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Abstract

Discriminative correlation filter (DCF) tracking algorithms are commonly used for visual

tracking. However, we observed that different spatio-temporal targets exhibit varied visual

appearances, and most DCF-based trackers neglect to exploit this spatio-temporal informa-

tion during the tracking process. To address the above-mentioned issues, we propose a

three-way adaptive spatio-temporal correlation filtering tracker, named ASCF, that makes

fuller use of the spatio-temporal information during tracking. To be specific, we extract rich

local and global visual features based on the Conformer network, establish three correlation

filters at different spatio-temporal locations during the tracking process, and the three corre-

lation filters independently track the target. Then, to adaptively select the correlation filter to

achieve target tracking, we employ the average peak-to-correlation energy (APCE) and the

peak-to-sidelobe ratio (PSR) to measure the reliability of the tracking results. In addition, we

propose an adaptive model update strategy that adjusts the update frequency of the three

correlation filters in different ways to avoid model drift due to the introduction of similar

objects or background noise. Extensive experimental results on five benchmarks demon-

strate that our algorithm achieves excellent performance compared to state-of-the-art

trackers.

1 Introduction

Visual target tracking technology aims to locate a moving target of interest in a video image

and then to capture the object’s real-time position, motion state and trajectory information. At

present, the direction of the considerable demand for tracking tasks involves online tracking

of general objects without specific restrictions and requirements regarding the category, shape,

tracking scene, and tracking target. In an actual tracking scene (intelligent traffic monitoring

[1, 2], unmanned aerial vehicle (UAV) [3], search-and-rescue missions [4], etc.), the tracking

target may experience appearance disturbances from the target background or the target itself,

such as sudden changes in illumination, target deformation, similar colors between the target

and the background, and target occlusion [5–7]. In addition, most trackers do not make rea-

sonable use of spatio-temporal information during the tracking process. In general, strategies

for utilizing limited spatio-temporal information to construct a reasonable target tracking
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model while avoiding appearance interference during the tracking process is still an unsolved

problem.

The discriminative correlation filter-(DCF) based method has attracted extensive atten-

tion because of its high accuracy and robustness during tracking. Due to the rapid develop-

ment of deep learning, deep learning networks are being used to mine high-level semantic

features in images to provide better target features for trackers. Most of the current correla-

tion filter trackers use pre-trained convolutional neural networks (CNNs) to extract the tar-

gets’ deep features, and after using deep features instead of traditional hand-crafted features,

the trackers’ performance significantly improved [8–13]. Another algorithm, the HCF [8]

algorithm, uses the deep features of different layers to separately train correlation filters and

perform coarse-to-fine fusion. However, HCT does not consider the temporal context during

tracking. The MCCT [14] tracker extracts various types of features, trains different correla-

tion filter models, and adaptively selects the model. However, it only uses the adjacent histor-

ical frame information to train the correlation filtering model, ignoring the long-distance

context information. C-COT [9] and ECO [10] have also achieved very good performance

during the same period; these two algorithms use continuous interpolation and filter for joint

optimization, but the tracking accuracy cannot be improved by using better deep features

[15]. ATOM [16] uses the hard negative mining strategy [17] to update the template while

adjusting the learning rate so that the tracking model can quickly adapt to the influence of

interference, but the algorithm ignores the impact of occlusion on the training sets. It is

therefore easy to mistakenly identify the occluded objects as the tracking target. DiMP [18]

removes the hard negative mining strategy, uses a fast update strategy, and performs two

recursive optimizations every 20 frames to refine the target model. However, a fixed model

update frequency may introduce a large number of meaningless negative samples, which

reduces the generalization ability of the model and severely affects the discriminative power

of the classifier. Furthermore, contaminated positive samples may cause model degradation

and lead to tracking drift. DiMP simply uses the historical frame information to build the

tracking model and does not make use of long-distance spatio-temporal information during

the tracking process, which may cause the model to lack the ability to effectively handle global

context information in complex scenes. Finally, it may lose tracked targets due to tracking

challenges such as large deformation of the target body, occlusion by similar objects, and dis-

appearance from the field of view [19].

Aiming at the above problems, we propose a new adaptive target tracking algorithm based

on the spatio-temporal correlation filter. Its main idea is to use the Conformer network [20],

which performs better in the transformer network [21–23], to extract the tracking target fea-

tures. Then, to model tracking targets from a different time and space, the initial tracking tar-

get is used as the initial template, the current frame tracking search area is used as the search

template, and the dynamic target during the tracking process is used as the dynamic template.

The three templates train the corresponding correlation filter tracking model to realize three-

way tracking; to reasonably select the corresponding model for tracking in different environ-

ments, we combine the average peak-to-correlation energy (APCE) [24], peak-to-sidelobe

ratio (PSR) [25], and trajectory smoothness degree as the tracking confidence evaluation index

and select the tracking result with the best evaluation. At the same time, to quickly adapt to the

interference, the tracking state is judged by the tracking confidence proposed in this paper,

which adaptively judges whether the model needs to be updated and changes the model’s

learning rate. In addition, the Conformer network’s image classification ability is used to con-

trol the dynamic template update.

The main contributions of this paper are summarized as follows:
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• We propose a dynamic template update method that can flexibly obtain the target’s spatial

information and compensate for the defect that some correlation filter tracker only uses his-

torical frame information to make predictions.

• To improve the model’s distractor discrimination, we propose an adaptive model update

strategy that further exploits the valuable samples selected by the PSR, APCE, and trajectory

smoothness degree.

• In contrast to most of the existing DCF-based tracking methods, which use only single-way

correlation filters to achieve tracking (i.e., a single tracking result), we propose a three-way

tracking algorithm that enables the tracker to flexibly address appearance changes and geo-

metric deformations of the tracked target over time.

To demonstrate the effectiveness of the tracking framework proposed in this paper, we con-

duct extensive experiments on the following object tracking evaluation datasets: VOT2020

[26], GOT-10K [27], OTB2015 [28], OTB2013 [29] and LBT50 [30]. The experimental results

show that our proposed (ASCF) tracker exhibits excellent performance on four benchmarks.

2 Related works

In this section, we review related work on template updating and spatio-temporal information

in trackers, and briefly review recent DCFs-based trackers.

2.1 Correlation filter tracking

All correlation filter trackers are online training tracking models. As the first CF-based tracker,

MOSSE [25] has high accuracy and achieves the fastest tracking speed. HDT [31] introduced

deep learning into correlation filtering, and an algorithm that adaptively changes the weight of

the filter under each scale feature was designed. [9] and ECO [10], which are representative

correlation filter trackers, achieved very good performance over the same period, but they did

not achieve further performance gains when using deeper networks. In [15], scholars investi-

gated how to use deeper networks to improve the accuracy and robustness of correlation filter

trackers, and to solve the problem of target scale transformation during the tracking process,

scholars proposed CFML [32]. In [33], a background-aware correlation filter model with

saliency regularization is established to address boundary effects in correlation filter tracking,

and another model, CFNet [11], was proposed to embed correlation filtering into a two-way

network for end-to-end training and learning. The research team who proposed ECO [10]

drew on the advantages of end-to-end trackers such as CFNet and proposed the use of a better

gradient descent method to learn a convolution kernel. This strategy is similar to the correla-

tion filter but has the ability to distinguish foreground and background [16, 18], and its perfor-

mance made it the current state-of-the-art model.

In this work, ECO is selected as our baseline method. Different from the DCF-based track-

ers mentioned above, we propose a three-way tracker that builds correlation filters in different

spatio-temporal areas to obtain multi-tracking results.

2.2 Tracking model update

To adapt to the target’s appearance changes, visual tracking algorithms generally adopt the

model update strategy. However, there are also trackers [8, 34] that do not use a model update

strategy and build a tracking model by using only the initial frame. This type of tracker is

prone to tracking drift when the target in the search area undergoes large deformation. ECO

[10] proposes a sparse model update strategy and sets a fixed update interval, while LMCF [24]
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proposes the APCE metric to determine the tracking accuracy and thus uses it to decide

whether to update the model. However, APCE may introduce negative samples into the model

due to inaccurate judgments about the updates, and many trackers [9, 11, 14, 35–38] that use

deep learning networks to extract features ignore the image classification capabilities of the

pretrained networks they use.

In contrast, we propose an adaptive model update strategy that can better solve the drift

phenomenon during tracking by judging whether the model needs to be updated by combin-

ing the pre-training training confidence and feature extraction networks.

2.3 Spatio-temporal information in visual tracking

The global context information in the target tracking task includes both temporal information

and spatial information. Temporal information involves tracking object state changes across

frames; spatial information involves object appearance information and nearby background

information. The recently popular offline Siamese trackers [34, 36, 39–41] use only spatial

information for tracking and achieve target tracking by using the initial template and the cur-

rent search area for module matching. In [42], scholars proposed a novel spatial-channel selec-

tion and temporal regularized correlation filter (SCSTCF) model that adds spatial-channel

constraints to select features along the spatial and channel dimensions, and some trackers [33,

43] enhance the spatio-temporal contextual connections by introducing spatio-temporal

saliency. BSTCF [44] introduces background constraints and spatio-temporal regularization to

solve the problem that the object background of the traditional CF model is not modeled over

time. The CACF [45] tracker, which combines temporal information and spatial information,

adds the background near the target to the filter’s learning and introduces spatial templates to

the correlation filtering, which better solves the boundary effect [46]. Trackers that combine

spatio-temporal information additionally utilize temporal or spatial information to improve

the gain, and later works [47–50] have achieved higher robustness.

Although trackers have made some progress in terms of making full use of spatio-temporal

information in recent years, most trackers use convolutional features, which have a limited

receptive field and lack the ability to model long-distance spatial relationships. We use the

Conformer network instead of convolutional neural networks to extract tracking object fea-

tures, use the self-attention mechanism to capture long-distance spatial relationships [23], and

capture the tracking target’s appearance changes and background changes through dynamic

templates to increase the utilization of spatial information.

3 Proposed visual tracking methods

In this section, we describe the proposed ASCF algorithm in detail. ASCF adopts the

Conformer backbone network for feature extraction and constructs three-way parallel correla-

tion filters for tracking, as shown in Fig 1. Unlike most deep correlation filter trackers, ASCF

can extract global and local features due to our choice of backbone network; at the same time,

ASCF uses the Conformer [20] network’s classification ability to judge the state of dynamic

templates and correlation filter models for updating. Three different correlation filters are

trained by different spatio-temporal target features, and then, the best correlation filter model

is selected for tracking through joint evaluation by the APCE and PSR. Different tracking

models are reasonably selected for different tracking object states to improve the tracking

accuracy.

Through the above design, our tracker can reasonably select the correlation filtering model

for tracking according to the tracking scene and update the model at the appropriate time to

reduce the error caused by invalid model updates.
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3.1 Conformer backbone

The quality of the captured features is very important because the target can change greatly

over time during tracking. The self-attention mechanism in the Conformer network can cap-

ture the global features that are ignored by the convolutional neural network and improve the

feature quality. Consistent with correlation filter trackers based on deep learning [8, 31], our

proposed ASCF accepts the surrounding images of the tracked object as the input to the back-

bone network. Overall, there are three inputs to the backbone network: the template image of

the initial target object z 2 R3�Hz�Wz , the search image for the current frame x 2 R3�Hx�Wx , and

the dynamically updated dynamic template image d 2 R3�Hd�Wd . During the tracking phase,

only the search images and dynamic template images are input.

Conformer adopts a concurrent structure and builds CNN and Transformer branches.

First, a 7×7 convolution with a stride of two followed by a 3×3 max pooling layer, which also

has a stride of two, is used to extract shallow feature maps wstem. hese shallow features are rich

in texture and contour information.

First, the image needs to be convoluted and normalized as shown in Eq (1), which is

expressed as follows:

y ¼
convðxÞ � meanðconvðxÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðconvðxÞÞ

p
þ z

ð1Þ

where x represents the input image (search template), conv represents the convolution opera-

tion, and mean and Var denote the mean and variance of the calculation. z increases the value

to e−5 to avoid the denominator being zero.

After normalization, a 64-channel feature map is obtained using the ReLU activation func-

tion and max pooling as follows:

wstem ¼ Max PoolðReLUðyÞÞ ð2Þ

Fig 1. Pipeline of the proposed tracking framework. The initial template refers to initial frame target. The dynamic template is sampled from

intermediate frames.

https://doi.org/10.1371/journal.pone.0279240.g001
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To obtain local and global features at the same time, a feature coupling unit (FCU) is used

to continuously couple local features and global representations in an interactive manner.

When the feature map extracted by the CNN enters the Transformer branch, a 1×1 convolu-

tion is used to make the feature map consistent with the number of patch embedding channels

(the number of channels is 384). Then, a 4×4 downsample with a stride of four is used, and we

also add a (1, 384) dimension class_token to complete the spatial alignment. The shape of the

patch is nE, and the fusion process is shown in Eq (3), which defines patch i in Pc (denoted as

Pi
c) and patch j in Pt (denoted as Pi

t) as follows:

Pj
t ¼ Pj

t þ Softmax
ðPj

tWqÞðPi
cWkÞ

T

ffiffiffi
E
p

 !

Pi
cWv

� �
ð3Þ

where K and E represent the number of patch embeddings (called Pt) and the channel dimen-

sion of the transformer branch, respectively. The feature map is divided into K patches of

14×14, denoted by Pc;Wq;Wk;Wv 2 R
3�H�W ,, which are learned linear transformations that

map the input and Pj
t to query Q, key K and value V.

When transitioning from the Transformer channel back to the CNN channel, upsampling

is performed, and the same attention weights that were employed by the Transformer channel

are used, as denoted in Eq (4), which is expressed as follows:

~Pi
c ¼

~Pi
c þ Softmax

ðPj
tWqÞðPi

cWkÞ
T

ffiffiffi
E
p

 !T

~Pj
t ð4Þ

where ~Pi
c belongs to Pi

c and is processed by the convolutional layer, and ~Pj
c belongs to Pj

t and is

processed by the Transformer block. The feature map wconv_trans_10 which is rich in global and

local features, can be obtained through the convolution operation.

Most DCF-based trackers [8, 10, 16] do not use the backbone network’s classification func-

tion after extracting the target features because these trackers ignore the pre-trained backbone

network’s classification ability. Conversely, after the image is entered into the network, we use

the pre-trained network’s classification function to provide judgments for both subsequent

dynamic template updates and model updates. The proposed model performs global pooling

on the CNN branch, obtains the class token [51] of the Transformer branch, and then calcu-

lates the classification prediction score using a top-k list as follows:

Sc ¼ TopðLNðztÞÞ þ TopðLNðzcÞÞ ð5Þ

where zt represents the Transformer branch’s classification, zc represents the CNN branch’s

classification, and LN refers to layer normalization. Finally, the predicted score for image clas-

sification is obtained.

3.2 Three-way parallel correlation filter tracking

In this subsection, we describe how to implement tracking by using three-way parallel correla-

tion filtering. Conventional correlation filter trackers use a single correlation filter to achieve

tracking [25], but if they fail to track at a certain frame, it will cause subsequent continuous

tracking failures until the tracking target is lost. To improve the tracker’s performance under

disturbed conditions such as deformation or occlusion of the tracking target, ASCF uses initial

templates (initial frame templates), dynamically updated templates, and search templates to

train different correlation filtering models. Subsequent tracking is conducted through the

branch selector module, which adaptively selects the model, as shown in Fig 2.
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3.2.1 Training correlation filter tracker. All three-way filters are trained in the same

way. In this section, using the search template as an example, we explain how to obtain the

response map. Suppose that while tracking the t-th frame, the current frame search template is

used to train the correlation filter. The search region of the current frame image is considered

the detection region xt 2 R
3�Hx�Wx of the tracking target. The image is then input into the

Conformer network, and the features xj of the Conv_stem and Conv_trans_10 layers are

extracted as the training samples for correlation filtering. Assuming that there are m training

samples in total, the continuous convolution operator [9] is used to transform the features into

the continuous space domain. Sample xj contains a total of D feature channels, and the resolu-

tion of sample xd
j of the d-th feature channel is Nd. xd

i ½n� represents a variable in discrete space,

and the sample space is expressed as w ¼ RN1 � . . .� RND .

The interpolation operator Jd : RND ! L2ðTÞ is used to transform the feature discrete space

into the continuous interval ½0;T� � R, and the Jd (xd) (t) interpolation operator is shown in

Eq (6), which is expressed as follows:

Jd xdð ÞðtÞ ¼
XNd � 1

n¼0

xd½n�bd t �
T
Nd

n
� �

ð6Þ

The interpolation function bd is constructed from the standard cubic spline interpolation

kernel, as denoted in Eq (7), which is defined as follows:

bðtÞ ¼

ðaþ 2Þjtj3 � ðaþ 3Þt2 þ 1 jtj � 1

ajtj3 � 5at2 þ 8ajtj � 4a 1 < jtj � 2

0 jtj > 2

8
>>><

>>>:

ð7Þ

Fig 2. Three-way parallel correlation filter tracking.

https://doi.org/10.1371/journal.pone.0279240.g002
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The confidence function Sf uses the convolution filter f = (f1, . . ., fD) 2 L2(T)D as the param-

eter, where fd 2 L2(T) is the feature filter for channel d.

Sffxg ¼
XD

d¼1

f d � Jdfx
dg; x 2 w ð8Þ

The filter f minimizes the following function through m pairs of training samples

fðxi; yiÞg
m
1
� w� L2ðTÞ. Eq (9) is minimized by m training samples fðxi; yiÞg

m
1
� w� L2ðTÞ to

obtain filter f as follows:

Eðf Þ ¼
Xm

j¼1

ajk Sffxjg � yj k
2 þ

XD

d¼1

k of d k2
ð9Þ

Label yj is the expected output after applying Sf {xj} to the training sample xj, and the calcu-

lation of the ω penalty coefficient is consistent with [46]. After obtaining filter f, the confidence

response Sf can be calculated, and we employ the Gauss-Newton method to optimize the func-

tion as shown in Eq (9).

3.2.2 Multi-model adaptive selection. When the training of the three-way correlation fil-

ters is completed, tracking can be achieved by adaptively selecting the correlation filters. The

current frame image is input, the correlation filter response Sfd is calculated and tracked by the

dynamic template correlation filter model, the correlation filter response Sfi is tracked by the

initial template correlation filter model, and the correlation filter response Sfs is tracked by the

search template correlation filter model, which selects an appropriate correlation filter for

tracking.

Among the correlation filters, the PSR can represent the peak sharpness of the correlation

filter response (CFR), which is used to evaluate the status of the tracked target and the severity

of the interference.

PSR Sf

� �
¼

maxfSfg � mðSf Þ

sðSf Þ
ð10Þ

where max{Sf} is the maximum value of Sf in the correlation filter response, and μ (Sf) and σ
(Sf) are the mean and standard deviation of Sf, respectively.

The larger the PSR value, the higher the target tracking confidence and vice versa. However,

simply using the PSR to evaluate the target tracking confidence is not sufficient. As shown in

Fig 3, at frame 39, PSR==1.2715319. However, at frame 176, the tracking target exhibits

dynamic blur and occlusion, among other challenges, and the PSR does not change signifi-

cantly. But at frame 186 and frame 43, the APCE value is too sensitive.

The APCE [24] evaluation index represents the smoothness of the response graph and is

defined in Eq (11) as follows:

APCE Sf

� �
¼

jmaxfSfg � minfSfgj

meanð
P

w;hðSfw;h
� minfSfgÞÞ

ð11Þ

where max{Sf}, min{Sf}, and Sfw;h
are the maximum response value, minimum response value

and corresponding position response value respectively. When the peak is sharper and there

are fewer interfering peaks, the APCE will be relatively improved, which will be evident in out-

comes such as a smooth response graph with only a single peak. Otherwise, when objects are

occluded or missing, multimodal responses appear, and the APCE will decrease significantly.
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According to the above analysis and to evaluate the target tracking confidence more reli-

ably, we combine the APCE and PSR as the confidence evaluation indexes of the target tracker

to construct a binary function f(PSR, APCE), which is defined as follows:

f ðPSR;APCEÞ ¼ ð1 � gÞ � APCEþ g � PSR ð12Þ

where γ 2 [0, 1] represents the evaluation weights.

The trajectory smoothness degree indicates the reliability of the tracking results to some

extent. To make full use of the historical frame prediction information, we measure the target

motion trajectory smoothness degree; by measuring the trajectory smoothness degree between

the current frame and the previous five frames, the overall trajectory smoothness degree W is

established as follows:

Wj ¼ exp �
Xj

i¼j� 5

Qi � Qi� 1

ffiffiffi
2
p

yi � Z
i

�
�
�
�
�

�
�
�
�
�

 !2 !

ð13Þ

where j is the current frame number, and Qi is the center position information of the predicted

rectangle frame of the ith frame. θi is the mean value of the height and width of the frame’s pre-

dicted rectangular frame. Due to a possible low correlation between the current frame and the

previous frame, we set the correlation coefficient θ. θi = 2, θi−1 = 4, θi−2 = 8, θi−3 = 16, θi−4 = 32,

θi−5 = 64. The score of the current branch at the current frame j is calculated as follows:

Fj ¼ ð1 � lÞ � fjðPSR;APCEÞ þ l �Wj ð14Þ

where λ 2 [0, 1] represents the evaluation weights.

The model then calculates the PSR, APCE, and trajectory smoothness degree of each branch

and substitutes these values into Eq (14) to select the tracker with the highest Fj.

3.3 Adaptive update strategy

During the tracking process, if the target deforms too fast, it will cause motion blur, and the

tracking frame will drift because the model update after each matching will be inaccurate. If

the model’s learning rate is low, it can only learn a small part of the information in the current

frame, and the model will contain more information from previous frames. In the case of a

Fig 3. PSR value and APCE value in different tracking environments.

https://doi.org/10.1371/journal.pone.0279240.g003
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large number of occlusions, if the model is updated, many negative samples will be introduced,

and the model will not be able to effectively handle the global information in complex scenes

or perform robust positioning of the target object. Therefore, it is necessary to be cautious

while updating the model and only update it in the appropriate tracking situation.

3.3.1 Update of dynamic template. We judge whether the dynamic template needs to be

updated using the classification prediction score and classification prediction category calcu-

lated by Eq (5), and we set a reliability threshold δ. If the classification prediction score is

greater than the threshold and the classification prediction category is consistent with the cate-

gory of the last dynamic update template, then it will perform an update; otherwise, it will not

be updated. In addition to the spatial information provided, the dynamically updated template

can also capture the temporal changes in the target’s appearance over time, thus providing

additional temporal information.

dyt ¼
dyn Sc > d and cgyn ¼ cgyo

dyo otherwise

(

ð15Þ

where Sc refers to the classification prediction score calculated in Eq (5), δ refers to the thresh-

old, cgyn refers to the current frame tracking target category, and cgyo refers to the last updated

dynamic template classification category.

3.3.2 Model update strategy. Selectively updating the target’s tracking model can

improve the tracking efficiency and eliminate the influence of negative samples on the model.

In this paper, an adaptive update strategy is proposed to refer to the historical average PSR and

APCE values of each tracker, and only when the f(PSR, APCE) of the current frame exceeds

the historical frame by a certain percentage is the current frame considered a model update

sample; the model is then updated. In this way, the time information can be fully utilized, and

the model can be updated and judged in combination with the historical frames. The specific

learning rate adjustment steps are as follows: First, a fixed base learning rate Lb is set. Then,

the ratio of the current frame’s APCE value to the average APCE value of the historical frame

is calculated, and this value is multiplied by Lb to obtain the latest learning rate. We set a fixed

threshold, and if the APCE ratio is lower than the threshold, the learning rate is adjusted to 0.

This process is expressed in Eq (16) as follows:

l ¼

Lb;At � 1

Lb � At; 1 > At � AT

0;At < AT

8
>>><

>>>:

ð16Þ

where l is the updated learning rate, and At is the ratio of the APCE value at the current

moment to the average APCE value of the historical frame.

Furthermore, the three-way correlation filtering model update strategy is as follows: For the

initial template branch, the model is not updated during the entire tracking process x̂i ¼ x̂i.

The ASCF only updates the model for the remaining two-way correlation filtering.

a. For the dynamic update template branch, if the dynamic update template is updated

and ft (PSR, APCE)� fT (PSR, APCE), we update the dynamic update model

x̂p
d ¼ ð1 � lÞx̂p� 1

d þ lx̂d.

b. For the search template branch, an update judgment is performed once in five frames, and

if ft (PSR, APCE)� fT (PSR, APCE) is satisfied, x̂p
s ¼ ð1 � lÞx̂p� 1

s þ lx̂s.
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The model is updated according to the learning rate obtained by Eq (16), and the newly-

learned model is used to track the next image frame. x̂i represents the initial template tracking

model, x̂d represents the dynamically updated template tracking model, x̂s represents the

search template tracking model, ft(PSR, APCE) is the frame calculation of t-th, fT(PSR, APCE)

is the historical calculation mean, and x̂p� 1 is the last updated target model.

Algorithm 1: ASCF
Input: Sequence frames (t-th frame, total of T frames). Initial bound-
ing box of target.
Output: Target bounding box.
for t = 1 to T do
Extract search region feature map wstem, wconv_trans_10 by Conformer
if t = 1 then
Using feature maps to training initial template correlation fil-

ters by Eq (6) and Eq (9)
end
if t > 4 then
Using feature maps to training dynamic tracking template correla-

tion filters by Eq (6) and Eq (9);
Determine whether the dynamic template needs to be updated by Eq

(15);
end
Using feature maps to training search template correlation filters

by Eq (6) and Eq (9);
Get the dynamic tracking template, initial template and search tem-

plate confidence response map Sfd, Sfi, Sfs by Eq (8);
Select the appropriate tracking template for tracking by Eq (14);
Update training learning rate by Eq (16);
Update the dynamic, initial, search tracking model.

end
return Target bounding box.

3.4 Tracking pipeline

We provide a brief overview of this paper’s algorithm in Algorithm 1. This algorithm consists

of two main modules: adaptive selection of three correlation filters for tracking and an adaptive

update strategy. During the tracking process, the target features are extracted through the

Conformer network. Then, the correlation filter is trained, and the highest correlation filter

from among the initial, dynamic and search branches is selected for tracking evaluation, and

the generated tracking frame is used as prior knowledge to crop the current frame as a refer-

ence to generate a search tracking template. During the model’s update process, the dynamic

template is checked and updated at the same time. Selectively updating the target’s tracking

model not only improves the tracking efficiency but also effectively excludes the impact of neg-

ative samples on the mode.

4 Experiments

This section introduces the implementation details of our proposed algorithm, ASCF, and

then, we conduct comparative experiments with the current state-of-the-art trackers on target

tracking evaluation datasets to prove the superiority of this algorithm. The datasets are as fol-

lows: OTB2013, OTB2015, VOT2020, GOT-10K and LBT50. Finally, through ablation experi-

ments, the effectiveness of each tracker module is analyzed.

Our tracker was implemented based on Python3.7 and Pytorch1.7.1 and was tested on a

desktop computer using a single NVIDIA GeForce GTX 3070 GPU with a 3.7GHz AMD

Ryzen 5 5600X CPU. The Conv_stem and Conv_trans_10 layers of the Conformer network
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are extracted as the features of the tracking target, and we set the search region to 4.5 times the

tracking box size during detection. The dynamic template is acquired for the first time after

four tracking frames, and the dynamic update template is updated after the 4-th frame. The

classification confidence threshold δ of the dynamic template is 8.5, as shown in Eq (15). Based

on [10], we set the learning rate to 0.01, which is Lbase in Eq (16). In Eq (16), the learning rate

adjustment threshold AT is 0.65, and in Eq (12), the weight adjustment coefficient γ is set to

0.9 because the APCE value is usually much larger than that of the PSR. In addition, the λ in

Eq (14) is set to 0.6. To provide a fair comparison, all of the following experiments were per-

formed under identical training settings.

4.1 Comparison with the SOTA trackers

4.1.1 OTB-2013. OTB-2013 [29] consists of 51 video sequences and is currently one of

the most widely tested datasets in the field of visual tracking. This dataset uses the one-pass

evaluation (OPE) [29] protocol as the tracking evaluation indicator.

We compare the ASCF trackers with many state-of-the-art trackers, including MCCT [14],

Ocean [40], ATOM [16], UDT [52], DaSiamRPN [17], SiamBAN [53], SiamRPN++ [54], ECO

[10] and C-COT [9] on OTB2013. We report two metrics, the area-under-the-curve(AUC)

score and the distance precision(DP) score.

The center location error (CLF) is the Euclidean distance from the ground-truth center

position (xg,yg)to the predicted center position (xp, yp), as shown in Eq (17). The DP is the per-

centage of the number of frames whose CLF is greater than a certain distance error threshold,

known as the location error threshold (LET), to the total number of frames in the video

sequence.

CLF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxp � xgÞ
2
þ ðyp � ygÞ

2
q

ð17Þ

The overlap rate accuracy (OP) refers to the percentage of the number of frames where the

overlap rate ϕ of the tracking target frame RP and the ground-truth bounding box RG is greater

than the overlap rate threshold (OT) to the total number of frames.

� ¼
jRP \ RGj

jRP [ RGj
ð18Þ

Fig 4 shows the DP and the AUC on the OTB-2013 dataset compared to the current state-

of-the-art tracking algorithms, with the performance scores of each algorithm labeled in the

legend. With an AUC of 73% and a DP of 94.4%, our algorithm is the best among the com-

pared trackers in terms of both the AUC and DP evaluation metrics. Our tracker’s AUC is

0.4% higher than that of ECO when using the same correlation filter tracker, and its AUC is

2.5% higher overall. Compared with the Siamese tracker, our tracking algorithm improves

more dramatically. Specifically, when compared to the Siamese tracker SiamBAN, which is the

best-performing Siamese tracker on OTB 2013, the DP improved by 2.6%, and the AUC

improved by 3.7%.

4.1.2 OTB-2015. Compared with OTB2013, the OTB2015 [28] dataset is more difficult to

track, and the tracking scenarios are more complex, which provides a relatively uniform test-

ing and evaluation environment for tracking algorithms. We compare ASCF with the recent

state-of-the-art trackers, including MCCT [14], C-COT [9], UDT [52], DaSiam [17], Ocean

[40], Siam_RPN++ [54], ECO [10], SiamBAN [53], ATOM [16] and DiMP [18] on OTB2015.

The comparison results are shown in Table 1. The ASCF tracker ranks first in terms of the

AUC, DP and OP. Compared with the baseline tracker, ECO, ASCF improves the AUC, DP
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Fig 4. One-pass evaluation, the distance accuracy DP of the tracker and the area under the overlap rate curve

accuracy AUC are displayed on the OTB-2013 data set, and the center position error CLF score threshold of the

distance accuracy DP is set to 20. (a) OTB2013 (DP). (b) OTB2013 (AUC).

https://doi.org/10.1371/journal.pone.0279240.g004
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and OP by 3%, 0.3%, and 3.4%, respectively. Compared with the best performing Siamese

tracker SiamRPN++, ASCF outperforms it in terms of the AUC, DP and OP by 2.4%, 0.3%,

and 0.6%, respectively. The OTB2015 dataset divides the video sequence attributes in the test

set into 11 categories according to common challenging factors in object tracking, including

illumination variation (IV), deformation (DEF), scale variation (SV), occlusion (OCC),

motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-plane rotation (OPR),

out-of-view (OV), background clutters (BC) and low resolution (LR), each video sequence in

the test set contains at least one of the above properties. To further evaluate the effectiveness of

our method in different tracking scenarios, we tested it in the above 11 tracking scenes. For the

convenience of observation, six representative trackers were selected for comparison with the

trackers in this paper. The evaluation results are shown in Fig 5. It can be clearly seen that the

tracker proposed in this paper achieves a better AUC in most tracking scenes. Especially in

terms of the MB, IV, OV, OPR, FM, DEF, OCC, and SV tracking scenes, it performs signifi-

cantly better than the other algorithms. These experimental results show that our tracker can

adapt to different common challenges in object tracking, and the adaptive update strategy is an

important reason why the algorithm we propose can effectively address various challenges.

4.1.3 GOT10K. GOT10K [27] is a large-scale dataset containing more than 10,000 videos

that most deep learning trackers use for training. We evaluate the proposed algorithm in this

paper on its test set, which contains a total of 180 videos with a total of 150 different categories,

and we followed the evaluation guidelines and submitted the tracking results to GOT10k’s offi-

cial online evaluation server. For the first time, this dataset combines categories with evalua-

tion metrics, and it uses the mean average overlap (mAO) and mean success rate (mSR) as

metrics. Compare with Ocean [40], DiMP [18], ATOM [16], TRASF [55], DPMT [56],

SiamFC++ [39], SiamRPN++ [54], MemTracker [57], C-COT [9], ECO [10], SiamFC [34] and

MDNet [58], which are the state-of-the-art trackers, the proposed algorithm performed well

on the GOT10k dataset. Its average overlap (AO) and success rate (SR) are evaluated as shown

in Table 2, and it can be clearly observed that the ASCF algorithm ranks first in terms of the

mAO and mSR75 with values of 61.4% and 52.6%, respectively, which is better than that of

DiMP, ATOM, and other deep correlation filter trackers.

The calculation formula of mAO is shown in the following Equation.

mAO ¼
1

C

XC

c¼1

1

jScj

X

i2Sc

AOi

 !

ð19Þ

where C represents the number of types, Sc represents the number of video sequences under a

certain type, and AO represents the average overlap. Similarly, the calculation formula of mSR

is shown in Eq (20).

mSR ¼
1

C

Xc

c¼1

1

jScj

X

i2Sc

SRi

 !

ð20Þ

where SR represents the success rate.

Table 1. Comparisons on OTB2015 dataset.

UDT [52] MCCT [14] C-COT [9] DaSiam [17] Ocean [40] ATOM [16] Dimp [18] ECO [10] Siam_RPN++ [54] SiamBAN [53] ASCF

AUC 61.9 67.8 68.1 65.7 67.1 66.7 68.5 69.2 69.6 69.6 71.3

Precision 82.4 90.7 91.5 88.0 89.9 87.9 89.9 91.4 91.4 91.0 91.7

OP50 75.7 85.5 83.5 86.5 86.6 83.6 86.4 86.7 89.2 89.3 89.7

https://doi.org/10.1371/journal.pone.0279240.t001
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4.1.4 VOT2020. The visual object tracking challenge (VOT) is a recently released chal-

lenging target tracking evaluation dataset and is the most authoritative and influential evalua-

tion platform dataset in the field of international object tracking. The difference from the

previous VOT dataset is that the label format of VOT-ST2020 and VOT-RT2020 has changed

from the original rotated rectangular box to a mask, where ST refers to short-term tracking

challenges and RT refers to short-term real-time challenges. Inspired by AlphaRef, we intro-

duced the AlphaRef mask branch to achieve mask segmentation of the tracking targets. We

selected VOT2020-ST and VOT2020-RT to evaluate the tracker, and the evaluation indicators

are the expected average overlap (EAO), accuracy, and robustness. Our tracker is compared

with the following state-of-the-art trackers: AFAT [61], DPMT [56], DiMP [18], ATOM [16],

CSR-DCF [59], SiamFC [34], TRASF [55], SiamMask [60].

As shown in Fig 6, we visualized the accuracy and robustness of each tracker on the

VOT-ST2020 short-term tracking challenge. Our tracker ranks first on the accuracy evaluation

Fig 5. The AUC evaluation index values of each tracker under 11 different challenge factors in OTB-2015.

https://doi.org/10.1371/journal.pone.0279240.g005
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Table 2. Experimental results on GOT10K dataset.

Tracker Performance Properties Venue

mAO mSR50 mSR75 CF Siamese DL

ASCF 0.614 0.696 0.526 ✓ ✓

Ocean [40] 0.611 0.721 0.473 ✓ ✓ ECCV’2020

DiMP [18] 0.611 0.717 0.492 ✓ ✓ ICCV’2019

TRASF [55] 0.604 0.708 0.469 ✓ ArXiv’2020

DPMT [56] 0.600 0.716 0.460 ✓ ✓ PRCV’2020

SiamFC++ [39] 0.595 0.695 0.479 ✓ ✓ AAAI’2020

ATOM [16] 0.556 0.634 0.402 ✓ ✓ CVPR’2019

SiamRPN++ [54] 0.517 0.616 0.325 ✓ ✓ CVPR’2019

MemTracker [57] 0.460 0.524 0.193 ✓ ECCV’2018

C-COT [9] 0.406 0.415 0.161 ✓ ✓ ECCV’2016

ECO [10] 0.395 0.407 0.170 ✓ ✓ CVPR’2017

SiamFC [34] 0.392 0.426 0.135 ✓ ✓ ECCV’2016

ECOhc [10] 0.363 0.359 0.154 ✓ ✓ CVPR’2017

MDNet [58] 0.352 0.367 0.137 ✓ CVPR’2016

https://doi.org/10.1371/journal.pone.0279240.t002

Fig 6. Comparison with state-of-the-arts on VOT-ST2020. We equip ASCF with a refinement module proposed by AlphaRef [62] to generate

segmentation masks.

https://doi.org/10.1371/journal.pone.0279240.g006
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metric with a value of 0.73; the tracker proposed in this paper also achieved a robustness score

of 0.703, which is higher than that of most of the compared trackers. This result verifies that

our tracker can maintain good robustness while tracking with high accuracy.

As shown in Table 3, the EAO, accuracy, and robustness values of each tracker on the

VOT-ST2020 dataset are shown. The results show that our tracker ranks second only to

TRASF on EAO with a value of 0.396, which is 42.4% higher than the correlation filter tracker

UPDT. In addition, the accuracy is 4.89% higher than that of the second-highest TRASF

tracker among the compared trackers. At the same time, we made a comparison in

VOT-RT2020, as shown in Table 4. There are trackers that perform well on short-term track-

ing challenges but not well in real-time challenges, such as the TRASF tracker. Our tracker

achieves high scores on both short-term tracking challenges and real-time tracking challenges.

4.1.5 LBT50. LBT50 [30] proposed a long-term visual object tracking performance evalu-

ation methodology and a benchmark and provides eight different long-term tracking challenge

sequences. Fig 7 shows the F-scores over all 50 videos in the dataset. Our method achieves

good results on all eight attributes but does not perform well on the out-of-view criterion

because ASCF is not configured with a re-detection module. Our ASCF achieves an F-score of

61%, which is competitive with the other trackers. Our approach especially excels in the case of

aspect ratio changes and scale variation, demonstrating the impact of our components.

4.2 Component-wise analysis

In this section, we choose to verify the effectiveness of the enhancements to the tracker perfor-

mance of the proposed components in this paper on GOT-10K dataset.

4.2.1 Deep feature. At present, most correlation filter trackers use the CNN to extract

deep features and obtain tracking models through the learning and training of correlation fil-

ters. More specifically, we compare the baseline trackers with different deep features to verify

the effectiveness of our used deep features. As shown in Table 5, Resnet50 [63], MobileNetv3

[64] and the Conformer network are used to extract the AUC and DP of the tracker (VGG16

was selected as the baseline). The experimental results show that the Conformer network can

extract better-quality features in the image, so the AUC and DP of the tracker are improved.

4.2.2 Model adaptive selection. As described in the section titled “Three-way parallel cor-

relation filter tracking”, we trained a three-way correlation filter tracker and introduced spatial

information. As shown in Table 6, the AUC of only using the Conformer network to extract

features is 47.3%, and after adding the adaptive model selection strategy, the AUC improves

Table 4. Experimental results on VOT2020-RT dataset.

SiamFC [34] CSR-DCF [59] ATOM [16] UPDT [15] Dimp [18] TRASF [55] DPMT [56] SiamMask [60] AFAT [61] ASCF

EAO 0.172 0.193 0.237 0.237 0.241 0.282 0.293 0.320 0.372 0.332

Accuracy 0.422 0.405 0.440 0.443 0.434 0.576 0.487 0.624 0.687 0.639

Robustness 0.479 0.580 0.687 0.688 0.700 0.616 0.730 0.645 0.676 0.660

https://doi.org/10.1371/journal.pone.0279240.t004

Table 3. Experimental results on VOT2020-ST dataset.

SiamFC [34] CSR-DCF [59] ATOM [16] Dimp [18] UPDT [15] DPMT [56] SiamMask [60] AFAT [61] TRASF [55] ASCF

EAO 0.179 0.193 0.271 0.274 0.278 0.303 0.321 0.378 0.424 0.396

Accuracy 0.418 0.406 0.462 0.457 0.465 0.492 0.624 0.693 0.696 0.730

Robustness 0.502 0.582 0.734 0.740 0.755 0.745 0.648 0.678 0.745 0.703

https://doi.org/10.1371/journal.pone.0279240.t003
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significantly to 56.7%. This result verifies that the model adaptive selection strategy proposed

in this paper can effectively improve the tracker’s accuracy.

4.2.3 Adaptive update strategy. As described in the section titled “Adaptive update strat-

egy”, to selectively update the model in different situations, we propose a model adaptive

Fig 7. Attribute analysis on the LBT50 dataset.

https://doi.org/10.1371/journal.pone.0279240.g007

Table 5. Analysis of deep feature on GOT-10K.

Comparison of features mAO(%) mSR50(%) mSR75(%)

Baseline 39.5 40.7 17.0

Baseline+ResNet50 44.7 48.1 25.9

Baseline+MobileNetv3 38.2 37.3 16.4

Baseline+Conformer 47.3 54.6 28.5

https://doi.org/10.1371/journal.pone.0279240.t005
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update strategy. From the experimental results shown in Table 6, it can be seen that by using

the combined Baseline + Conformer + Three-way track + Adaptive update strategy, the track-

ing accuracy and success rate of the tracker proposed in this paper are significantly better than

the baseline or other combinations that use the baseline. Therefore, using an adaptive model

update strategy can further improve the tracker’s performance.

4.3 Limitations of the proposed method

During the experiments, we found that the ASCF tracker still has some flaws. Although ASCF

establishes tracking models in spatio-temporal locations and makes full use of space and time

information, tracking drift still occurs when the model experiences tracking challenges such as

long-term targets disappearing from the field of view for a long time. For example, ASCF does

not perform well on the long-term tracking dataset LBT50 because ASCF lacks the re-detec-

tion mechanism implemented in the long-term trackers.

We tested the tracking speed of ASCF against the baseline tracker on the OTB2015 dataset,

as shown in Table 7. The baseline and our proposed ASCF were both tested on the RTX 3070

GPU, and the tracking speeds with � are taken from the results published in the original paper.

It can be seen that our tracker still has some defects in its tracking speed, so our next goal is to

optimize the algorithm to improve the tracking speed.

4.4 Visualization

We selected three representative trackers during the past two years as well as the tracking algo-

rithm proposed in this paper for qualitative evaluation of some selected tracking sequences

with different challenges. The results are shown in Fig 8. According to the visualization, our

tracker is more robust compared to other trackers and produces more accurate tracking results

when encountering occlusions, fast motion, and scale variation.

As shown in Fig 9, we made some visualizations for model selection and observed the track-

ing results generated by different correlation filtering models in the three channels. In the soc-

cer tracking video sequence, due to the large deformation and occlusion of the tracking target

and because the similarity to the initial image is low, it is necessary to update the correlation

filter model with a faster frequency, and the current tracking frame uses a dynamic template

model. In the basketball tracking video sequence, the tracking object in the current image

frame has a high similarity with the initial tracking target, and the initial template correlation

filtering model with higher confidence is selected for tracking.

Table 6. Component-wise analysis. Performance is evaluated on GOT-10K.

#Num Metrics mAO(%) mSR50(%) mSR75(%)

1. Baseline 39.5 40.7 17.0

2. + Conformer 47.3 54.6 28.5

3. + Three-way track 56.7 63.2 46.8

4. + Adaptive update strategy 61.4 69.6 52.6

https://doi.org/10.1371/journal.pone.0279240.t006

Table 7. The amount of frames processed per second (fps) with different trackers.

Tracker Baseline(ECO) ASCF DiMP ATOM Ocean

Tracking speed(Avg.FPS) 34 26 40� 46� 25�

https://doi.org/10.1371/journal.pone.0279240.t007
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Fig 8. Tracking results on Bird1, Girl2 and Walking2 videos in OTB-2015.

https://doi.org/10.1371/journal.pone.0279240.g008

Fig 9. Visualization of response maps of different correlation filtering models. Selected models surrounded by red boxes. The results from top to

down are Woman and Tgier1 from OTB-2015.

https://doi.org/10.1371/journal.pone.0279240.g009
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5 Conclusions

In this paper, we propose a new ASCF tracking algorithm to spatio-temporally model the

tracked target at different points in time and space during the tracking process. It consists of

three correlation filters constructed with different spatio-temporal features, and the features

are extracted by the Conformer network. The best tracking result is then selected by the adap-

tive model selection module proposed in this paper. Furthermore, we designed an adaptive

model update strategy to avoid introducing disturbing information into the model. Finally,

experiments were conducted on the public databases OTB2013, OTB2015, GOT-10K,

VOT2020 and LBT50, and they demonstrate the superiority of ASCF and all of its compo-

nents. By making full use of the spatio-temporal information through three different spatio-

temporal tracking models, ASCF can track targets robustly and accurately in complex tracking

environments. In future work, we plan to deploy our tracking framework on an end-to-end

deep learning framework while improving the tracking efficiency to further improve the algo-

rithm’s target tracking performance.
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