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Abstract

Background

The COVID-19 epidemic has shown that efficient prediction models are required, and the

well-known SI, SIR, and SEIR models are not always capable of capturing the real dynam-

ics. Modified models with novel structures could help identify unknown mechanisms of

COVID-19 spread.

Objective

Our objective is to provide additional insights into the COVID-19 spread mechanisms based

on different models’ parameterization which was performed using evolutionary algorithms

and the first-wave data.

Methods

Data from the Our World in Data COVID-19 database was analysed, and several models—

SI, SIR, SEIR, SEIUR, and Bass diffusion—and their variations were considered for the first

wave of the COVID-19 pandemic. The models’ parameters were tuned with differential evo-

lution optimization method L-SHADE to find the best fit. The algorithm for the automatic

identification of the first wave was developed, and the differential evolution was applied to

model parameterization. The reproduction rates (R0) for the first wave were calculated for

61 countries based on the best fits.
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Results

The performed experiments showed that the Bass diffusion model-based modification could

be superior compared to SI, SIR, SEIR and SEIUR due to the component responsible for

spread from an external factor, which is not directly dependent on contact with infected indi-

viduals. The developed modified models containing this component were shown to perform

better when fitting to the first-wave cumulative infections curve. In particular, the modified

SEIR model was better fitted to the real-world data than the classical SEIR in 43 cases out

of 61, based on Mann–Whitney U tests; the Bass diffusion model was better than SI for 57

countries. This showed the limitation of the classical models and indicated ways to improve

them.

Conclusions

By using the modified models, the mechanism of infection spread, which is not directly

dependent on contacts, was identified, which significantly influences the dynamics of the

spread of COVID-19.

Introduction

The COVID-19 pandemic [1] has demonstrated the need for efficient infection-spread predic-

tion models that are capable of capturing the dynamics of the process in different populations.

Some of the well-known models often used for epidemiological dynamics are the susceptible–

infected (SI) [2], susceptible–infected–recovered (SIR) [3], and the susceptible–exposed–

infected–recovered (SEIR) models [4, 5]. These models are often described with several differ-

ential equations, controlled by population-based and infection-based parameters.

The mentioned models, especially the SEIR model, are often used in epidemiological stud-

ies due to their flexibility, simplicity, and transparency. Despite the popularity and simplicity

of the basic models and their ability to give reasonable predictions, there are numerous modifi-

cations to SI, SIR and SEIR that allow for the consideration of additional factors that influence

the dynamics of infection spread [6, 7]. The SEIR model is often modified, for example, at the

SEIRU model [8] in addition to the reported infected cases, the unreported infected cases are

also considered. In addition, this study introduces additional latency periods into the dynam-

ics of the COVID-19 pandemic. In [9], a similar modification was applied—i.e., the reported

and unreported infected cases were considered; however, following an early study on COVID-

19 in [1], a metapopulation model was applied, which also considered human mobility net-

works. Obviously, the consideration of asymptomatic cases requires the estimation of their

ratio, as well as their possible influence on the number of new infections [10, 11]. In [12], the

extended SEIR model was applied, where detectable, undetectable, and isolated cases were

considered, and an estimation of their number and influence were provided.

Based on these studies, it is clear that the proposed model modifications often introduce

additional states describing real processes within the population; however, some of these mod-

els are often complicated and difficult to tune. The Bass diffusion model (BD) [13] is rarely

used in epidemiological studies [14, 15], yet it has gained more recent interest given its sim-

plicity and ability to build S-shaped curves. In [15], the BD model was also identified as one of

most suitable for real data fitting. In this study, however, the discrete form of the BD model

was applied, while in the present study, the differential equations form was considered, which

PLOS ONE Identification of COVID-19 spread mechanisms on first-wave data

PLOS ONE | https://doi.org/10.1371/journal.pone.0279427 December 28, 2022 2 / 29

repository: https://github.com/VladimirStanovov/

OWID-COVID-19-Analysis.

Funding: This work was supported by the Ministry

of Science and Higher Education of the Russian

Federation within limits of state contract№ FEFE-

2020-0013 and by the Slovenian Research Agency

(ARRS) (programs No.: UNI-MB-0586-P5-0018,

No.: BI-RU/19-20-034, No. BI-ME/18-20-009). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: BD, Bass diffusion model; DE,

differential evolution; DRC, Democratic Republic of

the Congo; GDP, gross domestic product; eSEIR,

exponential susceptible-exposed-infected-

recovered; eSEIUR, exponential susceptible-

exposed-infected-unreported-recovered; eSI,

exponential susceptible-infected; eSIR, exponential

susceptible-infected-recovered; SEIR, susceptible-

exposed-infected-recovered; SEIUR, susceptible-

exposed-infected-unreported-recovered; SI,

susceptible-infected; SIR, susceptible-infected-

recovered; UK, United Kingdom.

https://doi.org/10.1371/journal.pone.0279427
https://github.com/VladimirStanovov/OWID-COVID-19-Analysis
https://github.com/VladimirStanovov/OWID-COVID-19-Analysis


is typically used for modelling. The original BD model is most often used to show the spread of

specific products in the market, but it could also be adapted to describing the spread of some

infections. One of the features of interest in the BD model is that spreading may begin even if

there are no product buyers/infected people at the outset of the study period.

The focus of the present study is the analysis of different types of models that could be

applied to the description of real infection dynamics observed in different countries around

the world for COVID-19 spread. The goal of our study was to compare the efficiency of differ-

ent epidemic models in describing the real dynamics, and not to forecast the future spread. In

particular, the mentioned models are fitted for each country included in the study, and conclu-

sions are made about the efficiency of the models in these settings. One should note that the

parameters in the presented models were fixed, which might be argued due to the facts, that

countermeasures were forced in most countries, however, at least the first part of the first wave

took majority of us by surprise. By fixed model parameters, one could extract possible novel

epidemic spread mechanisms, otherwise, it would be possible to consider time varying infec-

tivity factors which, however, might lead to model overfitting and losing the important infor-

mation about the process. The modifications inspired by the Bass diffusion model were

incorporated into the SIR, SEIR, and SEIUR models, and an additional set of experiments was

performed. Based on the results, the importance of the modification is discussed, as well as its

role in explaining the ongoing observed epidemiological reality.

The rest of the paper is organised as follows. First, the classical models are described, and

their similarities and differences are highlighted. After this, the modified models are proposed,

followed by the presentation of the data preparation method. Next, the modified models are

described and the results of the experiments are given. Finally, the conclusions are provided.

Methods

Basic epidemiological models

To approximate the real data, containing the number of infected for every country, five basic

models were considered—the SI, SIR, SEIR, SEIUR, and BD models.

The simplest SI model is described by a pair of differential equations:

dS
dt
¼ � b

IS
N

dI
dt
¼ b

IS
N

8
>><

>>:

where β is the parameter controlling the flow from susceptible to infected; S and I are the num-

ber of susceptible and infected people, respectively; and N is the maximum number of suscep-

tible. Note that if the number of infected is initially set to zero, there will be no dynamics, as

the flow rate depends on the product of two states. Fig 1 shows the cumulative number of

infected with β = 0.1, initial number of susceptible S0 = 100000, and initial infected I0 = 1,

exercising S-shaped growth.

The SIR model can be described with the following equations:

dS
dt
¼ � b

IS
N

dI
dt
¼ b

IS
N
� gI

dR
dt
¼ gI

8
>>>>>><

>>>>>>:
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where β and γ are the model parameters, and S, I and R are the number of susceptible, infected,

and recovered, respectively. The γ parameter controls the exponential flow rate from infected

to recovered. Alternatively, 1

g
can be seen as the number of days, D, required to get from the

infected to recovered state.

A sample response of the SIR model is shown in Fig 2, with S0 = 100000, I0 = 1, β = 0.1, and

γ = 0.01.

The main difference between SI and SIR is that in the SI model, the number of infected

never decreases, while in the SIR model, the infected transition to the recovered state after cer-

tain period of time.

Fig 1. SI model response, cumulative number of infected; β = 0.1, S0 = 100000, and I0 = 1.

https://doi.org/10.1371/journal.pone.0279427.g001

Fig 2. SIR model response, cumulative number of infected; β = 0.1, γ = 0.01, S0 = 100000, and I0 = 1.

https://doi.org/10.1371/journal.pone.0279427.g002
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The SEIR [16] model equations are shown below:

dS
dt
¼ � bI

S
N

dE
dt
¼ bI

S
N
� sE

dI
dt
¼ sE � gI
dR
dt
¼ gI

8
>>>>>>>>>><

>>>>>>>>>>:

where β, σ, and γ are the model parameters, and S, E, I, and R are the number of susceptible,

exposed infected, and recovered. The value 1

s
can be seen as the number of days, Z, required to

move from the exposed to infected states [17]. An example response of the SEIR model is

shown in Fig 3, with S0 = 100000, I0 = 1, β = 1, σ = 0.01, and γ = 0.0005.

In addition to the SEIR model, its extended version, the SEIUR model [8, 18, 19], was con-

sidered, which also included unreported cases:

dS
dt
¼ � bI

S
N
� mbU

S
N

dE
dt
¼ bI

S
N
þ mbU

S
N
� sE

dI
dt
¼ lsE � gI

dU
dt
¼ 1 � lð ÞsE � gU

dR
dt
¼ gI þ gU

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

where β, σ, γ, and λ are the model parameters, and S, E, I, U, and R are the number of suscepti-

ble, exposed, infected (reported), unreported infected, and recovered. The two additional

parameters of this model are the λ, responsible for the ratio of reported infected, and μ,

Fig 3. SEIR model response, cumulative number of infected; β = 1, σ = 0.01, γ = 0.0005, S0 = 100000, and I0 = 1.

https://doi.org/10.1371/journal.pone.0279427.g003
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responsible for the influence ratio of the unreported infected. A sample response of the SEIUR

model is shown in Fig 4.

The original Bass diffusion model [13] can be described as follows:

f ðTÞ ¼ ðpþ qFðTÞÞð1 � FðTÞÞ

FðTÞ ¼
ZT

0

f ðtÞdt

The p and q are the model parameters, the p value is the coefficient of innovation, and q is

the coefficient of imitation. The F(T) is defined as the cumulative of f(T), which is the purchase

likelihood function. The initial condition F(0) = 0 could be declared as 0 due to the innovation

part of the model. Here the analogy is used, in particular the number of purchases is analogous

to the number of infected, and the number of potential customers (determined by 1−F[T]) is

analogous to the number of susceptible. Unlike in the SI model, here it is possible to become

infected without interaction with the infected—e.g., being infected by external sources, such as

animals. The graphical representation of this equation in PowerSim software system [20] is

shown in Fig 5, and Table 1 contains the parameters.

An alternative way of describing the same model is as follows:

dNt

dt
¼ p M � Ntð Þ þ

q
M

Nt M � Ntð Þ

where Nt is the current total number of purchases (infected) and M is the total number of pur-

chases (total susceptible). These could also be interpreted as current number of infected and

total number of susceptible. The graphical representation of this equation in PowerSim is

shown in Fig 6, and Table 2 contains the parameters.

An example response of the BD model is shown in Fig 7. Here, as well as for all the other

models, the cumulative number of infected is shown.

All presented models were further tested against the real data over a set of countries.

Fig 4. SEIUR model response, cumulative number of infected; β = 2, σ = 0.025, γ = 0.07, λ = 0.1, μ = 0.3, S0 =

100000, and I0 = 1.

https://doi.org/10.1371/journal.pone.0279427.g004
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Modified models. In addition to the models described above, the modified models were

applied, with the modification inspired by the Bass diffusion model and supported by the

experimental results. The exact reasons for such modifications are described in the following

sections.

The proposed modification incorporates the exponential outflow from susceptible to

infected with θ parameter. This parameter is responsible for the rate of progression from sus-

ceptible to infectious without the interaction between infectious and susceptible. The modified

SI model, also referred to as exponential SI (eSI), can be described with the following equa-

tions:

dS
dt
¼ � b

IS
N
� yS

dI
dt
¼ b

IS
N
þ yS

8
>><

>>:

where θ is responsible for the external factor, which influences the infections dynamics. An

example response of the modified SI is shown in Fig 8.

The modified SI model has two parameters, which play the same roles as in the BD model.

In fact, these two models are identical: one of the parameters controls the exponential outflow

from the susceptible, while the other controls interactions between the susceptible and

infected. With the same parameter values, the BD and modified SI demonstrate the same

dynamics. Going forward in this paper, eSI is referred to as the BD model.

Table 1. Parameters for BD model in Fig 5.

init F = 0.1

flow F = +dt�dF_dt

aux dF_dt = (p+q�F)�(1-F)

aux Infected = M_Total_Population�F

const M_Total_Population = 100000

const p = 0.0001

const q = 0.05

https://doi.org/10.1371/journal.pone.0279427.t001

Fig 5. BD model, first variant.

https://doi.org/10.1371/journal.pone.0279427.g005

PLOS ONE Identification of COVID-19 spread mechanisms on first-wave data

PLOS ONE | https://doi.org/10.1371/journal.pone.0279427 December 28, 2022 7 / 29

https://doi.org/10.1371/journal.pone.0279427.t001
https://doi.org/10.1371/journal.pone.0279427.g005
https://doi.org/10.1371/journal.pone.0279427


The modified SIR (exponential SIR, eSIR) model is described as follows:

dS
dt
¼ � b

IS
N
� yS

dI
dt
¼ b

IS
N
� gI þ yS

dR
dt
¼ gI

8
>>>>>><

>>>>>>:

An example response of the original and modified SIR models is shown in Fig 9.

For the modified SIR model, the following parameters were used: β = 0.1, γ = 0.01, and θ =

1�10−4; for the original SIR, β = 0.06 and γ = 0.01 were used. These parameters were chosen so

that the two curves would better match each other. As one may observe, the SIR model begins

with a lower rate and stabilises faster, whereas the initial rate of the modified SIR is higher and

takes longer to stabilise at the end. This slower approach to the limit value was also observed in

the real data, which is one of the desired model properties.

Fig 6. BD model, second variant.

https://doi.org/10.1371/journal.pone.0279427.g006

Table 2. Parameters for BD model in Fig 6.

init Infected = 0

flow Infected = +dt�dI1_dt+dt�dI2_dt

init Susceptible = 100000

flow Susceptible = -dt�dI1_dt-dt�dI2_dt

aux dI1_dt = q�(Susceptible/M_Total_Population)�Infected

aux dI2_dt = p�Susceptible

const M_Total_Population = 1e6

doc M_Total_Population = The size of the total population.

const p = 0.0001

const q = 0.05

https://doi.org/10.1371/journal.pone.0279427.t002
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The SEIR model was changed to include the θ parameter. The modified SEIR (exponential

SEIR, eSEIR) model equations are shown below:

dS
dt
¼ � bI

S
N
� yS

dE
dt
¼ bI

S
N
� sEþ yS

dI
dt
¼ sE � gI
dR
dt
¼ gI

8
>>>>>>>>>><

>>>>>>>>>>:

Fig 7. Bass diffusion model response; p = 10−4, q = 0.05, S0 = 100000, and I0 = 0.

https://doi.org/10.1371/journal.pone.0279427.g007

Fig 8. SI vs eSI model response; β = 0.1, θ = 1�10−5, S0 = 100000, and I0 = 1.

https://doi.org/10.1371/journal.pone.0279427.g008
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where θ plays the same role as in the modified SIR model. A sample response of the modified

eSEIR model is shown in Fig 10.

For the modified SEIR model, the following parameters were used: β = 1, σ = 0.006, γ =

0.0005, and θ = 0.001; for the original SEIR, β = 1, σ = 0.01, and γ = 0.0005 were used. Again,

these parameters were chosen so that the two curves would better match each other. In both

the modified SIR and SEIR models, if the θ parameter is set to zero, the models turn into their

unmodified versions. As in the case of the SIR model, the SEIR model begins slowly and takes

the limit value sooner, while the modified SEIR model begins its growth earlier and at a greater

rate, but it takes more time to achieve the limit value. This property of reaching the limit value

slower was also observed in the real data.

Fig 9. SIR vs. eSIR model response; S0 = 100000 and I0 = 1.

https://doi.org/10.1371/journal.pone.0279427.g009

Fig 10. SEIR vs. eSEIR model response; S0 = 100000 and I0 = 1.

https://doi.org/10.1371/journal.pone.0279427.g010
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The SEIUR model was also modified to include the θ parameter, and the equations are

given below:

dS
dt
¼ � bI

S
N
� mbU

S
N
� yS

dE
dt
¼ bI

S
N
þ mbU

S
N
� sEþ yS

dI
dt
¼ lsE � gI

dU
dt
¼ 1 � lð ÞsE � gU

dR
dt
¼ gI þ gU

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

A comparison of the SEIUR and its modified version (exponential SEIUR, eSEIUR) is

shown in Fig 11.

In Fig 11, the following parameters were used for the SEIUR model: β = 2, σ = 0.025, γ =

0.07, θ = 0, λ = 0.1, and μ = 0.3. For the eSEIUR, the following parameters were set: β = 2, σ =

0.025, γ = 0.07, θ = 0.001 λ = 0.1, and μ = 0.3. The next section contains a description of the

data preparation.

Data preparation. The dataset considered in this study was taken from the GitHub repos-

itory using the Our World in Data database containing the COVID-19 spread dynamics in

every country and region [21]. The dataset contained the number of infected persons daily

since the beginning of observations, as well as the cumulative number of infected. In addition,

some other data is provided for each country, such as population, GDP, etc.

In this study, the cumulative number of infected was considered—i.e., the models presented

above were used to fit to the actual cumulative infection curves. The dataset contained infor-

mation about several waves of infection for many countries, however for the purpose of our

study only the first wave—the initial spread of the infection—was considered [22]. The data

from the first wave were considered to extract the basic characteristics of the process, which

would be more difficult to extract in second and consecutive waves. Due to different start

Fig 11. SEIUR vs. eSEIUR model response; S0 = 100000 and I0 = 1.

https://doi.org/10.1371/journal.pone.0279427.g011
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times of the first wave in different countries, it was necessary to cut several first measurements.

To identify the starting points, Stmin, the following heuristic rule was used: if for τ = 3 time

steps before t, the exponentially smoothed (with parameter ε = 0.2) total number of infected

was increasing by at least 1 case, then Stmin = t.
The algorithm for detecting the end of the first wave is more complex and considers several

steps. First, the number of infected per day was considered, and according to the observations,

the first wave ended at the point where the number of infected per day dropped closer to zero

after a relatively high peak (see Fig 12).

Fig 12 shows that it should be possible to identify the end of the first wave by determining

the position of the first minimum after the first maximum of daily infections. However, it

could be challenging to do so, as there were many oscillations in the number of infections per

day. As the provided dataset contained already smoothed number of infected per day, this data

was used in the experiments. To identify the minimum, the estimation of the derivative of the

number of infected per day was calculated with finite differences:

Ît ¼ Itþ1 � It

where t = 1. . .T−1. The approximate derivative was further processed using an exponential

smoothing approach:

�̂Itþ1 ¼ ε � ^Itþ1 þ ð1 � εÞ � Ît

where t = 1. . .T−1, ε = 0.02. The resulting values were analysed to detect the first wave follow-

ing these three rules:

1. Ît should be positive for at least wp�T steps, after this

2. Ît should be negative for at least wp�T, and then

3. Ît should switch from negative to positive value.

The highlighted area in Fig 12 shows the results of automatic detection, and Fig 13 shows

the smoothed number of infections per day and the smoothed derivative.

Fig 12. Example of two waves of infections; the first wave is highlighted.

https://doi.org/10.1371/journal.pone.0279427.g012
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For the case in Figs 12 and 13, the wp parameter was set to 0.07, and the detected end of the

first wave and beginning of the second was identified at day 145.

The two main parameters controlling the proposed heuristic for determining the first wave

are τ and wp. To demonstrate the influence of these values, Fig 14 shows the possible scenarios

of determining the first wave with varied parameter values.

The goal was to analyse the first wave of the infection, but because several countries were

still far from the inflection point, they were filtered out. In addition, countries with popula-

tions of less than 1 million people were not considered. Several countries were also removed

because either very few cases were reported relative to the total population, or they were special

cases, like China, where a very small fraction of new infections were reported after a long

period of time. Other countries that were excluded due to peculiarities in the data were Den-

mark, Brazil, Uganda, Vietnam, Poland, and Northern Macedonia. For these countries, the

first wave did not follow the S-shaped curve, and the first wave was not clearly distinguished

from the second. This limitation was made due to possible biased dynamics for very small

countries, such as islands or cities, which are significantly affected by their location, tourism,

and other factors.

Fig 13. Example of number of cases per day and calculated smoothed derivative.

https://doi.org/10.1371/journal.pone.0279427.g013

Fig 14. Influence of first wave search heuristic parameters on the result.

https://doi.org/10.1371/journal.pone.0279427.g014
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Differential evolution. There are several known attempts to apply computational intelli-

gence methods, such as neural networks, for prediction of COVID-19 epidemic trends [23]. In

our study, to find the parameter values for the presented models, the differential evolution

(DE) algorithm was applied [24]. In particular, a well-known adaptive version, L-SHADE [25],

is implemented and modified to find the parameter values of the presented models.

The DE algorithm performed the search for optimal solutions in RD, where D is the

dimensionality. DE begins with initialising a set of vectors: xi,j = Random(Lj, Uj), where

i = 1. . .NP, j = 1. . .D, Lj, and Uj are the lower and upper boundaries, and NP is the population

size. The fitness values f(xi)—that is, the goal function values—were calculated for every

individual.

After the initialisation step, the DE proceeded with the main algorithm loop, containing

mutation, crossover, and selection steps. The mutation in DE is the main search operator,

which combines the coordinates of several points to produce new ones. The mutation strategy

used in L-SHADE is called current-to-pbest/1 and generates new mutant vector, v, using the

scaling factor, F, as follows:

vj ¼ xi þ Fðxpbest � xiÞ þ Fðxr1 � xr2Þ

where r1 and r2 are the randomly chosen indexes from [1, NP], pbest is one of the p% fittest

solutions, and i is the index of current vector. Indexes i, r1, r2 and pbest are different from

each other. The r2 index is chosen from either the population or the external archive, com-

posed of individuals replaced during selection.

The mutation step was followed by crossover, which combined the target vector xi and the

mutant vector v to the produce trial vector u in the following way:

uj ¼
vj if Randomð0; 1Þ < Cr or j ¼ jrand

xi;j otherwise
;

(

where j = 1. . .D, Cr is the crossover rate parameter and jrand is the randomly chosen integer

from [1, D] needed to ensure that at least one component is taken from the mutant vector.

Once the trial vector was generated, its fitness f(u) was calculated and compared to the fit-

ness of the target vector in the selection procedure:

xGþ1

i ¼
u if f ðuÞ < f ðxG

i Þ

xG
i otherwise

;

(

where G is the current generation number—i.e., selection forms the new generation of individ-

uals. The replaced parent is placed into the archive, and if the archive size reaches NP, then the

random solution from the archive is replaced.

The parameter adaptation is one of the features of L-SHADE method. For every selection

and mutation the F and Cr parameters are sampled from Cauchy and normal distributions

with scale parameter equal to 0.1: F = randc(MF,k, 0.1), Cr = randn(MCr,k, 0.1). The algorithm

maintains a set of H memory cells each containing a pair of (MF,k, MCr,k) values. One of the

memory cells is updated at the end of each generation using weighted Lehmer mean of stored

successful F and Cr values in SF and SCr, with weights being the fitness improvementsΔf = |f(uj)

−f(xj)| in the selection step, stored in SΔf:

meanwL ¼

PjSj
j¼1

wjS2
j

PjSj
j¼1

wjSj

;
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where wj ¼
SDfjPjSj

k¼1
SDfk

, S is either SF or SCr. The memory cells are updated as follows:

Mtþ1

F;k ¼ meanwL;F

Mtþ1

Cr;k ¼ meanwL;Cr

where t is the current iteration number, iterating from 1 to H. The L-SHADE algorithm also

reduces the population size in the following way:

NPgþ1 ¼ round
NPmin � NPmax

NPmax
NFE

� �

þ NPmax;

where NPmin = 4, NFE and NFEmax are the current and total number of function evaluations

available, g is the current generation number. At the end of each generation the worst solutions

are removed, if the population size changes.

In addition to the parameter adaptation, for the goals of current study the L-SHADE algo-

rithm was modified by a relatively simple restart heuristic. If the best found solution does not

change for 0.25NFEmax function evaluations, then the whole population is randomized, except

for the best solution. The idea of the modification was to allow the algorithm to escape local

optima if it gets stuck. Note that the resulting L-SHADE-R method restarts with a smaller pop-

ulation size, depending on the used computational resource.

Results

To compare the ability of the presented models to describe the real-world dynamics, the mod-

els were tuned to fit the available data regarding the first wave of the COVID-19 pandemic. To

choose the appropriate parameter values for the SI, BD, SIR, SEIR, and SEIUR models, as well

as the modified versions, the differential evolution algorithm was applied. The DE represents a

universal zero-order continuous optimiser, capable of finding the global optimum even in the

case of rough goal function terrain, as demonstrated in many benchmarks and real-world

applications. All models were implemented in Python 3.7 with Odeint, which is a part of the

SciPy library [26]. To perform experiments, the parallel implementation with OpenMPI was

utilized, and the search for parameter values of each model on each country data was per-

formed on a cluster of 12 computers with 8 cores each, connected via network.

In addition to the model parameters mentioned above, one additional parameter, α, was

considered, controlling the amount of susceptibility at the end of the first wave with respect to

the total population: S = αP, where P is the total population of a country.

In the first series of experiments, the goal function, used as the fitness function in

L-SHADE-R, was calculated as the relative error between the real data and the curve predicted

by the model over all data points:

REc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

t¼1
ðCIc;t � MItÞ

2

PN
t¼1
ðCIc;tÞ

2

v
u
u
t

where N is the total number of cases in the first T days, c is the country index, CIc,t is the cumu-

lative number of infected at day t in country c, and MIt is the cumulative number of infections,

all as predicted by the model at day t.
Preliminary, we have used several standard measures for fitness function such as Mean

Absolute Percent Error (MAPE), Mean Absolute Error (MAE), Mean Squared Error (MSE).
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However, the proposed relative error measure REc was more stable in case of extreme values

e.g. when the number of infected is close to 0.

The L-SHADE-R algorithm was executed with the following parameters:

1. Population size: 500 individuals,

2. Computational resource: 125000 evaluations,

3. Memory size H = 5, initial MF,k =0.2, MCr,k = 0.8,

4. Ratio of best for mutation pbest = 0.2,

5. Initial population generated within the following boundaries:

a. α2[0,0.1];

b. β2[0,8];

c. s 2 1

42
; 1

2

� �
;

d. g 2 1

42
; 1

2

� �
;

e. θ2[0,0.1];

f. λ2[0.0001,0.5];

g. μ2[0,8].

The initial conditions of the models, i.e. state variables, were set according to the available

data. First value of the Infected, that were recorded in official statistics, were used for initializa-

tion of the Infected state. Other states, such as exposed, recovered and unreported, were initial-

ized to zero.

The ranges for σ and γ were chosen according to [27], where transmission from exposed to

infected and from infected to recovered were determined between 3 and 14 days. However,

the lower boundary for these parameters was expanded to 1/42, i.e. 42 days, to test if this gives

additional performance gains. For β the search range was set from 0 to 8 according to prelimi-

nary experiments in literature, for example in [28] the β parameter was set to from 1.5 to 3.

Larger range was used to allow the search algorithm discover better solutions, so that post-pro-

cessing would show the most preferable range to which parameter values fall into.

Different models had different dimensionalities, as the number of parameters varied. For SI

there were two variables, for BD there were three variables, for SIR and SEIR there were three

and four variables, and for eSIR and eSEIR there were four and five variables, respectively.

Finally, SEIUR and eSEIUR had six and seven variables. The best parameter values for every

model and every country were saved at the end of each algorithm run, and there were 25 inde-

pendent runs performed for every model and every country. Table 3 contains the average rela-

tive error rates and their standard deviations for all countries and models, as well as the

number of cases when a particular model was the best compared to others. In addition to stan-

dard settings, an experiment with extended range for eSEIUR, denoted with eSEIURrange was

performed, with the following settings:

1. α2[0,0.5];

2. β2[0,12];

3. s 2 1

56
; 1

2

� �
;

4. g 2 1

56
; 1

2

� �
;

PLOS ONE Identification of COVID-19 spread mechanisms on first-wave data

PLOS ONE | https://doi.org/10.1371/journal.pone.0279427 December 28, 2022 16 / 29

https://doi.org/10.1371/journal.pone.0279427


Table 3. Average relative error rates and their standard deviations for all countries and models.

Country SI BD SIR eSIR SEIR eSEIR SEIUR eSEIUR eSEIURrange

Afghanistan 3.809% 4.315% 1.299% 0.006% 0.013% 0.008% 0.012% 0.016% 0.024%

±15.267% ±21.019% ±6.284% ±0% ±0% ±0% ±0.001% ±0.007% ±0.015%

Armenia 0.382% 0.012% 0.010% 0.009% 0.047% 0.011% 0.032% 0.014% 0.032%

±0% ±0% ±0% ±0% ±0% ±0% ±0.003% ±0.003% ±0.006%

Australia 4.972% 1.531% 1.790% 1.790% 1.345% 1.345% 1.391% 1.564% 1.575%

±16.870% ±0.013% ±0% ±0% ±0% ±0% ±0.036% ±0.161% ±0.233%

Austria 3.000% 0.098% 4.690% 0.040% 0.011% 0.010% 0.011% 0.012% 0.026%

±13.152% ±0.018% ±22.628% ±0% ±0% ±0% ±0% ±0.002% ±0.025%

Azerbaijan 0.348% 0.063% 0.072% 0.078% 0.068% 0.066% 0.118% 0.108% 0.137%

±0% ±0% ±0% ±0.003% ±0.006% ±0.001% ±0.152% ±0.008% ±0.058%

Belarus 1.031% 0.119% 0.305% 0.023% 0.063% 0.015% 0.055% 0.015% 0.020%

±0% ±0.344% ±0% ±0% ±0% ±0% ±0.004% ±0.001% ±0.004%

Belgium 1.059% 1.193% 0.499% 0.030% 4.020% 0.009% 0.029% 0.010% 0.012%

±0% ±5.451% ±0.024% ±0.001% ±19.528% ±0% ±0.002% ±0% ±0.005%

Bolivia 0.726% 0.008% 0.113% 0.003% 0.460% 0.003% 0.068% 0.006% 0.021%

±0.314% ±0% ±0% ±0% ±1.868% ±0% ±0.003% ±0.003% ±0.009%

Burkina Faso 1.649% 4.069% 0.287% 0.039% 0.239% 0.053% 0.051% 0.051% 0.051%

±1.427% ±19.582% ±0% ±0% ±0.312% ±0% ±0% ±0% ±0%

Cambodia 6.290% 9.956% 4.470% 2.522% 4.698% 4.324% 4.723% 4.886% 4.639%

±0.269% ±20.100% ±0% ±0% ±0% ±0.911% ±0.028% ±0.226% ±0%

Cameroon 1.015% 0.095% 0.232% 0.068% 0.149% 0.068% 0.134% 0.102% 0.072%

±0% ±0.002% ±0.021% ±0% ±0% ±0% ±0.009% ±0.146% ±0.002%

Canada 1.535% 0.081% 6.482% 0.033% 4.882% 0.009% 0.046% 0.009% 0.010%

±0% ±0% ±21.811% ±0% ±23.671% ±0% ±0.003% ±0% ±0.001%

Chile 2.508% 0.522% 3.235% 0.354% 1.212% 0.288% 0.579% 0.288% 0.232%

±0% ±0% ±6.146% ±0% ±2.388% ±0% ±0.002% ±0% ±0.001%

Costa Rica 1.386% 0.220% 0.617% 0.084% 0.416% 0.056% 0.311% 0.061% 0.048%

±0% ±0.447% ±0% ±0% ±0% ±0% ±0.004% ±0% ±0.001%

Cote d’Ivoire 0.479% 0.945% 0.117% 0.090% 0.116% 0.094% 0.110% 0.103% 0.100%

±0% ±4.032% ±0% ±0% ±0% ±0% ±0.003% ±0.007% ±0.004%

Croatia 0.434% 8.238% 1.099% 0.027% 0.024% 0.019% 0.023% 0.022% 0.018%

±0% ±40.108% ±5.171% ±0% ±0% ±0.014% ±0.003% ±0.022% ±0.001%

Cuba 0.831% 4.683% 0.594% 0.067% 0.055% 0.052% 4.680% 0.054% 0.054%

±0% ±19.625% ±1.952% ±0% ±0% ±0% ±22.661% ±0.001% ±0.001%

Czechia 0.672% 5.920% 1.037% 0.044% 9.239% 0.013% 0.914% 0.015% 0.016%

±0% ±28.234% ±3.997% ±0% ±45.152% ±0% ±4.386% ±0.001% ±0.002%

DRC 0.285% 0.060% 0.039% 0.026% 0.023% 0.014% 0.016% 0.016% 0.016%

±0% ±0% ±0% ±0% ±0.016% ±0% ±0.001% ±0.001% ±0.003%

Egypt 1.799% 0.010% 0.024% 0.025% 0.013% 0.012% 0.017% 0.053% 0.078%

±8.147% ±0% ±0% ±0% ±0% ±0% ±0.003% ±0.022% ±0.025%

El Salvador 0.338% 0.065% 0.071% 0.073% 0.072% 0.068% 1.989% 0.101% 0.122%

±0% ±0% ±0% ±0.004% ±0.007% ±0% ±7.388% ±0.007% ±0.021%

Estonia 0.704% 0.060% 0.172% 0.033% 0.091% 0.042% 0.081% 0.056% 0.047%

±0% ±0.022% ±0% ±0% ±0% ±0.004% ±0.007% ±0.053% ±0.002%

Finland 1.352% 0.021% 0.367% 0.073% 9.906% 0.009% 0.077% 0.361% 0.016%

±0.461% ±0% ±0% ±0.301% ±33.652% ±0% ±0.005% ±1.680% ±0.004%

(Continued)
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Table 3. (Continued)

Country SI BD SIR eSIR SEIR eSEIR SEIUR eSEIUR eSEIURrange

France 1.142% 2.337% 0.854% 0.810% 0.953% 0.765% 0.993% 0.836% 0.863%

±0.301% ±7.639% ±0% ±0.004% ±0% ±0% ±0.166% ±0.052% ±0.080%

Germany 0.317% 0.170% 0.104% 0.088% 0.021% 0.021% 0.134% 0.042% 0.055%

±0% ±0% ±0% ±0% ±0% ±0% ±0.506% ±0.010% ±0.037%

Greece 0.564% 0.085% 0.928% 0.041% 0.036% 0.033% 0.041% 0.035% 0.035%

±0.437% ±0% ±4.176% ±0% ±0% ±0% ±0.030% ±0.002% ±0.001%

Haiti 4.605% 0.325% 0.218% 0.207% 0.087% 0.087% 1.068% 0.104% 0.094%

±20.388% ±0% ±0% ±0% ±0% ±0% ±4.733% ±0.009% ±0.006%

Hungary 0.807% 0.165% 0.159% 0.032% 0.032% 0.014% 0.028% 0.016% 0.015%

±0.038% ±0.435% ±0% ±0% ±0% ±0% ±0.003% ±0.001% ±0.001%

India 3.691% 0.334% 0.767% 0.013% 0.286% 0.005% 0.269% 0.006% 0.007%

±11.113% ±1.426% ±0% ±0% ±0% ±0% ±0.012% ±0% ±0.002%

Iraq 1.119% 0.534% 4.253% 0.021% 0.394% 0.015% 0.207% 0.015% 0.016%

±0% ±1.577% ±19.494% ±0% ±0.690% ±0% ±0.015% ±0% ±0.002%

Ireland 34.795% 0.036% 0.094% 0.015% 4.696% 0.016% 0.040% 0.018% 0.031%

±165.776% ±0% ±0% ±0% ±22.780% ±0% ±0.004% ±0.001% ±0.020%

Israel 0.609% 0.136% 0.177% 0.082% 0.026% 0.026% 0.027% 0.031% 0.031%

±0% ±0% ±0% ±0% ±0% ±0% ±0% ±0.012% ±0.007%

Italy 1.157% 21.866% 0.599% 0.029% 0.019% 0.007% 0.017% 0.007% 0.008%

±0% ±106.712% ±0.291% ±0% ±0% ±0% ±0.001% ±0% ±0.001%

Japan 1.876% 1.441% 0.342% 0.342% 0.167% 0.213% 0.205% 0.297% 0.398%

±7.348% ±6.021% ±0% ±0% ±0% ±0.222% ±0.035% ±0.086% ±0.111%

Latvia 1.516% 31.425% 0.499% 0.048% 0.024% 5.838% 0.025% 0.025% 0.026%

±0.002% ±134.403% ±0% ±0% ±0% ±28.481% ±0.001% ±0% ±0.005%

Lebanon 3.637% 7.382% 0.646% 0.241% 0.659% 0.128% 3.083% 3.083% 0.128%

±12.628% ±35.513% ±0% ±0% ±0.362% ±0% ±0% ±0% ±0%

Liberia 0.317% 0.233% 0.271% 0.269% 0.252% 0.252% 0.312% 0.320% 0.353%

±0% ±0.018% ±0% ±0% ±0% ±0% ±0.261% ±0.015% ±0.017%

Lithuania 1.293% 0.373% 0.870% 3.394% 0.025% 26.968% 0.027% 0.025% 0.025%

±0% ±0.982% ±1.907% ±16.526% ±0% ±108.829% ±0.010% ±0% ±0%

Mali 0.745% 0.052% 0.055% 0.065% 0.088% 0.063% 0.163% 0.090% 0.095%

±0.009% ±0% ±0% ±0.004% ±0% ±0% ±0.022% ±0.009% ±0.012%

Mauritania 0.661% 4.179% 0.190% 0.046% 0.037% 0.033% 0.036% 0.035% 0.035%

±0% ±19.560% ±0% ±0% ±0% ±0% ±0.001% ±0.001% ±0.001%

Mauritius 0.591% 0.578% 1.368% 0.293% 1.228% 0.306% 0.571% 0.334% 0.376%

±0.032% ±0% ±3.962% ±0% ±3.219% ±0% ±0% ±0.015% ±0.054%

Netherlands 1.146% 0.944% 4.820% 0.018% 1.856% 0.011% 0.058% 0.012% 0.016%

±0.001% ±4.358% ±21.075% ±0% ±8.783% ±0% ±0.003% ±0% ±0.006%

New Zealand 0.122% 0.013% 3.489% 4.006% 0.015% 0.005% 0.015% 0.006% 0.007%

±0% ±0% ±17.049% ±19.595% ±0% ±0% ±0.021% ±0% ±0%

Norway 1.570% 0.078% 2.143% 0.026% 0.060% 0.023% 0.052% 0.025% 0.026%

±3.419% ±0% ±8.968% ±0% ±0% ±0% ±0.003% ±0.001% ±0.002%

Oman 26.340% 2.054% 4.082% 0.084% 0.062% 0.059% 0.070% 0.060% 0.192%

±108.907% ±9.784% ±19.582% ±0.001% ±0% ±0.003% ±0.004% ±0.012% ±0.045%

Pakistan 1.847% 2.013% 0.134% 0.041% 0.159% 0.033% 0.149% 0.068% 0.101%

±6.357% ±9.701% ±0% ±0.002% ±0% ±0.001% ±0.006% ±0.016% ±0.029%

(Continued)
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5. θ2[0,0.5];

6. λ2[0.0001,0.5];

7. μ2[0,8].

The idea behind an additional experiment with eSEIURrange was to check if the chosen

search ranges are sufficient for fitting.

The results in Table 3 show that the modified models were better in most cases; for exam-

ple, the eSEIR model was the best for 8 countries out of 61. Comparing the SI and Bass diffu-

sion models, the second was the best among all other models for 7 countries out of 61, while

the SI model was not the best for country. Between the SIR and eSIR models, the modified

model and appears to be the best model for 9 countries. The models with unreported cases did

not show best results for any of the countries; however, the difference in relative error was not

large. Some of the values in Table 3 are relatively large, especially for SI and BD model, where

standard deviation of errors could reach 100%. This is due to the stochastic nature of the

Table 3. (Continued)

Country SI BD SIR eSIR SEIR eSEIR SEIUR eSEIUR eSEIURrange

Saudi Arabia 4.048% 0.046% 2.352% 0.016% 0.163% 0.017% 0.145% 0.017% 0.019%

±10.426% ±0.004% ±6.030% ±0% ±0% ±0.001% ±0.008% ±0% ±0.002%

Serbia 0.324% 0.070% 0.049% 0.029% 4.341% 0.014% 0.016% 0.016% 0.017%

±0% ±0.009% ±0% ±0% ±21.188% ±0% ±0% ±0.001% ±0.005%

Singapore 1.006% 0.408% 3.490% 0.293% 0.134% 0.134% 0.135% 0.135% 0.106%

±0% ±0% ±10.129% ±0% ±0% ±0% ±0.001% ±0.001% ±0.010%

Slovakia 0.306% 0.884% 0.151% 0.148% 0.148% 0.138% 0.224% 0.177% 0.188%

±0% ±3.717% ±0% ±0.001% ±0% ±0% ±0.225% ±0.017% ±0.027%

Slovenia 0.823% 0.014% 0.114% 0.016% 0.105% 0.019% 0.090% 0.035% 0.036%

±0.827% ±0% ±0.082% ±0% ±0% ±0% ±0.007% ±0.003% ±0.006%

Somalia 9.245% 4.022% 0.111% 0.030% 0.120% 0.031% 0.109% 0.048% 0.058%

±37.350% ±19.591% ±0% ±0% ±0% ±0% ±0.006% ±0.004% ±0.034%

South Africa 0.133% 10.777% 0.027% 0.027% 0.029% 0.021% 0.032% 0.033% 0.133%

±0.001% ±52.681% ±0% ±0% ±0% ±0.002% ±0.003% ±0.014% ±0.052%

South Korea 0.499% 1.277% 0.312% 0.312% 0.193% 0.193% 0.203% 0.202% 0.209%

±0.033% ±4.037% ±0% ±0% ±0% ±0% ±0.007% ±0.008% ±0.013%

South Sudan 0.463% 0.745% 0.421% 0.473% 0.408% 0.401% 0.411% 0.419% 0.426%

±0% ±1.657% ±0% ±0.285% ±0% ±0.002% ±0.002% ±0.005% ±0.010%

Spain 0.993% 4.113% 0.610% 0.059% 0.029% 0.019% 0.026% 0.019% 0.021%

±0% ±19.573% ±0.480% ±0% ±0% ±0% ±0.002% ±0% ±0.005%

Switzerland 2.926% 0.098% 1.141% 1.955% 0.019% 0.014% 0.018% 0.015% 0.016%

±10.493% ±0.001% ±4.370% ±8.749% ±0% ±0% ±0.001% ±0% ±0.002%

Thailand 4.522% 6.959% 0.864% 0.864% 0.558% 0.558% 0.581% 0.635% 0.596%

±19.019% ±25.233% ±0% ±0% ±0% ±0% ±0.030% ±0.057% ±0.064%

Tunisia 0.940% 0.087% 0.079% 0.062% 0.038% 0.038% 0.045% 7.281% 0.039%

±2.267% ±0% ±0% ±0% ±0% ±0% ±0.028% ±35.480% ±0.001%

United Kingdom 1.042% 0.133% 0.491% 0.234% 0.014% 0.011% 0.020% 0.011% 0.022%

±0% ±0.030% ±0% ±0.803% ±0% ±0% ±0.028% ±0.001% ±0.039%

Zimbabwe 0.974% 0.741% 0.606% 0.606% 0.341% 0.341% 5.201% 1.135% 0.475%

±2.984% ±1.691% ±0% ±0% ±0% ±0% ±23.363% ±3.296% ±0.086%

Wins 0 6 0 10 7 32 0 1 5

https://doi.org/10.1371/journal.pone.0279427.t003
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L-SHADE-R algorithm, which may not find a good fit in all 25 runs. It can be fixed by restart-

ing the method or running it until it gets a reasonable error value. Large mean and standard

deviations are usually due to a single outlier in error values. We leave these values in the

Table 3 for the reader to be aware, that there could be some unsuccessful optimization

attempts due to randomness of the approach. However, at the end the results of the best fit are

considered.

Fig 15 provides the visualization of the relative error values of the basic and modified mod-

els of all countries. Here the error values of the SEIR model are chosen as baseline, i.e. the

error values of all models are divided by error value of SEIR of each particular country. Also,

the countries are sorted by eSEIR relative error values to improve visibility.

Considering the results in Fig 15, it can be concluded that the SI model is not sufficient for

describing the dynamics of the infection spread, however, the BD model is much better, and is

capable of outperforming other models, including SEIR in many cases. The eSEIR model per-

forms much better than SEIR in up to 40 countries on average, and SEIUR has similar perfor-

mance to standard SEIR. As for eSEIUR and eSEIURrange models, the former has better

performance in many cases, but the difference is not large.

Table 4 contains the aggregated pairwise comparison results of the standard and modified

models across all countries. The comparison was performed using non-parametric Mann–

Whitney statistical U tests with normal approximation and tie-breaking, as well as a signifi-

cance level p = 0.01. For every country, the comparison was performed using the results of 25

runs, and the following three outcomes were considered: the modified model was better,

equal, or worse than the original. The numbers of better, equal, and worse cases were summed

together.

The results in Table 4 prove that the modified models were better in most cases. In particu-

lar, the BD model was better than SI for 57 countries out of 61. The modified SIR model was

worse than original only for one country. The modification also significantly improved the

SEIR model, where the original model was statistically equal only for 13 cases out of 61, for all

Fig 15. Scaled relative error values of tested models, ordered by eSEIR.

https://doi.org/10.1371/journal.pone.0279427.g015

Table 4. Statistical comparison of the basic and modified models using Mann–Whitney U tests.

Algorithms BD vs. SI eSIR vs. SIR eSEIR vs. SEIR eSEIUR vs. SEIUR eSEIURrange vs. eSEIUR

Better 57 51 43 32 5

Equal 4 9 13 20 39

Worse 0 1 0 9 17

https://doi.org/10.1371/journal.pone.0279427.t004
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other cases the modified model was better. Comparing eSEIUR and eSEIURrange, it can be

seen that expanding the search range for parameter values results in equal or worse error val-

ues, because bigger range results in larger search space, hence lower overall performance of

optimization algorithm. This is important for the numerical experiments, which is highly

dependent on the parameters’ boundaries.

To estimate whether the ranges of the parameters’ search are appropriate, the boxplots were

drawn for the β parameter for all considered models. The β parameter was chosen, as it is pres-

ent in all models, and has significant influence, as it is responsible for new infections caused by

contacts between infected and susceptible. Fig 16 shows box plots for all models, the parameter

values were taken from all 25 runs on all countries.

As can be seen from Fig 16, for simple models like SI and SIR, large β values are not

required, so the range from 0 to 8 is appropriate. As for SEIR and eSEIR models, they also stay

within this range, and even largest values rarely reach 5. The SEIUR and eSEIUR models, on

the other hand, reach the maximum value, and the average value of β may be larger than 2. As

for the experiment with larger range, it can be seen that although some parameter reach value

8 or even more, most of them stay below 4.

Table 5 contains the calculated basic reproduction rates, R0, for every country for the SIR

and eSIR models. For the SI and BD models, the calculation of R0 was not possible, as the

recovery of the infected was not considered in these models. Due to the complexity of the SEIR

and SEIUR models, the R0 numbers were not estimated for in these cases. The values in

Table 5 are calculated based on the found parameter values using the best out of 25 indepen-

dent runs as R0 = β/γ for the SIR and eSIR model.

The results in Table 5 show that the calculated R0 values for SIR model was 1.647, and for

eSIR model– 2.367. For some countries, the values of R0 were far from realistic values; how-

ever, most of them were within the expected range. According to some of the initial estima-

tions in [29], the R0 for COVID-19 was estimated by a meta-analysis as 3.42. It should be

noted that the R0 values for the modified model are on average larger than for the original SIR.

This is because part of the dynamics in the modified model is described by added exponential

term which influences the change of the ratio between β and γ which determine the value of

R0. From epidemiological point of view this means that if there is an additional source of infec-

tion except contacts between susceptible and infected, intensity of the infection spread would

be higher due to the fact, that each susceptible person would have more chances to be infected

Fig 16. Values of β parameter, results from all runs on all countries.

https://doi.org/10.1371/journal.pone.0279427.g016

PLOS ONE Identification of COVID-19 spread mechanisms on first-wave data

PLOS ONE | https://doi.org/10.1371/journal.pone.0279427 December 28, 2022 21 / 29

https://doi.org/10.1371/journal.pone.0279427.g016
https://doi.org/10.1371/journal.pone.0279427


Table 5. Reproduction rates, R0, for all countries.

Country SIR eSIR

Afghanistan 1.488 3.004

Armenia 1.172 3.339

Australia 5.545 5.545

Austria 1.759 2.561

Azerbaijan 1.225 1.225

Belarus 1.173 1.315

Belgium 1.343 1.174

Bolivia 1.108 1.243

Burkina Faso 1.119 0.983

Cambodia 0.843 0.576

Cameroon 1.111 2.379

Canada 1.233 1.106

Chile 1.154 1.128

Costa Rica 1.258 1.732

Cote d’Ivoire 1.103 2.892

Croatia 1.268 1.695

Cuba 1.166 1.154

Czechia 1.351 1.952

DRC 1.510 2.439

Egypt 1.501 1.496

El Salvador 1.192 3.129

Estonia 1.288 1.185

Finland 1.214 1.747

France 1.319 1.276

Germany 2.325 2.623

Greece 1.222 1.454

Haiti 2.588 2.761

Hungary 1.211 1.712

India 1.107 2.273

Iraq 1.081 1.637

Ireland 1.297 2.802

Israel 1.361 2.114

Italy 1.278 1.166

Japan 4.739 4.739

Latvia 1.197 1.040

Lebanon 1.727 2.047

Liberia 2.136 3.131

Lithuania 1.207 0.975

Mali 1.142 1.142

Mauritania 1.164 1.196

Mauritius 4.234 1.275

Netherlands 1.344 1.178

New Zealand 1.505 4.587

Norway 1.359 1.181

Oman 1.439 3.777

Pakistan 1.160 3.883

Saudi Arabia 1.144 2.462

(Continued)
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in certain period of time. Although R0 in Table 5 is not always larger for eSIR then for SIR,

this is clearly the observed trend.

Fig 17 provides an example of the fitted curves on the real data for Saudi Arabia.

In Fig 17, the basic models, such as SI, SIR, and SEIR are shown to be incapable of capturing

the real dynamics, while even the simple BD was enough to achieve an acceptable fit to the real

data. The modified models, which incorporated the exponential outflow, were better than

their non-modified versions. The results in Fig 17 were obtained with the parameter values,

shown in Table 6.

In Table 6 it can be seen that θ parameter is significantly smaller than the β parameter. This

is due to the fact that the total population is considered as a normalization constant.

Table 7 contains the start date, end date, initial and final numbers of infected, and popula-

tion size for every country used in the computations.

Table 7 is provided to assure the repeatability of similar simulation experiments on the

same dataset with different models.

The values in Tables 6 and 7, combined with the description of all models can be used to

reproduce the performed experiments.

Discussion

The task was to perform parameterization of classical models to obtain parameters for

COVID-19 to improve the knowledge about modelling such systems. At the beginning, aside

from the classical models like SI, SIR, SEIR, and SEIUR, the Bass diffusion model was added,

which is rarely used in the field of epidemiology [15]. Surprisingly, the Bass diffusion model

provided fits as good as the more advanced models, such as SEIR. This led to the idea of apply-

ing additional exponential outflow from the susceptible to modify the known models. The

main idea behind this additional exponential outflow modification was that the transitions

from susceptible to infected or exposed would also occur without direct interactions between

the susceptible and infected, with the infection caused by some external factor. With the identi-

fication of best models, which incorporated the exponential outflow from the Bass diffusion

model, it was possible to improve the forecasting of the first wave of the epidemics. The possi-

ble transfer to use in analysing the second, third and other waves is a topic for further research.

Table 5. (Continued)

Country SIR eSIR

Serbia 1.422 2.426

Singapore 1.104 2.285

Slovakia 1.439 5.880

Slovenia 1.270 4.905

Somalia 1.126 2.803

South Africa 1.268 4.112

South Korea 2.970 2.912

South Sudan 3.547 5.771

Spain 1.367 2.290

Switzerland 1.447 1.959

Thailand 4.590 4.590

Tunisia 1.244 1.755

UK 1.229 2.263

Zimbabwe 3.019 3.019

Average 1.647 2.367

https://doi.org/10.1371/journal.pone.0279427.t005
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Fig 17. Example of fitting all models to real data on Saudi Arabia.

https://doi.org/10.1371/journal.pone.0279427.g017

Table 6. Parameters for all models in Fig 17.

SI β α

0.09164 0.00923

BD β θ α

0.03998 0.00051 0.00989

SIR β γ α

0.57224 0.50000 0.03899

eSIR β γ θ α

0.07407 0.03008 0.00022 0.01133

SEIR β σ γ α

3.40981 0.02381 0.50000 0.01011

eSEIR β σ γ θ α

1.07283 0.04749 0.50000 0.00041 0.01851

SEIUR β σ γ α λ μ
1.43935 0.02387 0.48827 0.02686 0.37805 2.93869

β σ γ θ α λ μ
eSEIUR 0.20732 0.03195 0.13148 0.00071 0.04160 0.25001 2.66800

eSEIURrange 0.30932 0.02524 0.02165 0.00140 0.14971 0.06830 0.62859

https://doi.org/10.1371/journal.pone.0279427.t006
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Table 7. Start, end date, and number of infected for all countries.

Country Start date Initial infected End date Infected at end Population

Afghanistan 2020-03-13 13 2020-08-30 38155 38928341

Armenia 2020-03-15 26 2020-08-30 43750 2963234

Australia 2020-02-01 12 2020-04-30 6766 25499881

Austria 2020-03-02 18 2020-05-02 15558 9006400

Azerbaijan 2020-03-15 23 2020-08-10 33647 10139175

Belarus 2020-03-14 27 2020-08-14 69308 9449321

Belgium 2020-03-04 23 2020-06-11 59711 11589616

Bolivia 2020-03-16 11 2020-11-28 144592 11673029

Burkina Faso 2020-03-18 20 2020-06-11 892 20903278

Cambodia 2020-03-19 37 2020-08-09 251 16718971

Cameroon 2020-03-19 13 2020-10-05 20924 26545864

Canada 2020-03-02 27 2020-07-04 107185 37742157

Chile 2020-03-03 10 2020-12-11 567974 19116209

Costa Rica 2020-03-11 13 2021-03-10 207832 5094114

Cote d’Ivoire 2020-03-21 14 2020-11-08 20832 26378275

Croatia 2020-03-13 32 2020-05-15 2222 4105268

Cuba 2020-03-21 21 2020-06-23 2318 11326616

Czechia 2020-03-06 18 2020-05-04 7819 10708982

DRC 2020-03-21 23 2020-09-21 10519 89561404

Egypt 2020-03-08 49 2020-08-22 97237 102334403

El Salvador 2020-03-27 13 2020-10-13 30480 6486201

Estonia 2020-03-08 10 2020-05-30 1865 1326539

Finland 2020-03-07 15 2020-06-21 7143 5540718

France 2020-02-28 57 2020-05-20 183130 68147687

Germany 2020-02-03 12 2020-05-31 183410 83783945

Greece 2020-03-07 46 2020-05-27 2903 10423056

Haiti 2020-04-01 15 2020-11-01 9054 11402533

Hungary 2020-03-10 9 2020-06-18 4079 9660350

India 2020-03-06 31 2021-02-14 10916589 1380004385

Iraq 2020-03-02 26 2021-01-30 618922 40222503

Ireland 2020-03-08 19 2020-06-23 25391 4937796

Israel 2020-03-04 15 2020-05-15 16523 8655541

Italy 2020-02-23 155 2020-06-18 238159 60461828

Japan 2020-02-01 20 2020-06-16 17484 126476458

Latvia 2020-03-11 10 2020-06-12 1096 1886202

Lebanon 2020-03-03 13 2021-03-24 448721 6825442

Liberia 2020-04-06 14 2020-09-04 1306 5057677

Lithuania 2020-03-17 19 2020-06-30 1812 2722291

Mali 2020-03-29 18 2020-08-03 2543 20250834

Mauritania 2020-05-15 29 2020-10-10 7550 4649660

Mauritius 2020-03-22 28 2020-10-30 441 1271767

Netherlands 2020-03-02 18 2020-05-31 46645 17134873

New Zealand 2020-03-19 28 2020-06-09 1504 4822233

Norway 2020-03-01 19 2020-05-15 8219 5421242

Oman 2020-03-05 16 2020-09-09 87939 5106622

Pakistan 2020-03-11 20 2020-09-04 298025 220892331

Saudi Arabia 2020-03-10 20 2020-11-22 355258 34813867

(Continued)
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The presented results show that the modified models had better fit to real-world data,

although including an additional parameter in the model made it more complex for the opti-

mization method to solve. This means that the models that have additional exponential out-

flow from susceptible to infected or exposed are more suitable to describe the real dynamics of

infections. This would suggest that a significant part of the dynamics is not due to the contact

between the susceptible and infected [30], but because of some external factors [31]. One

explanation could be that the virus is spreading with aerosol/food or via some unknown mech-

anism, independent of the contacts between the susceptible and infected. This external source

could also be from the unreported immigration of people from infected areas and correspond-

ing accumulation of the virus in aerosol. As in the present study, only the first wave was con-

sidered, and it is possible to suggest that even before the pandemic breakout, the number of

virus carriers had significantly accumulated, with these being asymptomatic cases, transition-

ing later with the exponential flow mechanism.

These are only a few hypothetical reasons that could explain this behaviour. In any case, the

models imply the presence of such mechanisms, but this should be the topic of further research

in the field of epidemiology. If our observations and proposed modifications are confirmed by

other independent studies, then the SIR, SEIR, and SEIUR models should be modified as sug-

gested. Moreover, explanations should be provided to outline the related dynamics. The devel-

oped models provided guidelines to explain the apparent mechanism, which was not

considered in the classical models.

According to [32], “The ability of SARS-CoV-2 to remain viable longer on surfaces taken

together with its higher virulence in establishing an infection makes it very likely that this

coronavirus uses other modes of transmission in addition to respiratory droplets”. This could

be one explanation of the observed higher efficiency of the modified models, although some

studies, such as [33], suggest that this cannot be the main source of transmission, because the

risk of infection after 3 days (72 hours) is minor.

Another explanation could be that the aerosol particles containing respiratory viruses are

significantly accumulated in human environments, which are in large extent buildings, and as

such this represent independent source of infection, not directly connected to person-to-per-

son transmission, which is indicated in [34–36].

Table 7. (Continued)

Country Start date Initial infected End date Infected at end Population

Serbia 2020-03-13 35 2020-06-02 11454 6804596

Singapore 2020-02-01 16 2020-10-08 57849 5850343

Slovakia 2020-03-12 16 2020-05-30 1521 5459643

Slovenia 2020-03-08 16 2020-05-22 1468 2078932

Somalia 2020-04-12 25 2020-08-10 3227 15893219

South Africa 2020-03-12 17 2020-09-28 671669 59308690

South Korea 2020-02-02 15 2020-05-04 10804 51269183

South Sudan 2020-04-30 35 2020-07-11 2021 11193729

Spain 2020-02-28 32 2020-05-22 234824 46754783

Switzerland 2020-02-29 18 2020-04-24 28677 8654618

Thailand 2020-01-30 14 2020-06-26 3162 69799978

Tunisia 2020-03-15 18 2020-05-22 1048 11818618

UK 2020-02-05 9 2020-07-01 285279 67886004

Zimbabwe 2020-04-17 24 2020-10-10 8010 14862927

https://doi.org/10.1371/journal.pone.0279427.t007
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One should be aware, that the spread of infectious disease inevitably involves spatially con-

nected dynamics, which could be modelled in more details. Several studies pointed out that

COVID-19 epidemics, being a human-to-human driven disease, evolves locally [37, 38]. The

infected persons spread the disease to close susceptible persons, not to any suspected person in

the entire country. One should note that this is the limitation of the presented models, which

might be used on an abstract, aggregate level.

In this study, the parameterization of the first wave was performed using four classical mod-

els and four modified models. The experiments showed that the modification based on the

Bass diffusion model allowed for the better fitting of curves, which was also indicated in [15].

By the examination of the equations and the comparison of the modified and unmodified

models, one could anticipate that an additional mechanism of COVID-19 spread is present

that is not considered in classical models.
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Supervision: Stanko Grabljevec, Radovan Stojanović.

Validation: Stanko Grabljevec, Radovan Stojanović, Črtomir Rozman.

Visualization: Vladimir Stanovov, Andrej Škraba.
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