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Abstract

Background

In recent years, there has been increasing evidence that several lipid metabolism abnormal-

ities play an important role in the pathogenesis of neurodegenerative diseases. However,

it is still unclear which lipid metabolism abnormalities play the most important role in neuro-

degenerative diseases. Plasma lipid metabolomics (lipidomics) has been shown to be an

unbiased method that can be used to explore lipid metabolism abnormalities in neurodegen-

erative diseases. Plasma lipidomics in neurodegenerative diseases has been performed

only in idiopathic Parkinson’s disease (IPD) and Alzheimer’s disease (AD), and comprehen-

sive studies are needed to clarify the pathogenesis.

Methods

In this study, we investigated plasma lipids using lipidomics in individuals with neurodegen-

erative diseases and healthy controls (CNs). Plasma lipidomics was evaluated by liquid

chromatography-tandem mass spectrometry (LC–MS/MS) in those with IPD, dementia

with Lewy bodies (DLB), multiple system atrophy (MSA), AD, and progressive supranuclear

palsy (PSP) and CNs.

Results

The results showed that (1) plasma sphingosine-1-phosphate (S1P) was significantly lower

in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN

group. (2) Plasma monohexylceramide (MonCer) and lactosylceramide (LacCer) were sig-

nificantly higher in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP)

than in the CN group. (3) Plasma MonCer levels were significantly positively correlated with

plasma LacCer levels in all enrolled groups.

Conclusion

S1P, Glucosylceramide (GlcCer), the main component of MonCer, and LacCer are sphingo-

lipids that are biosynthesized from ceramide. Recent studies have suggested that elevated
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GlcCer and decreased S1P levels in neurons are related to neuronal cell death and that ele-

vated LacCer levels induce neurodegeneration by neuroinflammation. In the present study,

we found decreased plasma S1P levels and elevated plasma MonCer and LacCer levels in

those with neurodegenerative diseases, which is a new finding indicating the importance of

abnormal sphingolipid metabolism in neurodegeneration.

Introduction

The incidence of idiopathic Parkinson’s disease (IPD) is reported to be 8–18 per 1000 person-

years [1] and that of dementia with Lewy bodies (DLB) is 0.5–1.6 per 1000 person-years [2],

which makes both of them common neurodegenerative diseases. Lewy body diseases, such as

DLB and IPD, are characterized by the presence of cytoplasmic protein aggregates known as

Lewy bodies (LBs) [3]. The main component of LBs is α-synuclein, which is abundant in neu-

rons, including synaptic vesicles in presynaptic terminals, and is a protein aggregate that has

been converted to a β-sheet fibril structure [4]. Multiple system atrophy (MSA) is an adult-

onset neurodegenerative disease that is clinically characterized by poor levodopa-responsive

parkinsonism, cerebellar dysfunction, and autonomic failure [5]. The histopathology of MSA

is characterized by the presence of protein aggregates known as glial cytoplasmic inclusions

(GCIs). Similar to LBs, GCIs are largely composed of aggregates of α-synuclein [6, 7]. There-

fore, LB diseases and MSA are classified as neurodegenerative diseases named synucleinopa-

thies, which are characterized by prominent intracellular α-synuclein aggregation [8].

Alzheimer’s disease (AD) is the most common neurodegenerative disease, currently affect-

ing approximately 40 million people worldwide [9]. In contrast to synucleinopathies, the path-

ological features of AD require the presence of extracellular β amyloid-positive senile plaques

and phosphorylated tau-positive neurofibrillary tangles in neurons [10]. Progressive supranuc-

lear palsy (PSP) is a neurodegenerative disease characterized by vertical supranuclear gaze

palsy, postural instability and falls in the early stages of the disease [11]. The pathology of PSP

is characterized by tau-positive aggregates with a characteristic 4-repeat tau in the microtu-

bule-binding domain in neurons [12]. Therefore, AD and PSP have been classified as neurode-

generative diseases named tauopathies, which are characterized by prominent tau aggregation

in neurons [13–15]. AD have been also classified as neurodegenerative diseases named amyloi-

dopathies, which are characterized by prominent extracellular β amyloid aggregation [16].

Lipids are biomolecules that are soluble in nonpolar organic solvents, usually insoluble in

water, and are known primarily for their metabolic role in energy storage [17]. Lipids are also

major components of cell membranes and play an important role in cellular metabolism as

components of lipid rafts, protein anchors, and signaling and transport molecules. There are

eight distinct classes of lipids classified as fatty acyl, glycerolipids, glycerophospholipids, sphin-

golipids, sterols, prenols, saccharolipids, and polyketides [17]. Recently, abnormalities in cere-

brospinal fluid (CSF) lipid metabolism have been reported in IPD and AD [18, 19]. CSF

examination in neurodegenerative diseases is less costly than neuroimaging and more directly

reflects the metabolic state and pathophysiology of the central nervous system than other body

fluids, making it an important test for understanding pathophysiology. However, CSF testing is

a rather invasive approach, and there is a need to develop more noninvasive methods of fluid

collection (e.g., blood sampling) to evaluate the pathogenesis of neurodegenerative diseases.

In recent years, plasma metabolomics has attracted much attention as a method to search

for metabolic abnormalities in an unbiased manner and one that reflects the pathophysiology
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in vivo [20]. Lipid metabolites have various characteristics, such as molecular weight, polarity,

and ionization state. For accurate analysis, it has been necessary to develop new tools that can

detect a large number of lipid metabolites with high resolution. LC–MS/MS can detect a large

number of lipid metabolites with high resolution and has attracted attention as a tool for lipid

metabolomics (lipidomics) research. Plasma lipidomics in neurodegenerative diseases has

been evaluated only in IPD and AD [21, 22], and comprehensive analysis is needed to clarify

the pathogenesis. In the present study, we used plasma lipidomics to examine whether abnor-

malities in plasma lipid metabolism were observed in IPD, DLB, MSA, AD, and PSP.

Materials and methods

Clinical information of the participants in this study

All participants were recruited at National Hospital Organization (NHO) Sendai Nishitaga

Hospital and examined by board-certified neurologists. Cohort A, cohort B, and cohort C

were recruited from October 2017 to September 2021. Patients with IPD, probable DLB, prob-

able AD, probable MSA, and probable PSP according to the established clinical diagnostic cri-

teria for each disease were included [3, 5, 23–25]. All enrolled patients had late onset (>45

years of age), and no patients had a family history. All IPD patients were treated with L-dopa

or other antiparkinsonian drugs, and motor symptoms were under good control. In cohort

A, we enrolled 30 patients with IPD and 28 controls (CNs) (Table 1). The 30 IPD patients

included 21 females and 9 males; the age of the IPD patients ranged from 58 to 75 years, with a

mean of 67.2 years. The 28 CNs included 14 females and 14 males; the age of the CNs ranged

from 57 to 73 years, with a mean of 65 years. In cohort B, 28 DLB patients, 13 AD patients, and

Table 1. Demographics and clinical characteristics of the analyzed plasma samples in Cohorts A, B and C.

cohort A

CN PD p value (CN vs. PD)

number 28 30

male, %/female, % 14 (50)/14 (50) 9 (30)/21 (70) 0.1197

age, y, mean±SD 65.0±5.3 67.2±5.1 0.1095

MMSE, mean±SD 26.9±2.0 26.8±3.6 0.3532

disease duration, y, mean±SD 9.2±6.1

cohort B

CN DLB p value (CN vs. DLB) AD p value (CN vs. AD)

number 15 28 13

male, %/female, % 11 (73)/4 (27) 11 (39)/17 (61) 0.0333 2 (15)/11 (85) 0.0022

age, y, mean±SD 66.8±5.2 83.3±6.2 <0.0001 83.6±4.5 <0.0001

MMSE, mean±SD 26.7±2.1 24.2±6.7 0.0217 19.6±4.9 <0.0001

disease duration, y, mean±SD 3.4±3.4 1.5±2.1

cohort C

CN PD p value (CN vs. PD) PSP p value (CN vs. PSP) MSA p value (CN vs. MSA)

number 6 28 16 13

male, %/female, % 4 (67)/2 (33) 9 (32)/19 (68) 0.1143 9 (56)/7 (44) 0.6581 6 (46)/7 (54) 0.4052

age, y, mean±SD 71.5±1.2 75.2±5.9 0.1077 74.8±6.8 0.086 69.6±11.9 0.9299

MMSE, mean±SD 28.8±1 24.0±3.8 0.0014 22.5±4.5 0.0079 26.2±1.3 0.0572

disease duration, y, mean±SD 6.4±6.6 3.6±2.2 2.8±1.7

Abbreviations: CNs, controls; PD, Parkinson’s disease; DLB, dementia with Lewy bodies; Alzheimer’s disease (AD); SD, standard deviation; MMSE: Mini-Mental State

Examination; PSP, progressive supranuclear palsy; MSA, multiple system atrophy

https://doi.org/10.1371/journal.pone.0279315.t001
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15 CNs were enrolled (Table 1). The 28 DLB patients included 17 females and 11 males; the

age of the DLB patients ranged from 72 to 95 years, with a mean of 83.3 years. The 13 AD

patients included 11 females and 2 males; the age of the AD patients ranged from 73 to 88

years, with a mean of 83.6 years. The 15 CNs included 4 females and 11 males; the age of the

CNs ranged from 55 to 73 years, with a mean of 66.8 years. In cohort C, 28 PD patients, 13

MSA patients, 16 PSP patients, and 6 CNs were enrolled (Table 1). The 28 IPD patients

included 19 females and 9 males; the age of the IPD patients ranged from 60 to 85 years, with a

mean of 75.2 years. The 13 MSA patients included 7 females and 6 males; the age of the MSA

patients ranged from 50 to 92 years, with a mean of 69.6 years. The 16 PSP patients included 7

females and 9 males; the age of the PSP patients ranged from 60 to 84 years, with an average

of 74.8 years; 6 CNs included 2 females and 4 males; the age of the CNs ranged from 70 to 73

years, with an average of 71.5 years.

In this study, duration of illness refers to the time since the onset of motor symptoms in

the IPD, MSA, and PSP patients and the onset of cognitive impairment in the DLB and AD

patients. The Mini-Mental State Examination (MMSE) was used as a global cognitive function

test. All CNs, all DLB patients, all AD patients, 24 out of 30 IPD patients in cohort A, 23 out

of 28 IPD patients in cohort C, 10 out of 13 MSA patients, and 16 out of 18 PSP patients com-

pleted the MMSE.

This study was approved by the ethics committee of our institution and followed the

Helsinki Declaration on International Clinical Research Involving Human Beings. Written

informed consent for this study was obtained from all subjects.

Sample collection

Sample collection was performed from October 2017 to September 2021. Plasma was extracted

as previously described [26]. Each 500 μl plasma aliquot was stored in a -80˚C freezer until use.

Briefly, fasting blood was collected in Na-EDTA and centrifuged at room temperature for 10

minutes to extract plasma. The extracted plasma was collected in screw-cap microtubes (Sar-

stedt AG, Nümbrecht, Germany) between 10 am and 12 am and stored at -80˚C until the time

of metabolomic analysis.

Metabolite extraction

Metabolite extraction and metabolomic analysis were conducted at Human Metabolome

Technologies (HMT) (HMT, Tsuruoka, Yamagata, Japan). Briefly, 100 μL of plasma was

mixed with 300 μL of 0.1% formic acid in methanol containing internal standards and cen-

trifuged at 9,100 ×g and 4˚C for 10 minutes. Then, 250 μL of the supernatant was mixed

with 550 μL of 0.1% formic acid and loaded onto an SPE column (MonoSpinC18, 5010–

2170, GL Sciences Inc., Tokyo, Japan). The analytes on the SPE column were purified with

0.1% formic acid and 0.1% formic acid in 25% methanol and eluted with 200 μL of 0.1%

formic acid in methanol. The elution was then used for LC–MS/MS analysis at HMT.

The average recovery of sphingolipids extracted with the SPE column is 88% (range 68%

to 99.9%).

Metabolomic analysis. Metabolomic analysis was conducted by the Mediator Scan pack-

age of HMT by using LC–MS/MS. Based on metabolomic analysis, 324 metabolites, including

fatty acids, acylcarnitines, oxylipins, lysophospholipids, platelet-activating factors, glycosphin-

golipids, sphinganines, sphingosines, and steroids, were evaluated in all enrolled neurodegen-

erative disease groups and the CN group. Briefly, LC–MS/MS analysis was carried out by

using an Agilent 1260 Infinity II and Agilent 1290 Infinity II High Speed Pump equipped with

AB Sciex QTRAP 5500 (AB Sciex Pte. Ltd., Framingham, MA, USA). The multiple reaction
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monitoring (MRM) mode of the mass spectrometer was used to detect signals of each metabo-

lite according to the HMT metabolite database. MRM ion chromatograms were extracted by

using Multi Quant automatic integration software (AB Sciex) to obtain peak area information.

Target metabolites are divided into categories (fatty acids, acylcarnitines, oxylipins, lysopho-

spholipids, platelet-activating factors, glycosphingolipids, sphinganines, sphingosines, and ste-

roids) according to their physical properties, and the recovery rate is corrected using the

corresponding IS (Internal standards). Based on these reports, these IS were selected [27–29].

The recovery rate of analytes during extraction ranged from 68% to 129%, with a mean of

96%. IS coefficient of variation ranged from 4.4 to 9.7%, with a mean of 6.7%. The peak area of

each metabolite was then normalized based on IS level and sample volume for relative quantifi-

cation. The normalized each metabolite was represented as relative area and used as the quan-

titative value based on previous reports [30, 31].

Simoa™ assay

Plasma samples stored at -80˚C were thawed and centrifuged at 10,000 x g for 5 minutes. Sam-

ples were diluted in advance with the Sample Diluent provided with Assay Kit and applied to

the plate. The assay was performed one sample at a time. Simoa™ p-Tau181 Advantage Kit

(Quanterix, #103377, Billerica, MA, USA) were used to measure plasma p-Tau181. Measure-

ments were performed according to the instructions for kit.

Statistical evaluation

All plasma metabolites are expressed as the median (interquartile range). Differences between

the groups were examined for statistical significance using one-tailed Welch’s t test in the lipi-

domic analysis data. Differences between the groups were examined for statistical significance

using Wilcoxon tests and chi-square tests for the demographic data. Data were analyzed using

the computer software system JMP13 (SAS Institute, Tokyo, Japan).

Results

Plasma sphingosine-1-phosphate (S1P) levels in neurodegenerative diseases

Plasma S1P levels were compared between the CN group and the IPD, DLB, MSA, AD and

PSP groups. Statistical significance was examined using one-tailed Welch’s t tests. Plasma S1P

d16.1 levels were significantly (p< 0.0001) lower in the IPD group of cohort A (N = 30) versus

the control group (N = 28) (Fig 1A). Plasma S1P d16.1 levels were significantly (p< 0.0001)

lower in the DLB group (N = 28) versus the control group (N = 15) (Fig 1B) and significantly

(p< 0.0001) lower in the AD group (N = 13) versus the control group (N = 15) (Fig 1B).

Plasma S1P d16.1 levels were significantly (p< 0.01) lower in the IPD group of cohort C

(N = 28) versus the control group (N = 6) (Fig 1C), significantly (p< 0.01) lower in the MSA

group (N = 13) versus the control group (N = 6) (Fig 1C), and significantly (p< 0.001) lower

in the PSP group (N = 16) versus the control group (N = 6) (Fig 1C). Plasma S1P d18.1 levels

were significantly (p< 0.05) lower in the IPD group of cohort A (N = 30) versus the control

group (N = 28) (Fig 1D). Plasma S1P d18.1 levels were significantly (p< 0.01) lower in the

DLB group (N = 28) versus the control group (N = 15) (Fig 1E) and significantly (p< 0.05)

lower in the AD group (N = 13) versus the control group (N = 15) (Fig 1E). Plasma S1P d18.1

levels were significantly (p< 0.05) lower in the IPD group of cohort C (N = 28) versus the

control group (N = 6) (Fig 1F), significantly (p< 0.05) lower in the MSA group (N = 13) versus

the control group (N = 6) (Fig 1F), and significantly (p< 0.05) lower in the PSP group

(N = 16) versus the control group (N = 6) (Fig 1F). These results indicated that plasma S1P
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Fig 1. Plasma S1P levels in neurodegenerative diseases. (A) Plasma S1P d16.1 levels were significantly lower in the IPD group of cohort A

(p < 0.0001) than in the CN group. (B) Plasma S1P d16.1 levels were significantly lower in the DLB group (p< 0.0001) and AD group (p< 0.0001)

than in the CN group. (C) Plasma S1P d16.1 levels were significantly lower in the IPD group of cohort C (p< 0.01), MSA group (p< 0.01) and PSP

group (p < 0.001) than in the CN group. (D) Plasma S1P d18.1 levels were significantly lower in the IPD group of cohort A (p< 0.05) than in the CN

group. (E) Plasma S1P d18.1 levels were significantly lower in the DLB group (p< 0.01) and AD group (p< 0.05) than in the CN group. (F) Plasma S1P

d18.1 levels were significantly lower in the IPD group of cohort C (p < 0.05), MSA group (p< 0.05) and PSP group (p < 0.05) than in the CN group.

Statistical significance was examined using one-tailed Welch’s t tests (P< 0.05). Circles indicate the data points between the lower and upper whiskers,

and x indicates the average marker in a box/whisker diagram.

https://doi.org/10.1371/journal.pone.0279315.g001
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levels were significantly lower in all neurodegenerative disease groups (IPD, DLB, MSA, AD,

and PSP) than in the CN group.

Plasma monohexylceramide (MonCer) levels in neurodegenerative diseases

Total plasma MonCer d18:1 levels were compared between the CN group and the IPD, DLB,

MSA, AD, and PSP groups. Total plasma MonCer d18:1 levels were measured by summing

levels of 13 types of MonCer d18:1: MonCer (d18:1/14:0), MonCer (d18:1/16:0), MonCer

(d18:1/16:1), MonCer (d18:1/18:0), MonCer (d18:1/18:1), MonCer (d18:1/20:0), MonCer

(d18:1/20:1), MonCer (d18:1/22:0), MonCer (d18:1/22:1), MonCer (d18:1/22:2), MonCer

(d18:1/24:0), MonCer (d18:1/24:1) and MonCer (d18:1/24:2). Statistical significance was

examined using one-tailed Welch’s t tests. Total plasma MonCer d18:1 levels were significantly

(p< 0.01) higher in the IPD group of cohort A (N = 30) versus the control group (N = 28) (Fig

2A). Total plasma MonCer d18:1 levels were significantly (p< 0.01) higher in the DLB group

(N = 28) versus the control group (N = 15) (Fig 2B) and significantly (p< 0.001) higher in the

AD group (N = 13) versus the control group (N = 15) (Fig 2B). Total plasma MonCer d18:1

levels were significantly (p< 0.01) higher in the IPD group of cohort C (N = 28) versus the

control group (N = 6) (Fig 2C), significantly (p< 0.05) higher in the MSA group (N = 13) ver-

sus the control group (N = 6) (Fig 2C), and significantly (p< 0.01) higher in the PSP group

(N = 16) versus the control group (N = 6) (Fig 2C). These results indicated that plasma Mon-

Cer levels were significantly higher in all neurodegenerative disease groups (IPD, DLB, MSA,

AD, and PSP) than in the CN group.

Fig 2. Plasma MonCer levels in neurodegenerative diseases. (A) Plasma MonCer d18:1 levels were significantly higher in the IPD group of cohort A

(p < 0.01) than in the CN group. (B) Plasma MonCer d18:1 levels were significantly higher in the DLB group (p < 0.01) and AD group (p< 0.001) than

in the CN group. (C) Plasma MonCer d18:1 levels were significantly higher in the IPD group of cohort C (p< 0.01), MSA group (p< 0.05) and PSP

group (p < 0.01) than in the CN group. Statistical significance was examined using one-tailed Welch’s t tests (P< 0.05). Circles indicate the data points

between the lower and upper whiskers, and x indicates the average marker in a box/whisker diagram.

https://doi.org/10.1371/journal.pone.0279315.g002

PLOS ONE Plasma sphingolipids in neurodegenerative diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0279315 December 16, 2022 7 / 21

https://doi.org/10.1371/journal.pone.0279315.g002
https://doi.org/10.1371/journal.pone.0279315


We compared MonCer (d18:1/14:0), MonCer (d18:1/16:0), MonCer (d18:1/16:1), MonCer

(d18:1/18:0), MonCer (d18:1/18:1), MonCer (d18:1/20:0), MonCer (d18:1/20:1), MonCer

(d18:1/22:0), MonCer (d18:1/22:1), MonCer (d18:1/22:2), MonCer (d18:1/24:0), MonCer

(d18:1/24:1), and MonCer (d18:1/24:2) between the CN group and the IPD, DLB, MSA, AD,

or PSP groups (Table 2). The chi-square test was used to examine the association between lipid

abnormalities and chain length in MonCer d18:1. No statistically significant difference was

found between lipid abnormalities and chain length (P = 0.5522) in all enrolled groups.

Plasma lactosylceramide (LacCer) levels in neurodegenerative diseases

Total plasma LacCer d18:1 levels were compared between the CN group and the IPD, DLB,

MSA, AD, and PSP groups. Total plasma LacCer d18:1 levels were measured by summing the

levels of 13 types of LacCer d18:1: LacCer (d18:1/14:0), LacCer (d18:1/16:0), LacCer (d18:1/

16:1), LacCer (d18:1/18:0), LacCer (d18:1/18:1), LacCer (d18:1/20:0), LacCer (d18:1/20:1),

Table 2. Plasma all MonCer levels in neurodegenerative diseases.

cohort A cohort B cohort B

PD vs CN DLB vs CN AD vs CN

ratio p value ratio p value ratio p value

MonCer (d18:1/14:0) 1.1 0.0975 MonCer (d18:1/14:0) 1.3 0.0012 MonCer (d18:1/14:0) 1.2 0.0443

MonCer (d18:1/16:0) 1.2 0.0151 MonCer (d18:1/16:0) 1.2 0.0013 MonCer (d18:1/16:0) 1.3 0.0023

MonCer (d18:1/16:1) 1 0.5408 MonCer (d18:1/16:1) 1.1 0.2052 MonCer (d18:1/16:1) 1 0.4006

MonCer (d18:1/18:0) 1.3 0.0105 MonCer (d18:1/18:0) 1.2 0.0181 MonCer (d18:1/18:0) 1.3 0.0008

MonCer (d18:1/18:1) 1.4 0.0018 MonCer (d18:1/18:1) 1.3 0.0042 MonCer (d18:1/18:1) 1.3 0.0106

MonCer (d18:1/20:0) 1.2 0.0053 MonCer (d18:1/20:0) 1.1 0.0890 MonCer (d18:1/20:0) 1.2 0.0298

MonCer (d18:1/20:1) 1.5 0.0010 MonCer (d18:1/20:1) 1.4 0.0066 MonCer (d18:1/20:1) 1.4 0.0047

MonCer (d18:1/22:0) 1.1 0.2312 MonCer (d18:1/22:0) 1 0.5454 MonCer (d18:1/22:0) 1.1 0.2288

MonCer (d18:1/22:1) 1.4 0.0092 MonCer (d18:1/22:1) 1.5 0.0025 MonCer (d18:1/22:1) 1.5 0.0121

MonCer (d18:1/22:2) 1.3 0.0097 MonCer (d18:1/22:2) 1.4 0.0034 MonCer (d18:1/22:2) 1.5 0.0039

MonCer (d18:1/24:0) 1.1 0.2478 MonCer (d18:1/24:0) 1 0.5483 MonCer (d18:1/24:0) 0.9 0.6499

MonCer (d18:1/24:1) 1.3 0.0016 MonCer (d18:1/24:1) 1.3 0.0143 MonCer (d18:1/24:1) 1.3 0.0244

MonCer (d18:1/24:2) 1.2 0.0176 MonCer (d18:1/24:2) 1.2 0.0170 MonCer (d18:1/24:2) 1.4 0.0313

cohort C cohort C cohort C

PD vs CN PSP vs CN MSA vs CN

ratio p value ratio p value ratio p value

MonCer (d18:1/14:0) 1.3 0.0826 MonCer (d18:1/14:0) 1.3 0.0709 MonCer (d18:1/14:0) 1.2 0.1345

MonCer (d18:1/16:0) 1.4 0.0029 MonCer (d18:1/16:0) 1.4 0.0035 MonCer (d18:1/16:0) 1.4 0.0099

MonCer (d18:1/16:1) 1.2 0.3156 MonCer (d18:1/16:1) 1.5 0.1082 MonCer (d18:1/16:1) 1.3 0.2442

MonCer (d18:1/18:0) 1.5 0.0018 MonCer (d18:1/18:0) 1.5 0.0030 MonCer (d18:1/18:0) 1.4 0.0074

MonCer (d18:1/18:1) 1.3 0.0018 MonCer (d18:1/18:1) 1.5 0.0006 MonCer (d18:1/18:1) 1.2 0.0910

MonCer (d18:1/20:0) 1.3 0.0267 MonCer (d18:1/20:0) 1.4 0.0100 MonCer (d18:1/20:0) 1.3 0.0430

MonCer (d18:1/20:1) 1.3 0.0182 MonCer (d18:1/20:1) 1.5 0.0020 MonCer (d18:1/20:1) 1.3 0.0172

MonCer (d18:1/22:0) 0.8 0.7890 MonCer (d18:1/22:0) 1.1 0.1771 MonCer (d18:1/22:0) 0.9 0.7486

MonCer (d18:1/22:1) 1 0.5938 MonCer (d18:1/22:1) 1.4 0.0729 MonCer (d18:1/22:1) 1.2 0.2142

MonCer (d18:1/22:2) 1.5 0.0009 MonCer (d18:1/22:2) 1.6 0.0013 MonCer (d18:1/22:2) 1.6 0.0189

MonCer (d18:1/24:0) 0.4 <0.0001 MonCer (d18:1/24:0) 1.1 0.2573 MonCer (d18:1/24:0) 0.7 0.0158

MonCer (d18:1/24:1) 0.9 0.2863 MonCer (d18:1/24:1) 1.4 0.0136 MonCer (d18:1/24:1) 1.1 0.3389

MonCer (d18:1/24:2) 1.2 0.0725 MonCer (d18:1/24:2) 1.5 0.0145 MonCer (d18:1/24:2) 1.3 0.0697

Statistical methods: The metabolite level ratio of IPD, DLB, MSA, AD, or PSP to CNs. Statistical significance was examined using one-tailed Welch’s t tests (P < 0.05).

https://doi.org/10.1371/journal.pone.0279315.t002
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LacCer (d18:1/22:0), LacCer (d18:1/22:1), LacCer (d18:1/22:2), LacCer (d18:1/24:0), LacCer

(d18:1/24:1) and LacCer (d18:1/24:2). Statistical significance was examined using one-tailed

Welch’s t tests. Total plasma LacCer d18:1 levels were significantly (p< 0.01) higher in the IPD

group of cohort A (N = 30) versus the control group (N = 28) (Fig 3A). Total plasma LacCer

d18:1 levels were significantly (p< 0.001) higher in the DLB group (N = 28) versus the control

group (N = 15) (Fig 3B) and significantly (p< 0.05) higher in the AD group (N = 13) versus the

control group (N = 15) (Fig 3B). Total plasma LacCer d18:1 levels were significantly (p< 0.01)

higher in the IPD group of cohort C (N = 28) versus the control group (N = 6) (Fig 3C), signifi-

cantly (p< 0.01) higher in the MSA group (N = 13) versus the control group (N = 6) (Fig 3C),

and significantly (p< 0.01) higher in the PSP group (N = 16) versus the control group (N = 6)

(Fig 3C). These results indicated that plasma LacCer levels were significantly higher in all

neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group.

We compared LacCer (d18:1/14:0), LacCer (d18:1/16:0), LacCer (d18:1/16:1), LacCer

(d18:1/18:0), LacCer (d18:1/18:1), LacCer (d18:1/20:0), LacCer (d18:1/20:1), LacCer (d18:1/

22:0), LacCer (d18:1/22:1), LacCer (d18:1/22:2), LacCer (d18:1/24:0), LacCer (d18:1/24:1), and

LacCer (d18:1/24:2) between the CN group and the IPD, DLB, MSA, AD, or PSP groups

(Table 3). The chi-square test was used to examine the association between lipid abnormalities

and chain length in LacCers d18:1. No statistically significant difference was found between

lipid abnormalities and chain length (P = 0.5522) in all enrolled groups.

Fig 3. Plasma LacCer levels in neurodegenerative diseases. (A) Plasma LacCer d18:1 levels were significantly higher in the IPD group of cohort A

(p < 0.01) than in the CN group. (B) Plasma LacCer d18:1 levels were significantly higher in the DLB group (p< 0.001) and AD group (p< 0.05) than

in the CN group. (C) Plasma LacCer d18:1 levels were significantly higher in the IPD group of cohort C (p< 0.01), MSA group (p< 0.01) and PSP

group (p < 0.01) than in the CN group. Statistical significance was examined using one-tailed Welch’s t tests (P< 0.05). Circles indicate the data points

between the lower and upper whiskers, and x indicates the average marker in a box/whisker diagram.

https://doi.org/10.1371/journal.pone.0279315.g003
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Correlation between total plasma MonCer levels and total plasma LacCer

levels

Pearson Correlation Coefficient was used to correlate total plasma MonCer d18:1 levels and

total plasma LacCer d18:1 levels in all enrolled groups. Total plasma MonCer d18:1 levels

were significantly positively correlated with total plasma LacCer d18:1 levels (r = 0.5802,

p< 0.0001) (Fig 4) in all enrolled groups. These results suggest that an increase in plasma

MonCer may be directly related to an increase in LacCer in all enrolled groups.

Correlation between plasma p-tau levels and plasma S1P levels, total

plasma MonCer levels or total plasma LacCer levels

To investigate the association between AD-associated protein and sphingolipids, Pearson

Correlation Coefficient was used to correlate plasma p-tau levels and plasma S1P d16.1 levels,

Table 3. Plasma All LacCer levels in neurodegenerative diseases.

cohort A cohort B cohort B

PD vs CN DLB vs CN AD vs CN

ratio p value ratio p value ratio p value

LacCer (d18:1/14:0) 1.2 0.0035 LacCer (d18:1/14:0) 1.5 <0.0001 LacCer (d18:1/14:0) 1.2 0.0297

LacCer (d18:1/16:0) 1.2 0.0026 LacCer (d18:1/16:0) 1.2 0.0006 LacCer (d18:1/16:0) 1.2 0.0284

LacCer (d18:1/16:1) 1.2 0.0161 LacCer (d18:1/16:1) 1.3 0.0002 LacCer (d18:1/16:1) 1.2 0.0655

LacCer (d18:1/18:0) 1.1 0.1188 LacCer (d18:1/18:0) 1.2 0.0110 LacCer (d18:1/18:0) 1.2 0.0340

LacCer (d18:1/18:1) 1.3 0.0024 LacCer (d18:1/18:1) 1.2 0.0278 LacCer (d18:1/18:1) 1.2 0.0850

LacCer (d18:1/20:0) 1 0.3364 LacCer (d18:1/20:0) 1.1 0.1147 LacCer (d18:1/20:0) 1.2 0.1116

LacCer (d18:1/20:1) 1.4 0.0032 LacCer (d18:1/20:1) 1.4 0.0009 LacCer (d18:1/20:1) 1.3 0.0179

LacCer (d18:1/22:0) 1 0.5292 LacCer (d18:1/22:0) 1.1 0.2660 LacCer (d18:1/22:0) 1.1 0.2379

LacCer (d18:1/22:1) 1.3 0.0095 LacCer (d18:1/22:1) 1.5 <0.0001 LacCer (d18:1/22:1) 1.4 0.0167

LacCer (d18:1/22:2) 1.3 0.0018 LacCer (d18:1/22:2) 1.3 0.0062 LacCer (d18:1/22:2) 1.3 0.0268

LacCer (d18:1/24:0) 1 0.4800 LacCer (d18:1/24:0) 1.1 0.3120 LacCer (d18:1/24:0) 1 0.6157

LacCer (d18:1/24:1) 1.4 0.0003 LacCer (d18:1/24:1) 1.3 0.0082 LacCer (d18:1/24:1) 1.2 0.1190

LacCer (d18:1/24:2) 1.3 0.0021 LacCer (d18:1/24:2) 1.3 0.0098 LacCer (d18:1/24:2) 1.1 0.1727

cohort C cohort C cohort C

PD vs CN PSP vs CN MSA vs CN

ratio p value ratio p value ratio p value

LacCer (d18:1/14:0) 1.4 0.0252 LacCer (d18:1/14:0) 1.3 0.0320 LacCer (d18:1/14:0) 1.4 0.0194

LacCer (d18:1/16:0) 1.3 0.0063 LacCer (d18:1/16:0) 1.4 0.0019 LacCer (d18:1/16:0) 1.3 0.0059

LacCer (d18:1/16:1) 1.2 0.0157 LacCer (d18:1/16:1) 1.5 0.0178 LacCer (d18:1/16:1) 1.2 0.0454

LacCer (d18:1/18:0) 1.2 0.0953 LacCer (d18:1/18:0) 1.5 0.2933 LacCer (d18:1/18:0) 1.3 0.0392

LacCer (d18:1/18:1) 1.2 0.1763 LacCer (d18:1/18:1) 1.5 0.1542 LacCer (d18:1/18:1) 1 0.4351

LacCer (d18:1/20:0) 1.1 0.2281 LacCer (d18:1/20:0) 1.4 0.3886 LacCer (d18:1/20:0) 1.2 0.1381

LacCer (d18:1/20:1) 1.2 0.0902 LacCer (d18:1/20:1) 1.5 0.2285 LacCer (d18:1/20:1) 1.2 0.1321

LacCer (d18:1/22:0) 0.8 0.1630 LacCer (d18:1/22:0) 1.1 0.6517 LacCer (d18:1/22:0) 0.9 0.2980

LacCer (d18:1/22:1) 1.1 0.3525 LacCer (d18:1/22:1) 1.4 0.2833 LacCer (d18:1/22:1) 1.1 0.2590

LacCer (d18:1/22:2) 1.3 0.0925 LacCer (d18:1/22:2) 1.6 0.1774 LacCer (d18:1/22:2) 1.2 0.1781

LacCer (d18:1/24:0) 0.4 0.0031 LacCer (d18:1/24:0) 1.1 0.7710 LacCer (d18:1/24:0) 0.7 0.0248

LacCer (d18:1/24:1) 0.9 0.6587 LacCer (d18:1/24:1) 1.4 0.3145 LacCer (d18:1/24:1) 1 0.4450

LacCer (d18:1/24:2) 1.2 0.2138 LacCer (d18:1/24:2) 1.5 0.2520 LacCer (d18:1/24:2) 1.2 0.2394

Statistical methods: The metabolite level ratio of IPD, DLB, MSA, AD, or PSP to CNs. Statistical significance was examined using one-tailed Welch’s t tests (P < 0.05).

https://doi.org/10.1371/journal.pone.0279315.t003
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plasma S1P d18.1 levels, total plasma MonCer d18:1 levels or total plasma LacCer d18:1 levels

in all enrolled groups. Correlation between plasma p-tau levels and plasma S1P d16.1 levels

(p = 0.509), plasma S1P d18.1 levels (p = 0.468), plasma MonCer d18:1 levels (p = 0.767), or

plasma LacCer d18:1 levels (p = 0.999) showed no correlation.

Fig 4. Correlation between total plasma MonCer levels and total plasma LacCer levels. (A) Total plasma MonCer d18:1 levels were significantly

positively correlated with total plasma LacCer d18:1 levels (r = 0.5802, p< 0.0001) in all enrolled groups.

https://doi.org/10.1371/journal.pone.0279315.g004
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Plasma other lipid metabolite levels in neurodegenerative diseases

Plasma other lipid metabolite (other sphingolipids, sphinganines, gangliosides, free fatty acids,

acylcarnitnes, lysophospholipids, platelet-activating factor, acylethanolamine, thyroid hor-

mone, cholic acids, and steroids) levels were compared between the CN group and the IPD,

DLB, MSA, AD and PSP groups. Oxylipins were not statistically analyzed because it is consid-

ered unsuitable for statistical analysis due to the large number of undetectable samples. Statisti-

cal significance was examined using one-tailed Welch’s t tests. Plasma ceramide-1-phosphate

(C1P) levels were significantly higher in the PD, DLB, and AD groups versus the control group

(S1 Table). Plasma GM3 ganglioside and GD3 ganglioside levels were significantly higher in all

neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) versus the control group

(S1 Table). Plasma lysophosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanola-

mine, lysophosphatidylglycerol, lysophosphatidylserine levels were lower in DLB group versus

the control group (S1 Table). Plasma cortisone levels were significantly higher in the PD, MSA

and PSP groups versus the control group (S2 Table).

Discussion

Plasma sphingolipid abnormalities in neurodegenerative diseases

Recessive mutations in the GBA1 (glucocerebrosidase) gene cause Gaucher disease. Heterozy-

gous GBA1 mutation carriers exhibit much greater incidence of PD than the general popula-

tion [32, 33]. Likewise, mutations in the NPC1 (NPC intracellular cholesterol transporter 1)

and SMPD1 (sphingomyelin phosphodiesterase 1) genes, which cause Niemann-Pick disease,

have been shown to be risk genes for IPD [34, 35]. One of the phospholipase A2 members,

PLA2G6 or iPLA2-VIA/iPLA2β, has been isolated as the gene responsible for an autosomal

recessive form of PD linked to the PARK14 locus [36]. Compared to the most common e3 iso-

form, the e4 isoform of ApoE (ApoE4) is the strongest genetic risk factor for late-onset AD

[37]. β amyloid accumulation in NPC1 (NPC intracellular cholesterol transporter 1) gene,

which cause Niemann-Pick type C, mutant cells and NPC mouse brain suggests the association

between cholesterol metabolism and AD [38]. As described, several lipid-related genes have

been reported as risk genes or causative genes in PD and AD. In addition, various lipid abnor-

malities have been reported in IPD and AD, such as fatty acids, glycerolipids, glycerophospho-

lipids, sphingolipids, sterols, and lipoproteins [17, 39]. However, it is still unclear which lipid

metabolism abnormalities play the most important role in neurodegenerative diseases. Plasma

lipidomics is an unbiased method and can find important lipids in neurodegenerative diseases.

For this reason, plasma lipidomics was performed in neurodegenerative diseases in this study.

In this study, we found that plasma S1P levels were significantly lower and plasma MonCer

and LacCer levels were significantly higher in all neurodegenerative disease groups (IPD, DLB,

MSA, AD, and PSP) than in the CN group by plasma lipidomics.

Glucosylceramide (GlcCer) and galactosylceramide (GalCer) are isomers, and MonCer is

the sum of both compounds. Although it is difficult to completely separate plasma GalCer and

plasma GlcCer from plasma MonCer in present method, it has been shown that the majority

of plasma MonCer is composed of plasma GlcCer [40]. S1P, GlcCer, and LacCer mentioned

above are sphingolipids biosynthesized from ceramide (Fig 5). GCS is GlcCer synthase,

BGTase6 is LacCer synthase, and SPHK is S1P synthase. These indicate that increased GlcCer

and LacCer are caused by increased function of GCS and BGTase6, respectively, and decreased

S1P is caused by a relative loss of function of SPHK.

Ceramide is hydrolyzed to sphingosine, which is further phosphorylated by sphingosine

kinase to S1P (Fig 5). S1P is a sphingolipid that regulates stress tolerance, proliferation and
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differentiation of neuronal cells and is a neuroprotective factor involved in the suppression of

neuronal cell death [41, 42]. It has been reported that S1P concentrations in CSF are signifi-

cantly decreased in AD [43], and S1P concentrations in plasma are significantly decreased in

vascular dementia and AD [44]. However, there has been no comprehensive analysis of plasma

S1P levels in those with neurodegenerative diseases such as synucleinopathies, amyloidopa-

thies and tauopathies. Therefore, we analyzed plasma S1P levels in individuals with neurode-

generative diseases using lipidomics in this study. We found that plasma S1P levels in all

neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) were significantly lower

than those in the CN group. The finding of lower plasma S1P levels in those with all neurode-

generative disease groups analyzed (IPD, DLB, MSA, AD, and PSP) is a novel finding revealed

in this study, suggesting that abnormalities in plasma S1P metabolism are common in synu-

cleinopathies, amyloidopathies and tauopathies.

In animal models of the synucleinopathies PD and MSA administration of FTY720, an S1P

agonist, has been shown to ameliorate neurodegeneration and behavioral dysfunction associ-

ated with mitochondrial dysfunction via S1P receptors [45, 46]. α-synuclein binds to lipid

rafts, where it negatively regulates S1P receptor signaling [47]. S1P levels were decreased with

increasing Braak stage in AD, and this was most pronounced in brain regions most affected by

AD pathology [48]. In an animal model of AD in which Aβ42 peptide was injected locally into

the bilateral hippocampus, administration of the S1P agonist FTY720 reduced hippocampal

neuronal damage and learning and memory impairment [49]. Furthermore, in an animal

model of AD using rat hippocampal slices, administration of SEW2871, an S1P agonist, was

shown to suppress the expression of phosphorylated tau protein [50]. These findings suggest

that S1P may act as a neuroprotective factor against aggregate formation and neuronal cell

death not only in PD but also in AD. In other words, the decrease in plasma S1P levels in synu-

cleinopathies and amyloidopathies may reflect a decrease in neuroprotection.

Fig 5. Ceramide, sphingosine and glycosphingolipid metabolism. Products are indicated in bold and italics. Abbreviations: S1P, sphingosine-

1-phosphate; GlcCer, glucosylceramide; GCase, glucocerebrosidase; GCS, GlcCer synthase; CERase, ceramidase; CERS, ceramide synthase; SPHK,

sphingosine kinase; SGPP, S1P phosphatase; BGTase6, beta-1,4-galactosyltransferase 6; BGase, beta-galactosidase.

https://doi.org/10.1371/journal.pone.0279315.g005
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GlcCer is generated by glucosylceramide synthase (GCS), which transfers glucose from

UDP-glucose to ceramide (Fig 5). GlcCer is a glycosphingolipid that regulates lysosomal func-

tion in general. Plasma GlcCer (a MonCer) levels have been shown to be significantly elevated

in PD, autopsy-confirmed DLB, and autopsy-confirmed AD groups [51, 52]. However, there

has been no comprehensive analysis of plasma GlcCer (a MonCer) levels in neurodegenerative

diseases such as synucleinopathies and tauopathies. Therefore, we analyzed plasma GlcCer (a

MonCer) in those with neurodegenerative diseases using lipidomics in this study. We found

that the plasma GlcCer (a MonCer) levels were significantly higher in all neurodegenerative

disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. The elevated plasma

GlcCer (a MonCer) levels in individuals with IPD, probable DLB, and probable AD in this

study were in good accordance with the results of previous studies [51, 52]. There have been no

reports of abnormal plasma GlcCer (a MonCer) levels in MSA and PSP. In this study, we found

elevated plasma GlcCer (a MonCer) levels in individuals not only with LB diseases or AD but

also with MSA or PSP, suggesting that abnormalities in plasma GlcCer (a MonCer) metabolism

are also commonly observed in synucleinopathies, amyloidopathies and tauopathies.

GBA1 is a major causative gene for Gaucher disease. Recently, GBA1 mutations have been

reported to be an important risk factor for LB diseases such as IPD and DLB [53, 54]. The

GBA1 mutation reduces the activity of the lysosomal lipid metabolizing enzyme glucocerebro-

sidase (GCase), which catalyzes the hydrolysis of the glycosphingolipid GlcCer into ceramide

and glucose, resulting in increased intracellular GlcCer levels [55]. Interestingly, elevated

plasma GlcCer levels have recently been reported in both non-GBA1 mutation carriers and

GBA1 mutation carriers with IPD [52, 56]. In GBA1 mutation carriers with IPD, decreased

GCase activity promoted elevated intracellular GlcCer levels and increased α-synuclein aggre-

gation [57], and this aggregation resulted in a loss of lysosomal activity and neuronal death

[58–60]. In the pathological brain tissue of IPD patients without GBA1 mutations, GCase

activity was also reported to be decreased [61]. This suggested that increased plasma GlcCer

levels are observed in IPD with or without the GBA1 mutation and that increased intraneuro-

nal GlcCer levels may be involved in aggregation formation and neuronal cell death. Presenilin

mutation, one of the familial AD genes, is strongly involved in Aβ42 aggregation, the main

component of senile plaques, and a previous report showed that presenilin deficiencies

resulted in increased GlcCer synthase levels [62]. Furthermore, it has been shown that GlcCer

levels were increased in the brain tissue of those with idiopathic AD [63]. This suggested that

elevated GlcCer levels in the brain are also present in AD and are related to disease pathology.

LacCer is generated by LacCer synthase (β-1,4 galactosyltransferase), which transfers galac-

tose from UDP-galactose to GlcCer (Fig 5). Plasma LacCer levels were significantly elevated in

the non-GBA1 mutation carrier IPD group compared to the CN group [52]. We found that

the plasma LacCer levels were significantly higher in all neurodegenerative disease groups

(IPD, DLB, MSA, AD, and PSP) than in the CN group. In this study, elevated plasma LacCer

levels in those with IPD were in good accordance with the results of a previous study [52]. In

this study, we found elevated plasma LacCer levels not only in those with IPD but also those

with DLB, MSA, AD or PSP, suggesting that abnormalities in plasma LacCer metabolism are

also commonly observed in synucleinopathies, amyloidopathies and tauopathies.

LacCer is a glycosphingolipid, which is an important component of “lipid rafts,” serving as

a conduit to transduce external stimuli [64]. As biologically active sphingolipids, LacCer plays

diverse roles in inflammation, cell proliferation, migration/infiltration, adhesion, angiogenesis

apoptosis, autophagy, and mitochondrial dysfunction [64]. LacCer generally induces neurode-

generation in the central nervous system by activating astrocytes that regulate neuroinflamma-

tion [65]. Thus, elevated plasma LacCer levels may reflect neuroinflammation in the central

nervous system.
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In this study, we found that plasma GM3 and GD3 ganglioside levels were significantly

higher in the neurodegenerative disease groups than in the CN group. Gangliosides are lipids

classified as sphingolipids. GM3 ganglioside is the starting material for gangliosides, which are

biosynthesized by the binding of sialic acid to LacCer [66, 67]. Previously, plasma GM3 gangli-

oside levels have been shown to be elevated in PD [68]. The elevated plasma GM3 ganglioside

levels in individuals with IPD in this study were in good accordance with the results of previ-

ous study. GD3 ganglioside is the gangliosides, which are biosynthesized by the binding of

sialic acid to GM3 ganglioside [66, 67]. GM3 and GD3 gangliosides are components of lipid

rafts and are implicated in cell death [69, 70]. Abnormalities in lipid rafts are also considered

to be one of the major causes of neurodegenerative diseases [71]. Homozygous knockout mice

for B4galnt1, a ganglioside synthase, have been shown to exhibit PD-like motor deficits and

cause dopaminergic neuron degeneration [72]. Taken together, these results suggest that ele-

vated plasma GM3 and GD3 gangliosides may reflect abnormal lipid rafts in neurodegenera-

tive diseases. In this study, we found that plasma C1P levels were significantly higher in the

IPD, DLB, and AD groups than in the CN group. C1P is classified as a sphingolipid, a lipid

mainly involved in cell survival and inflammation [73, 74]. Neuroinflammation is also consid-

ered to be a one of the major causes in PD, DLB and AD [75–77]. Therefore, elevated C1P may

reflect neuroinflammation in these diseases.

Limitations of this study

There are several limitations in this study. First, Analysis the major causative genes or risk

genes of PD during lipidomics were not evaluated. GBA1 mutations were not evaluated in all

enrolled IPD patients. Based on the GBA1 genotype and clinical analysis, it has been reported

that GBA1 mutation is the most common genetic risk factor for IPD patients, accounting for

as many as 7% of all IPD patients in multicenter analyses [32, 33]. On the other hand, only

approximately 3% of Asian IPD patients with no apparent family history of parkinsonism are

GBA1 mutation carriers [78]. IPD in GBA1 mutation carriers generally has an early onset [53].

However, there was no apparent family history of parkinsonism or dementia in all enrolled

IPD patients, with a later mean age of onset in the enrolled IPD patients that was 67.2 years in

cohort A and 65.2 years in cohort C. Elevated plasma GlcCer levels have recently been reported

in GBA1 mutation carriers of IPD. Elevated plasma GlcCer levels have also been reported in

non-GBA1 mutation carriers of IPD. These indicate that elevated plasma GlcCer is found in

IPD with or without GBA mutation. Taken together, it is not plausible that a GBA1 mutation

did not significantly affect elevated plasma GlcCer (a MonCer) levels in the IPD patients in

this study. In addition, in this study LRRK2 and SNCA mutations, the major causative genes

of PD, were not evaluated in all enrolled IPD patients. Analysis the major causative genes or

risk genes of PD during lipidomics need to be performed in future studies. Second, this study

is a small cases and cross-sectional study that could not account for multiple comparisons for

several analytes detected in plasma. Future additional cases and longitudinal studies need to be

performed. Third, a major limitation of this study is that the patients were not pathologically

diagnosed. Fourth, we were not able to include other dementia diseases, such as frontotem-

poral dementia. Fifth, cohort B was not an age-matched study. In DLB and AD, correlation

analysis between age and plasma S1P d16:1 levels, plasma S1P d18:1 levels, plasma MonCer

d18:1 levels, or plasma LacCer d18:1 levels showed no correlation (S3 Table). Thus, changes in

plasma S1P d16:1 levels, plasma S1P d18:1 levels, plasma MonCer d18:1 levels or plasma Lac-

Cer d18:1 levels were inferred to be disease-induced changes in AD or DLB. Sixth, in this

study the protein levels of the enzymes involved in sphingolipid pathways were not evaluated

in all enrolled patients. The protein levels of the enzymes involved in sphingolipid pathways

need to be performed in future studies. Seventh, relative area was used in this study as the
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quantitative value for each metabolite based on previous reports [30, 31]. Lipidomics has the

variability of metabolite values in each study. For this reason, each metabolite should be nor-

malized based on the IS level and sample volume. The normalized each metabolite was repre-

sented as relative area and used as the quantitative value. Eighth, the increase and decrease in

CSF sphingolipids and blood sphingolipids have coincided [30, 31, 57, 58] in previous reports.

On the other hand, one report even identified different findings in serum versus CSF [53, 79].

These reports are indirect and sphingolipids need to be confirmed in CSF or brain for further

validation.

Summary of the results

Using plasma lipidomics analysis, we identified decreased plasma S1P levels and increased

plasma GlcCer (a MonCer) and LacCer levels in individuals with neurodegenerative diseases.

These abnormalities in plasma sphingolipids might be closely related to aggregate formation,

neuronal cell death and neuroinflammation. Our results provide new insights into the involve-

ment of sphingolipids in neurodegenerative diseases.
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