

G215C, D377Y combined mutation (18.9%, 112/594), family 1 comprising typical Wuhan-

Hu-1 wt (5.9%, 35/594), family 52 characterized by S2Y, D3Del, A12G, T205I combined muta-

tion (5.2%, 31/594), family 11 by S2Y, S202N, R203K combined mutation (4.2%, 25/594), and

family 9 by D402Y single point mutation (3.9%, 23/594). The rest of the families (n = 75) had

between 8 and 1 members (S4 Table).

Phylogeny of the spike protein

The relationship between the Uganda SARS-CoV-2 spike protein sequences (n = 550) and

Wuhan-Hu-1 wt (P0DTC2) reference strain or VOCs including Alpha (QWE88920.1), Beta
(QRN78347.1), Delta (QWK65230.1) and Gamma (QVE55289.1) was assessed in order to

establish which of the strain (s) was circulating in Uganda. Uganda sequences clustered with

Wuhan-Hu-1 wt, the Alpha, Beta, and Delta VOCs but not Gamma (S2 Fig). Two hundred

and fifty-six sequences (from 62 families) clustered with Wuhan-Hu-1 wt, 133 sequences

(from 20 families) clustered with Delta VOC, 17 sequences (from 10 families) clustered with

Alpha VOC (orange-brown dot), and 13 sequences (from six families) clustered with Beta
VOC. Then there were 131 sequences (from 43 families), which neither clustered with

Wuhan-Hu-1 wt nor the 3 spike VOCs (Alpha, Beta, and Delta). Of these un-clustered

sequences, 14 (from 7 families) strongly clustered with family 79, which comprised of 22

sequences.

Discussion

The genome of SARS-CoV-2 virus has accumulated several mutations [53], which have

decreased the performance of diagnostics and therapeutic antibodies. For these reasons, refine-

ment of first-generation COVID 19 medical products in tandem with emerging virus variants

Fig 4. Exposed variant positions on the 3D structure (chain A, coloured white) of SARS-CoV-2 structural

proteins. (A) Spike protein PDB ID: 7DDD, (B) Envelope protein PDB ID: 7K3G, (C) Membrane protein (Chain

A) structure generated by AlphaFold2, and (D) Nucleocapsid protein N-terminal domain PDB ID: 6VYO or C-

terminal domain PDB ID: 6WJI. Coloured amino acid residues on Chain A indicate positions with entropy value

above zero. Red, entropy value� 1; orange, entropy value� 0.5� 1; yellow entropy value<0.5�0.1; and green

entropy value<0.1. (A) variant positions were dispersed all-over spike protein surface albeit positions with high

entropies being more concentrated on the dorsum. (B) variant position 21 (L21F) on envelope protein was mapped to

the luminal surface of the pentameric ion channel. (C) Except for a single variant position located on the extravirion of

the membrane protein, the rest were either at the transmembrane junction or intravirion. (D) variant positions were

evenly distributed on the surface of both N- and C-terminal domains of nucleocapsid. However, N-terminal domain

had variant positions with relatively high entropy values (yellow) unlike the C-terminal where all the variant positions

had low entropy values below 0.1 (green).

https://doi.org/10.1371/journal.pone.0279428.g004
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is required. Using SARS-CoV-2 structural protein sequences originating from Uganda as a

case study, retrospective profiling was conducted to ascertain degree of heterogeneity, which

occurred between March 2020 to June 2021.

Although mutations affected multiple positions on each of the structural proteins, spike

and nucleocapsid proteins were the most affected. The S1 subunit (mostly NTD, RBD and the

region upstream the S1/S2 junction) of spike protein was more affected than the S1 in agree-

ment with Jia and Gong [54]. The volatility of residues located on a more exposed S1 subunit

allows the virus to thwart antibody neutralization [55] thereby promoting transmission [56].

Unlike S1, the concealed S2 subunit [57] was more conserved. Owing to its crucial roles in sta-

bilization of the spike protein architecture [57] and host cell membrane fusion [13, 58], exten-

sive mutation of S2 could be detrimental to the virus. Similarly, high fidelity of both furin and

TMPRSS2 cleavage sites explains their crucial role in proteolytic activation of SARS-CoV-2

virus for host cell entry and mutation of any of these two sites is lethal [16]. Hence, the invari-

ant S2 subunit offers opportunity for development of cross-reactive protein-based vaccines,

immunoassays and immunotherapies compared to S1. However, inaccessibility of S2 by large

therapeutic molecules may present a problem. Low molecular weight therapeutic compounds

such as nanobodies [59] and antimicrobial peptides [60] overcome obstructed access to such

buried targets on the virus. Unlike spike or nucleocapsid, envelope and membrane proteins

were more conserved throughout their entire lengths. Conservation of both envelope and

membrane proteins is in order given their concealment from neutralizing antibodies. More-

over, the lengths of these two proteins are relatively short [47] meaning their mutations can

result in functional impairment leading to the loss of viral fitness as shown by Verdiá-Báguena

et al. [61] that mutations N15A and V25F impair ion conductivity of the envelope protein. The

invariant nature of envelope and membrane proteins offer suitable targets where cross-reactiv-

ity is required. For nucleocapsid protein, the RNA binding domains were conserved although

their flanking regions were variant as it was previously reported [62]. Relative conservation of

RNA binding domains is attributable to strict selection of residues for specific RNA interacting

residues, which is not the case with residues located in the variant regions. A consequence of

mutation on nucleocapsid is antigenic drift, which has led to false-negative test result by nucle-

ocapsid-based commercial tests [27, 63]. Assessment of the performance of panels of nucleo-

capsid-based reagents on recombinant forms of predominant variants documented in this

study is therefore highly recommended.

Outstanding variant positions on the spike protein were F157L/Del at the NTD, D614G

located distal to the RBD, and P681H/R located proximal to the S1/S2 furin cleavage site.

F157L/Del variant characterizes SARS-CoV-2 virus lineage A.23.1 detected in Uganda [64]. It

is presumptive to link the dominance of F157L/Del to immune escape given its location on a

predicted epitope published elsewhere [42]. On the other hand, co-evolution of F157L/Del

with P681H/R variant, which is known for promoting cell membrane fusion [65], could have

enhanced infectivity resulting in proliferation of the variant. D614G global dominance was

reported earlier [66, 67] and it is associated with increased infectivity [66] ascribed to re-con-

figured RBD, which favors ACE2 receptor binding [67]. Given that existing vaccines, diagnos-

tics and neutralizing antibodies panels were raised against Wuhan-Hu-1 wt targets, extensive

validation of these products on F157L/Del, D614G and P681H/R variants is, therefore, highly

recommended. Although they have not surpassed wt, V367F and Q613H spike variants require

follow-up because of their apparent rising levels. Apparent increase in the frequency of V367F

spike variant contradicts reports that it is sensitive to neutralizing antibodies [52]. Low herd

immunity at the start of the pandemic in combination with co-evolution of V367F with fusion

promoting P681H/R variants could explain observed sharp rise. A sharp rise in Q613H variant

is speculated to be associated with increased transmissibility following re-configuration of
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RBD like the D614G, and co-evolution with the P681H/R variant, which promotes cell fusion.

Apart from dominant spike variants, underrepresented variants encountered require close

monitoring to avert a possible buildup into a next pandemic. For example, Li et al. [52] has

shown that low frequency L452R variant located on predicted T-cell epitopes [40] resists anti-

body neutralization showing the variant harbors capability of proliferation to epidemic levels.

Envelope protein variants (L21F, S68P or P71L) were remarkably lower than the wt. P71L vari-

ant, which was the most predominant among the envelope protein variants co-evolves with

the Beta spike VOC [68], and L21F variant, the second most predominant variant, co-evolves

with the Eta spike variant of interest [69]. Thus, association with highly transmissible spike

variants explain relative high proliferation of P71L and L21F envelope sequence variants.

Membrane protein had nine variant positions and I82T being the most highly represented

(Fig 3C). Co-evolution of I82T sequence variant with the highly transmissible Delta spike vari-

ant [70] explains its high frequency. Worth noting, frequencies of other membrane protein

variants were extremely low irrespective of their topology (Figs 2C and 4C) and location

within epitopes (Table 1) meaning that these two attributes may not have much influence on

their propagation. The most predominant variant S202N on nucleocapsid protein co-evolves

with a highly transmissible lineage A.23.1 spike variant [64], and the second most predominant

variant R203K/M co-evolves with the Theta, Omicron and Delta spike variants [71]. High pro-

liferation of S202N and R203K/M, both co-evolving with high transmissible spike variants,

shows the positive influence of spike protein has on propagation of other SARS-CoV-2 struc-

tural proteins. Collectively, it is now apparent that mutation of spike protein to a highly trans-

missible variant drives amplification of remotely located co-evolving variants.

Protein sequences were grouped by family based on 100% identity of residues at each of the

positions. Spike protein formed the most diverse clusters totaling to 141 families followed by

nucleocapasid (n = 81), membrane (n = 11) and envelope (n = 4). Of the spike protein

sequence families, typical Wuhan-Hu-1 wt family had unexpectedly few members (n = 24)

representing 4.36% (24/550) of the entire spike sequences recorded. Wuhan-Hu-1 wt family

was present at the beginning of the pandemic and quiesce by October, 2020. Low frequency of

Wuhan-Hu-1 wt spike sequence is mostly attributed to transmission interruption due to strict

implementation of public health measures at the very beginning of the pandemic. While the wt
strain wanes, new spike variants emerged and became dominant causing mild to severe dis-

ease. The new variants were able to spread rapidly for two major reasons: (1) laxity in the

implementation of public health measures, and (2) resistance to herd immunity induced by

natural exposure as well as vaccine. Thus, the latter can be overcome through accelerating vac-

cine coverage employing next-generation spike variant derived cocktail vaccine. Majority of

envelope protein (96.3%) and membrane protein (68.4%) sequences were wt. Next to Wuhan

wt, the outstanding membrane protein sequence family was I82T variant. I82T sequence vari-

ant co-evolves with the highly transmissible Delta spike variant explaining its high prevalence

in the population. Like spike, typical Wuhan-Hu-1 nucleocapsid protein sequence was poorly

represented accounting for 5.9% (35/593) of the entire sequences. This typical Wuhan-Hu-1

nucleocapsid protein sequence could not be detected by September 2020 coinciding with the

disappearance of Wuhan-Hu-1 wt spike protein sequence signifying that SARS-CoV-2 viruses

possessing parent spike as well as nucleocapsid proteins may have loss fitness in the course of

the pandemic. Nucleocapsid sequence variant S202N has the most predominant sequence fam-

ily with 205 members (34.5%). As it was noted earlier, S202N sequence variant is highly ampli-

fied courtesy of co-evolution with a highly transmissible lineage A.23.1 spike variants.

Collectively, observed rapid evolution particularly of the spike and nucleocapsid sequences

calls for rapid refinement of Wuhan-Hu-1 wt based vaccines, diagnostics and immunotherapy

to incorporate predominant and fixated sequence families to catch up with the pace of virus
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evolution. Where target conservation is required for cross-reactivity, envelope and membrane

protein are suitable candidates. However, the use of vaccines, diagnostics and therapeutics

designed based on wt sequence information should not yet be discouraged without gathering

concrete proofs through repeated experimental evidence.

The evolutionary relationship between circulating spike protein sequences and Wuhan-

Hu-1 wt or the Alpha, Beta, Gamma and Delta VOCs was assessed. The majority of sequences

clustered with Wuhan-Hu-1 spike followed by Delta, Alpha, and Beta. Gamma and related

sequences were absent from the 550 sequences examined. There were other large groups of

sequences that neither clustered with Wuhan-Hu-1 wt nor the VOCs. The observed sequence

clustering patterns is not surprising. The majority of the sequences circulating in Uganda were

closely related to Wuhan-Hu-1 wt given that sequence dataset where from samples collected

from the first wave and immediately before the second wave when mutations were not yet

extensive. Besides, at the beginning of the pandemic there was mandatory hospitalization and

intensive case surveillance, which allowed collection of many Wuhan-Hu-1 wt related

sequences. Also encountered in the dataset were the typical VOCs and related sequences,

which emerged later in the course of the pandemic. These VOCs appeared in the trough lying

between the crests of the first and second waves [72]. The Alpha and Beta clusters were much

lower than Delta. Alpha and Beta VOCs appearance coincided with the time when Uganda

was observing strict public health measures, which limited their transmission consequentially

diminishing their population. Also, subclinical infections, which did not lead to hospitalization

accounted for low recovery of SARS-CoV-2 virus variants causing mild infections. On the

other hand, the Delta variants entered Uganda several months after the first lockdown when

the biosecurity measures were no longer being maximally observed. This factor led to rapid

transmission of SARS-CoV-2 variants, Delta variant inclusive, circulating at the time culmi-

nating in a second infection wave. Moreover, the virulent nature of the Delta spike variant led

to massive hospitalization maximising the chances of sample collection for sequencing. It can

be argued that public health measures instituted at the beginning of the pandemic followed by

the implementation of vaccination programme greatly influenced the transmission of SARS-

CoV-2 wt and other variants in Uganda. Therefore, the dynamics of SARS-CoV-2 variants

described herein defines a Uganda situation, which may sharply vary from other countries.

Conclusion

We showed that SARS-CoV-2 viruses that were circulating in Uganda within the study period

had heterogenous structural proteins. Firstly, the findings of this surveillance study will con-

tribute to the body of knowledge required for research and development of COVID-19 next-

generation medical products targeting emerging SARS-CoV-strains. Secondly, the study pro-

vides baseline data for evaluating and measuring evolution of SARS-CoV-2 variants on a time

scale. Thirdly, the investigation highlighted the dynamics of SARS-CoV-2 structural protein

variants, which would guide policy makers on the choices of vaccines, test platforms and thera-

peutics befitting SARS-CoV-2 virus strains in circulation. The study was limited by the num-

ber of sequences analyzed, which were below the total number of COVID-19 reported cases in

Uganda (n = 1,249) as of 9th August 2021 available at [72]. Firstly, it is recommended that

global sequence dataset representing cases which occurred in the country be analyzed. Sec-

ondly, experimental data should be generated to foster the evidence-based understanding of

the impact of encountered SARS-CoV-2 structural protein mutations on the course and con-

trol of COVID-19 disease. Thirdly, data from this study may not mirror and/or reflect the situ-

ation in other countries; therefore, it is recommendable that every country performs a

comprehensive analysis of SARS-CoV-2 mutation trends.
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Supporting information

S1 Fig. AlphaFold modelled structure of SARS-CoV-2 membrane protein.

(TIF)

S2 Fig. A phylogenetic tree showing the evolutionary relationships between SARS-CoV-2

spike protein sequences detected in Uganda and Wuhan-Hu-1 wt (sp|P0DTC2|SPIKE

SARS2), or Alpha (QWE88920.1), Beta (QRN78347.1), Delta (QWK65230.1) and Gamma

(QVE55289.1) variants of concern (VOCs). Ugandan spike protein sequences clustered with

Wuhan-Hu-1 wt (green dot) and three VOCs namely Alpha (orange-brown dot), Beta (blue

dot), and Delta (red dot) but not Gamma (magenta dot). Numbers on the branches are boot-

strap values. Crowding of the tree was avoided by showing only those bootstrap values >50.

There were sequences, which neither clustered with Wuhan-Hu-1 reference strain nor the

VOCs (n = 131). Some of these “un-clustered” sequences formed a separate cluster around

family 79 (yellow dot). Thus, from largest to smallest cluster we had Wuhan cluster (n = 256),

Delta VOC cluster (n = 133), Alpha VOC cluster (n = 17), and Beta VOC cluster (n = 13).

(PDF)

S1 Table. Spike protein sequences clustered into families based on 100% amino acid resi-

due identity. Out of 141 families realized, Delta variant family had the largest size (n = 91).

(XLSX)

S2 Table. Envelope protein sequences clustered into families based on 100% amino acid

residue identity. Out of four families realized, Wuhan-Hu-1 wt family had the largest size

(n = 525).

(XLSX)

S3 Table. Membrane protein sequences clustered into families based on 100% amino acid

residue identity. Out of 11 families realized, Wuhan-Hu-1 wt family had the largest size

(n = 397).

(XLSX)

S4 Table. Spike protein sequences clustered into families based on 100% amino acid resi-

due identity. Out of the 81 families realized, variant S202N family had the largest size

(n = 205).

(XLSX)
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