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Abstract

Insect taxonomy lies at the heart of many aspects of ecology, and identification tasks are

challenging due to the enormous inter- and intraspecies variation of insects. Conventional

methods used to study insect taxonomy are often tedious, time-consuming, labor intensive,

and expensive, and recently, computer vision with deep learning algorithms has offered an

alternative way to identify and classify insect images into their taxonomic levels. We

designed the classification task according to the taxonomic ranks of insects—order, family,

and genus—and compared the generalization of four state-of-the-art deep convolutional

neural network (DCNN) architectures. The results show that different taxonomic ranks

require different deep learning (DL) algorithms to generate high-performance models, which

indicates that the design of an automated systematic classification pipeline requires the inte-

gration of different algorithms. The InceptionV3 model has advantages over other models

due to its high performance in distinguishing insect order and family, which is having F1-

score of 0.75 and 0.79, respectively. Referring to the performance per class, Hemiptera

(order), Rhiniidae (family), and Lucilia (genus) had the lowest performance, and we discuss

the possible rationale and suggest future works to improve the generalization of a DL model

for taxonomic rank classification.

Introduction

Insects keep the planet liveable. They contribute significantly to our environment and are

essential to ecological functions such as nutrient recycling, plant propagation, maintenance of

the plant community, maintenance of the animal community, and food for insectivorous ani-

mals. For instance, the dipterous families Calliphoridae, Rhiniidae, and Sarcophagidae, which

are ecologically important and involved intensively in nutrient recycling of organic matter [1],

serve as pollinators [2] and are vectors for diseases such as cholera [3]. However, the data on

changes in species diversity and abundance are insufficient. A major reason for these shortfalls
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for insects is that available methods to study and monitor species are often tedious, time-con-

suming, labor-intensive, and expensive.

Deep learning (DL) algorithms with computer vison are an excellent alternative for insect

taxonomists to collect insect data, especially in designing next-generation insect monitoring

tools. DL algorithms consist of feature extraction and classification layers in the neural net-

work layers [4, 5], allowing the automated system to perform end-to-end recognition tasks.

DL has advantages over other machine learning algorithms, such as a support vector machine,

decision tree, and logistic regression methods. For example, Motta et al. [6] leveraged the

LeNet, AlexNet, and GoogLeNet convolutional neural networks in classifying six classes of

field caught mosquitoes and obtained a maximum accuracy of 76.2% by GoogLeNet. Park

et al. [7] utilized a variant of VGG-16, ResNet, and SqueezeNet to classify mosquito species

with different postures and deformations and obtained 97% accuracy by fine-tuning the gen-

eral features. Valan et al. [8] classified four datasets of insects (Diptera, Coleoptera and Plecop-

tera) by using VGG19 and obtained at least 90% accuracy. Ozdemir et al. [9] developed mobile

apps with the deep learning algorithms VGG16 and InceptionV3 for insect order classification

and achieved at least 80% average accuracy. However, most of these previous studies of DL

models on insect classification were not designed to assess the capability of DL in classifying

different taxonomic levels. For instance, research questions such as “What will the perfor-

mance of a DL model be as the taxonomic level decreases?” and “Will a single DL architecture

be sufficient to classify specimens regardless of their taxonomic levels?” remain. Since previous

studies assumed that insect classification can be done according to the concept of one- size-

fits-all, the most appropriate algorithm could be the solution for most classifications at the tax-

onomic level. We hypothesise that different algorithms for classification are needed for differ-

ent taxonomic levels, because the lower the level, the closer the external morphology. For this

reason, this study aims to evaluate the ability of DL models in classifying insect specimens at

different taxonomic levels. We compared the performances of four DL models, InceptionV3,

VGG19, MobileNetV2, and Xception, in classifying three taxonomic levels: order, family, and

genus.

Materials and methods

Insect specimen resources and experimental design

The insect specimens were obtained from the insect collection rooms of BORNEENSIS, the

Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah (UMS),

and the School of Biological Sciences, Universiti Sains Malaysia (USM). Both the insect collec-

tion rooms kept a total of more than 500,000 insect specimens that were preserved and stored

in a compactor at 18˚C and 40±5% relative humidity. The taxonomy of insects was identified

and validated until at least the taxonomic genus rank by two taxonomists.

The experiment was designed to evaluate four state-of-the-art deep learning models in gen-

eralizing unseen and independent data of the taxonomic levels order, family, and genus. Fig 1

illustrates the overall workflow of this study. In general, the adult stage of the insect was used

for image acquisition, and the annotation of the datasets was based on target output/classes of

three taxonomic ranks (“class” in the classification task of machine learning refers to the final

prediction outputs, not to be confused with the taxonomic class rank). To this end, we selected

Diptera, Hemiptera and Odonata, which have distinguished morphology; we approached the

families in one of the challenging orders, Diptera, which are Calliphoridae, Rhiniidae–and Sar-

cophagidae; for the genus, we referred to the families of Diptera as well, which are Chrysomya,

Lucilia, Rhiniinae, Sarcophaga, and Stomorhina.
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Data collection

The insects’ images were acquired by a digital single-lens reflex (DSLR) camera (Canon EOS

50D, 15.0 MP APS-C CMOS sensor) with a Tamron 90 mm f/2.8 Di macro lens. The image

acquisition process was conducted in a 30x30x30 cm photography lightbox with white light

illumination. To obtain a 360˚ view of the specimen, the insect specimen was placed with a pin

on an electronic motorized rotating plate, and the images were acquired at two levels of posi-

tions–the superior view and lateral view of the insect. For a taxonomic level, 5 to 10 specimens

with different variants were used to generate the images, and at least 100 images were acquired

from each specimen. As a result, at least 2000 images were acquired for one taxonomic level.

Data preprocessing and augmentation

Most state-of-the-art deep learning architectures usually require much more training data for

stable performance, with approximately 2000 images not being sufficient to train a robust

model, and augmentation would be necessary [10]; therefore, we applied rotation augmenta-

tion to increase the volume of training data. We applied four-degree rotation to the images

after the data were split into training, testing, and independent validation images.

The data splitting and partitioning used for training, testing, and validation of the model

are described as training (70%) and testing (15%), and the prediction is carried out on an inde-

pendent validation dataset (15%). The base images (0 degrees, without rotation) and all the

rotated images (90, 180, and 270 degrees) used for training are not used for the testing and val-

idation sets. For model training and evaluation, we use the Keras deep learning framework on

Fig 1. Overall workflow: Stage one consists of building up three customized datasets, and stage two involves the comparison and investigation of

four state-of-the-art deep learning models.

https://doi.org/10.1371/journal.pone.0279094.g001
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a NVIDIA Tesla P100-PCIE GPU platform. Training is performed for 100 epochs, and the

learning rates are reduced by 0.25 every 15 epochs. The standardized number of epochs for

image classification was to prevent the models to overfit the training data [10].

Deep learning model build-up

We investigated four deep learning models, MobileNetV2, InceptionV3, Xception, and

VGG19, in which weights and biases were adopted for the classification of 1000 classes of the

ImageNet dataset [11]. The four pretrained models were selected based on their top-5 accuracy

and size (MB) of the model listed in the Keras library [12]. Xception, InceptionV3, and Mobi-

leNetV2 were selected due to their relatively smaller size and high accuracy, and VGG19 was

selected as a benchmark from previous studies [7, 8]. For the architecture, the softmax layer

was truncated, and the output of the model was set as the last tensor representation of the

image. For the first dense layer, the input was the same as the output of the CNN, and the

transformation of the data to their tensor was performed by the CNN. This study trained deep

learning neural networks by using the adaptive learning rate optimization (Adam) algorithm

with learning rate hyperparameters of 0.001, 0.0001, and 0.00001 to control the rate of change

of the model during each step of the optimization process. The output of the optimized model

was presented as the mean and standard error (SE) and used to develop 95% confidence inter-

vals (Cis) and validate the model statistical significance by referring to the overlapping of Cis

or SE bars (overlap rule for SE bars) [13]. Inference cohort classification was conducted by

using new and independent datasets. The evaluation matrices used to represent the generaliza-

tion of the model were accuracy, precision, recall, and F1-score. According to Zheng [14],

accuracy describes the number of correct predictions over all predictions (1); precision is a

measure of how many of the positive predictions made are correct true positives (2); and recall

is a measure of the positive cases the classifier correctly predicted over all the positive cases in

the data (3). The F1-score is a measure combining both precision and recall and is described as

the harmonic mean of the two (4). Table 1 summarized the formulas used to calculate the eval-

uation matrix from a confusion matrix.

To prevent model overfitting, three strategies were implemented: first, we applied addi-

tional dropout regularization layers (p = 0.5) before the classification block; second, we imple-

mented early stopping with a maximum number of iterations for which no progress was

recorded; and third, we expressed multiple evaluation metrics referring to the inference of the

validation dataset.

Results

Insect image datasets

We aim to use the deep learning (DL) models in classifying unseen data in the real world, and

therefore the images that used for model training need to cover most of the angles and position

Table 1. Formulas for calculating the evaluation matrics from a confusion matrix.

Evaluation matrics Formulas for calculation� Equation

Accuracy TPþTN
TPþTNþFPþFN (1)

Precision TP
TPþFP (2)

Recall TP
TPþFN (3)

F1-score 2�precision�recall
precisionþrecall

(4)

�True Positive (TP); False Positive (FP); False Negative (FN); True Negative (TN)

https://doi.org/10.1371/journal.pone.0279094.t001
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views of an insect. To the best of our knowledge, a dataset that fulfills such criteria is unavail-

able; therefore, we created these datasets by taking insect specimen images from 5 to 6 samples

using a DSLR camera with a close-up macro lens. We took approximately 60 to 100 images for

each specimen on the rotating plate, which covered a 360˚ view of details of the specimen at

the superior and lateral positions. Each original image has a resolution of 5184 × 3456 pixels,

with 24 bits of RGB channels and 72 dpi. Through this manual image acquisition process and

data augmentation, we collected the numbers of images described in Table 2. More details of

creating the dataset can refer to Ong and Ahmad [15]. Fig 2 shows some of the images of the

specimen, in which the camera attempts to capture most of the key morphology from different

angles and positions and learn by deep learning models.

Deep learning algorithm comparison and generalization

Our second objective of this study is to compare four deep learning (DL) models in generaliz-

ing/inferring unseen insect images according to the taxonomic levels order, family, and genus.

Fig 3 shows the results of the four DL models in predicting an independent validation dataset,

and Appendix I shows the confusion matrix for each of the deep learning algorithms with

regard to taxonomic rank. One of the important findings of this study reveals that each taxo-

nomic level consists of its best-performing and generalized DL model, which indicates that

multiple taxonomy rank classification cannot be solved by a single DL architecture. For

instance, the VGG19 model performed the best for order, InceptionV3 performed the best for

Table 2. Number of acquired images per taxonomic rank per class.

Taxonomy Number of genera�� Number of specimens Total images

Class� Order 3 7 6,272

Family 5 25 6,828

Genus 5 25 11,375

� The “class” in classification task of a machine learning refers to the final prediction outputs, not to confuse with the class-rank of taxonomy

�� The taxonomy of insects was identified and validated until taxonomic genus rank only

https://doi.org/10.1371/journal.pone.0279094.t002

Fig 2. Results of dataset construction: Three datasets regarding the taxonomic levels order (three classes, Diptera, Hemiptera, Odonata), family

(three classes, Calliphoridae, Rhiniidae, and Sarcophagidae), and genus (five classes, Chrysomya, Lucilia, Rhiniinae, Sarcophaga, and

Stomorhina).

https://doi.org/10.1371/journal.pone.0279094.g002
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family, and MobileNetV2 performed the best for genus. The inceptionV3 that having a total of

42 layers is having advantages of consistent performance from one level to another, which did

not perform significantly differently when the taxonomic level was lowered from order to fam-

ily, in contrast with other models that exhibited significantly lower performance when the

level was lower.

We can obtain some insight from the iterative learning process of features within the layers

of DL architecture, which can be observed from the learning curve and error loss of the model.

Appendices II and III show the accuracy and error loss of training and the internal testing

curve of the DL models based on the epochs, in which the epoch indicates the number of itera-

tions of the entire training dataset the machine learning algorithm has completed. As seen in

Appendices II and III, because early stopping was applied to prevent overfitting, the epoch

Fig 3. Evaluation matrices of four DL models according to the respective taxonomic levels.

https://doi.org/10.1371/journal.pone.0279094.g003
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could indicate the duration needed to achieve the maximum accuracy. We hypothesize that

the epoch of the DL model could be longer when the taxonomic ranks are lower; however, our

results revealed that the number of epochs is independent of the difficulties of taxonomic

ranks. The stability of the training and testing process may affect the model performance, and

our result shows that the models with a small learning rate of 0.00001 or the Xception and

VGG19 models and the training and testing curves were relatively more stable.

For performance per class within the taxonomic rank, we standardized the F1 score as the

assessment matrices for the comparison. Fig 4 shows the model classification based on the

individual group within the level. Hemiptera had the lowest performance among the 4 studied

DL models, which may be because the specimen exhibited an open wing that could be con-

fused with Odonata. Xception and MobileNetV2 had low performance in classifying Rhinii-

dae, which has a metallic green body similar to Calliphoridae, and this was also observed at the

genus level, where the four DL models had significantly lower performance for Lucilia and

Rhiniinae.

Fig 4. Model classification based on the individual group within the level.

https://doi.org/10.1371/journal.pone.0279094.g004
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Discussion

Using a suitable dataset is crucial for deep learning classification tasks. Our dataset construc-

tion result is able to benchmark with previous studies, such as the study of Lytle et al. [16],

who created a dataset of 9 stonefly taxa for an automated classification system called BugID;

the study of Rodner et al. [17], who produced the Ecuador moth dataset; and the study of

Valan et al. [8], who constructed a dataset of beetles with 3 orders. Our constructed datasets

have advantages in terms of angle and position coverage–a 360˚ view at superior and lateral

positions for image acquisition of the morphology of a specimen–and the annotation was

achieved according to the taxonomic levels order, family, and genus (Fig 1). A customized

dataset has also been emphasized by Goodwin et al. [18] when the recognition task was

domain specific and public or when an open-source database achieved poor performance in

prediction. Nevertheless, customization of the dataset always poses a challenge in terms of the

cost and data size [7, 17–19] and therefore is always one of the key constraints for a DL model-

ing study.

When considering deep learning as the algorithm for a recognition system, we must under-

stand the importance of the system to be used in the real world to infer unseen data. Our

experimental results of the generalization of InceptionV3 and VGG19 were similar to those of

the studies of Lytle et al. [16], who used a random forest algorithm with a selection operator

and correctly classified 89.5% of stonefly images belonging to 9 taxa and 7 families; Valan et al.

[8], who used VGG16 and obtained at least 90% internal test set accuracy on four datasets that

consisted of flies, beetles and stoneflies; and Yang et al. [20], who compared InceptionV3,

VGG16, and ResNet50 in classifying insect images with complicated backgrounds and con-

cluded that InceptionV3 outperformed the other models. Nevertheless, we extended their

studies by updating more comprehensive comparisons among the state-of-the-art deep learn-

ing model in the Keras library and having better performance coverage in terms of precision

and F1-score. Moreover, taking note of the model characteristic such as trainable parameters

versus the taxonomic level, which a decrease of parameters (VGG19 to MobileNetV2), higher

the performance with lower taxonomic levels.

In addition, we determined the actual performance of the deep learning model in classifying

insect external morphology according to the taxonomic rank and detailed the performance on

individual classes (groups of levels). For instance, Xception and MobileNetV2 were seldom

considered by previous studies in insect classification; nevertheless, MobileNetV2 has a smaller

file size and is capable of classifying the insect to the species level, which was demonstrated by

Ong et al. [4], who classified Aedes aegypti and Aedes albopictus mosquitoes in real time by

providing key close-up morphology images as the training data. Our generalization result also

supports the idea that a customized deep learning architecture is required based on taxonomic

ranks.

Our results show that the model performed poorly on blow flies that have metallic bodies,

such as Lucilia and Rhiniinae, but interestingly, Chrysomya is an exception. Therefore, to ratio-

nale that Chrysomya had significantly higher performance than Lucilia and Rhininae, we used

a heatmap to visualize the region that distinguished Chrysomya and found that the identifica-

tion was focused on the thorax area of the flies (Fig 5). This outcome agreed with one of the

keys for the identification of Chrysomya and Lucilia, which is the relatively dark and nonmetal-

lic thorax of Chrysomya, compared with Lucilia and Rhininae [21]. From the perspective of the

convolutional neural network (CNN) architecture of deep learning, the feature extraction

blocks in the CNN before the classification layers could consist of generic (low-level features)

and specific (high-level features) features. Yosinski et al. [22] and Zeiler & Fergus [23] pro-

posed that shallow features were generic and captured primitive patterns. Therefore, the four
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models that we studied are pretrained on the images in the ImageNet dataset, which are more

general and colorful than our insect images. Finally, features learned from the ImageNet data-

set are generally useful for overcoming the scarcity of data, but overall fine-tuning is required

by some models to capture specific features of insects and achieve better performance.

We demonstrated that a single DL architecture was not robust enough to classify different

taxonomic levels of specimens. This result is crucial when future works are intended to design

next-generation technologies in taxonomic classification or insect monitoring by automated

recognition, and integration of different DL models may be one of the solutions. Another pos-

sible solution for automated taxonomic classification could be using other supervised machine

learning models, for instance, deep recurrent neural networks (DRNN) that have the capability

of fetching a previous output (result of prediction) as a new input for the current step, to self-

learn the misclassify group and eventually make improvements [24]. Nevertheless, this study

has some limitations in terms of image quality. First, the images used for training were

museum specimens that were in good condition, and the model performance may be different

when implemented/deployed on specimens caught in the field that may be damaged or con-

tain other backgrounds or objects or a new species. Second, image data were taken in a high-

resolution camera and under standardized laboratory conditions. The images were acquired

by using a DSLR camera under sufficient light illumination. Therefore, images from a smart-

phone that has been internally processed to enhance the visualization of an image and images

from the field may not be recognized by the model constructed by this dataset.

Fig 5. Heatmap visualization of the classification region: a) original image and b) heatmap of the region used by the neural network in

classification.

https://doi.org/10.1371/journal.pone.0279094.g005
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17. Rodner E, Simon M, Brehm G, Pietsch S, Wägele JW, Denzler J. Fine-grained recognition datasets for

biodiversity analysis. arXiv preprint arXiv:1507.00913. 2015.

18. Goodwin A, Padmanabhan S, Hira S, Glancey M, Slinowsky M, Immidisetti R, et al. Mosquito species

identification using convolutional neural networks with a multitiered ensemble model for novel species

detection. Scientific reports. 2021; 11(1):1–5.

19. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning:

Concepts, CNN architectures, challenges, applications, future directions. Journal of big Data. 2021;

8(1):1–74.

20. Yang F, Li F, Xu J, Su G, Li J, Ji M, et al. Effective Insect Recognition Based on Deep Neural Network

Models in Complex Background. In2021 5th International Conference on High Performance Compila-

tion, Computing and Communications 2021; (pp. 62–67).

21. Szpila K. Key for the identification of third instars of European blowflies (Diptera: Calliphoridae) of foren-

sic importance. InCurrent concepts in forensic entomology 2009 (pp. 43–56). Springer, Dordrecht.

22. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks?.

Advances in neural information processing systems. 2014; 27.

23. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. InEuropean conference on

computer vision 2014 (pp. 818–833). Springer, Cham.

24. Ong BT, Sugiura K, Zettsu K. Dynamic pre-training of deep recurrent neural networks for predicting

environmental monitoring data. In2014 IEEE International Conference on Big Data (Big Data) 2014

(pp. 760–765). IEEE.

PLOS ONE Insect taxonomic classification by deep learning algorithms

PLOS ONE | https://doi.org/10.1371/journal.pone.0279094 December 30, 2022 11 / 11

https://doi.org/10.1371/journal.pone.0279094

