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Abstract

Insect taxonomy lies at the heart of many aspects of ecology, and identification tasks are
challenging due to the enormous inter- and intraspecies variation of insects. Conventional
methods used to study insect taxonomy are often tedious, time-consuming, labor intensive,
and expensive, and recently, computer vision with deep learning algorithms has offered an
alternative way to identify and classify insect images into their taxonomic levels. We
designed the classification task according to the taxonomic ranks of insects—order, family,
and genus—and compared the generalization of four state-of-the-art deep convolutional
neural network (DCNN) architectures. The results show that different taxonomic ranks
require different deep learning (DL) algorithms to generate high-performance models, which
indicates that the design of an automated systematic classification pipeline requires the inte-
gration of different algorithms. The InceptionV3 model has advantages over other models
due to its high performance in distinguishing insect order and family, which is having F1-
score of 0.75 and 0.79, respectively. Referring to the performance per class, Hemiptera
(order), Rhiniidae (family), and Lucilia (genus) had the lowest performance, and we discuss
the possible rationale and suggest future works to improve the generalization of a DL model
for taxonomic rank classification.

Introduction

Insects keep the planet liveable. They contribute significantly to our environment and are
essential to ecological functions such as nutrient recycling, plant propagation, maintenance of
the plant community, maintenance of the animal community, and food for insectivorous ani-
mals. For instance, the dipterous families Calliphoridae, Rhiniidae, and Sarcophagidae, which
are ecologically important and involved intensively in nutrient recycling of organic matter [1],
serve as pollinators [2] and are vectors for diseases such as cholera [3]. However, the data on
changes in species diversity and abundance are insufficient. A major reason for these shortfalls
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for insects is that available methods to study and monitor species are often tedious, time-con-
suming, labor-intensive, and expensive.

Deep learning (DL) algorithms with computer vison are an excellent alternative for insect
taxonomists to collect insect data, especially in designing next-generation insect monitoring
tools. DL algorithms consist of feature extraction and classification layers in the neural net-
work layers [4, 5], allowing the automated system to perform end-to-end recognition tasks.
DL has advantages over other machine learning algorithms, such as a support vector machine,
decision tree, and logistic regression methods. For example, Motta et al. [6] leveraged the
LeNet, AlexNet, and GoogLeNet convolutional neural networks in classifying six classes of
field caught mosquitoes and obtained a maximum accuracy of 76.2% by GoogLeNet. Park
etal. [7] utilized a variant of VGG-16, ResNet, and SqueezeNet to classify mosquito species
with different postures and deformations and obtained 97% accuracy by fine-tuning the gen-
eral features. Valan et al. [8] classified four datasets of insects (Diptera, Coleoptera and Plecop-
tera) by using VGG19 and obtained at least 90% accuracy. Ozdemir et al. [9] developed mobile
apps with the deep learning algorithms VGG16 and InceptionV3 for insect order classification
and achieved at least 80% average accuracy. However, most of these previous studies of DL
models on insect classification were not designed to assess the capability of DL in classifying
different taxonomic levels. For instance, research questions such as “What will the perfor-
mance of a DL model be as the taxonomic level decreases?” and “Will a single DL architecture
be sufficient to classify specimens regardless of their taxonomic levels?” remain. Since previous
studies assumed that insect classification can be done according to the concept of one- size-
fits-all, the most appropriate algorithm could be the solution for most classifications at the tax-
onomic level. We hypothesise that different algorithms for classification are needed for differ-
ent taxonomic levels, because the lower the level, the closer the external morphology. For this
reason, this study aims to evaluate the ability of DL models in classifying insect specimens at
different taxonomic levels. We compared the performances of four DL models, InceptionV3,
VGG19, MobileNetV2, and Xception, in classifying three taxonomic levels: order, family, and
genus.

Materials and methods
Insect specimen resources and experimental design

The insect specimens were obtained from the insect collection rooms of BORNEENSIS, the
Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah (UMS),
and the School of Biological Sciences, Universiti Sains Malaysia (USM). Both the insect collec-
tion rooms kept a total of more than 500,000 insect specimens that were preserved and stored
in a compactor at 18°C and 40+5% relative humidity. The taxonomy of insects was identified
and validated until at least the taxonomic genus rank by two taxonomists.

The experiment was designed to evaluate four state-of-the-art deep learning models in gen-
eralizing unseen and independent data of the taxonomic levels order, family, and genus. Fig 1
illustrates the overall workflow of this study. In general, the adult stage of the insect was used
for image acquisition, and the annotation of the datasets was based on target output/classes of
three taxonomic ranks (“class” in the classification task of machine learning refers to the final
prediction outputs, not to be confused with the taxonomic class rank). To this end, we selected
Diptera, Hemiptera and Odonata, which have distinguished morphology; we approached the
families in one of the challenging orders, Diptera, which are Calliphoridae, Rhiniidae-and Sar-
cophagidae; for the genus, we referred to the families of Diptera as well, which are Chrysomya,
Lucilia, Rhiniinae, Sarcophaga, and Stomorhina.
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Fig 1. Overall workflow: Stage one consists of building up three customized datasets, and stage two involves the comparison and investigation of
four state-of-the-art deep learning models.

https://doi.org/10.1371/journal.pone.0279094.9001

Data collection

The insects’ images were acquired by a digital single-lens reflex (DSLR) camera (Canon EOS
50D, 15.0 MP APS-C CMOS sensor) with a Tamron 90 mm £/2.8 Di macro lens. The image
acquisition process was conducted in a 30x30x30 cm photography lightbox with white light
illumination. To obtain a 360° view of the specimen, the insect specimen was placed with a pin
on an electronic motorized rotating plate, and the images were acquired at two levels of posi-
tions—the superior view and lateral view of the insect. For a taxonomic level, 5 to 10 specimens
with different variants were used to generate the images, and at least 100 images were acquired
from each specimen. As a result, at least 2000 images were acquired for one taxonomic level.

Data preprocessing and augmentation

Most state-of-the-art deep learning architectures usually require much more training data for
stable performance, with approximately 2000 images not being sufficient to train a robust
model, and augmentation would be necessary [10]; therefore, we applied rotation augmenta-
tion to increase the volume of training data. We applied four-degree rotation to the images
after the data were split into training, testing, and independent validation images.

The data splitting and partitioning used for training, testing, and validation of the model
are described as training (70%) and testing (15%), and the prediction is carried out on an inde-
pendent validation dataset (15%). The base images (0 degrees, without rotation) and all the
rotated images (90, 180, and 270 degrees) used for training are not used for the testing and val-
idation sets. For model training and evaluation, we use the Keras deep learning framework on
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Table 1. Formulas for calculating the evaluation matrics from a confusion matrix.

Evaluation matrics

Formulas for calculation® Equation
TP+TN
TN SFPIN @
TP
@
TP ( 3)

TP+FN
2x precisionx recall (4)
precision+recall

*True Positive (TP); False Positive (FP); False Negative (FN); True Negative (TN)

https://doi.org/10.1371/journal.pone.0279094.t001

a NVIDIA Tesla P100-PCIE GPU platform. Training is performed for 100 epochs, and the
learning rates are reduced by 0.25 every 15 epochs. The standardized number of epochs for
image classification was to prevent the models to overfit the training data [10].

Deep learning model build-up

We investigated four deep learning models, MobileNetV2, InceptionV3, Xception, and
VGG109, in which weights and biases were adopted for the classification of 1000 classes of the
ImageNet dataset [11]. The four pretrained models were selected based on their top-5 accuracy
and size (MB) of the model listed in the Keras library [12]. Xception, InceptionV3, and Mobi-
leNetV2 were selected due to their relatively smaller size and high accuracy, and VGG19 was
selected as a benchmark from previous studies [7, 8]. For the architecture, the softmax layer
was truncated, and the output of the model was set as the last tensor representation of the
image. For the first dense layer, the input was the same as the output of the CNN, and the
transformation of the data to their tensor was performed by the CNN. This study trained deep
learning neural networks by using the adaptive learning rate optimization (Adam) algorithm
with learning rate hyperparameters of 0.001, 0.0001, and 0.00001 to control the rate of change
of the model during each step of the optimization process. The output of the optimized model
was presented as the mean and standard error (SE) and used to develop 95% confidence inter-
vals (Cis) and validate the model statistical significance by referring to the overlapping of Cis
or SE bars (overlap rule for SE bars) [13]. Inference cohort classification was conducted by
using new and independent datasets. The evaluation matrices used to represent the generaliza-
tion of the model were accuracy, precision, recall, and F1-score. According to Zheng [14],
accuracy describes the number of correct predictions over all predictions (1); precision is a
measure of how many of the positive predictions made are correct true positives (2); and recall
is a measure of the positive cases the classifier correctly predicted over all the positive cases in
the data (3). The F1-score is a measure combining both precision and recall and is described as
the harmonic mean of the two (4). Table 1 summarized the formulas used to calculate the eval-
uation matrix from a confusion matrix.

To prevent model overfitting, three strategies were implemented: first, we applied addi-
tional dropout regularization layers (p = 0.5) before the classification block; second, we imple-
mented early stopping with a maximum number of iterations for which no progress was
recorded; and third, we expressed multiple evaluation metrics referring to the inference of the
validation dataset.

Results
Insect image datasets

We aim to use the deep learning (DL) models in classifying unseen data in the real world, and
therefore the images that used for model training need to cover most of the angles and position

PLOS ONE | https://doi.org/10.1371/journal.pone.0279094 December 30, 2022 4/11


https://doi.org/10.1371/journal.pone.0279094.t001
https://doi.org/10.1371/journal.pone.0279094

PLOS ONE Insect taxonomic classification by deep learning algorithms

Table 2. Number of acquired images per taxonomic rank per class.

Taxonomy Number of genera™* Number of specimens Total images
Class* Order 3 7 6,272

Family 5 25 6,828

Genus 5 25 11,375

* The “class” in classification task of a machine learning refers to the final prediction outputs, not to confuse with the class-rank of taxonomy

** The taxonomy of insects was identified and validated until taxonomic genus rank only

https://doi.org/10.1371/journal.pone.0279094.t002

views of an insect. To the best of our knowledge, a dataset that fulfills such criteria is unavail-
able; therefore, we created these datasets by taking insect specimen images from 5 to 6 samples
using a DSLR camera with a close-up macro lens. We took approximately 60 to 100 images for
each specimen on the rotating plate, which covered a 360° view of details of the specimen at
the superior and lateral positions. Each original image has a resolution of 5184 x 3456 pixels,
with 24 bits of RGB channels and 72 dpi. Through this manual image acquisition process and
data augmentation, we collected the numbers of images described in Table 2. More details of
creating the dataset can refer to Ong and Ahmad [15]. Fig 2 shows some of the images of the
specimen, in which the camera attempts to capture most of the key morphology from different
angles and positions and learn by deep learning models.

Deep learning algorithm comparison and generalization

Our second objective of this study is to compare four deep learning (DL) models in generaliz-
ing/inferring unseen insect images according to the taxonomic levels order, family, and genus.
Fig 3 shows the results of the four DL models in predicting an independent validation dataset,
and Appendix I shows the confusion matrix for each of the deep learning algorithms with
regard to taxonomic rank. One of the important findings of this study reveals that each taxo-
nomic level consists of its best-performing and generalized DL model, which indicates that
multiple taxonomy rank classification cannot be solved by a single DL architecture. For
instance, the VGG19 model performed the best for order, InceptionV3 performed the best for

1. Order 2. Family 3. Genus
Diptera  Hemiptera Odonata Calliphoridae Rhiniidae Sarcophagidae Sarcophaga  Rhiniinae Lucilia Chiysomya  Stomorhina
(2345) (1998) (1932) (2276) (2276) (2276) (2274) (1947) (2342) (2812) (2000)

a
ﬁ(
il

* Ny

il

Fig 2. Results of dataset construction: Three datasets regarding the taxonomic levels order (three classes, Diptera, Hemiptera, Odonata), family
(three classes, Calliphoridae, Rhiniidae, and Sarcophagidae), and genus (five classes, Chrysomya, Lucilia, Rhiniinae, Sarcophaga, and
Stomorhina).

https://doi.org/10.1371/journal.pone.0279094.9002
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family, and MobileNetV2 performed the best for genus. The inceptionV3 that having a total of
42 layers is having advantages of consistent performance from one level to another, which did
not perform significantly differently when the taxonomic level was lowered from order to fam-
ily, in contrast with other models that exhibited significantly lower performance when the
level was lower.

We can obtain some insight from the iterative learning process of features within the layers
of DL architecture, which can be observed from the learning curve and error loss of the model.
Appendices II and III show the accuracy and error loss of training and the internal testing
curve of the DL models based on the epochs, in which the epoch indicates the number of itera-
tions of the entire training dataset the machine learning algorithm has completed. As seen in
Appendices II and III, because early stopping was applied to prevent overfitting, the epoch
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could indicate the duration needed to achieve the maximum accuracy. We hypothesize that
the epoch of the DL model could be longer when the taxonomic ranks are lower; however, our
results revealed that the number of epochs is independent of the difficulties of taxonomic
ranks. The stability of the training and testing process may affect the model performance, and
our result shows that the models with a small learning rate of 0.00001 or the Xception and
VGG19 models and the training and testing curves were relatively more stable.

For performance per class within the taxonomic rank, we standardized the F1 score as the
assessment matrices for the comparison. Fig 4 shows the model classification based on the
individual group within the level. Hemiptera had the lowest performance among the 4 studied
DL models, which may be because the specimen exhibited an open wing that could be con-
fused with Odonata. Xception and MobileNetV2 had low performance in classifying Rhinii-
dae, which has a metallic green body similar to Calliphoridae, and this was also observed at the
genus level, where the four DL models had significantly lower performance for Lucilia and

Rhiniinae.
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Discussion

Using a suitable dataset is crucial for deep learning classification tasks. Our dataset construc-
tion result is able to benchmark with previous studies, such as the study of Lytle et al. [16],
who created a dataset of 9 stonefly taxa for an automated classification system called BugID;
the study of Rodner et al. [17], who produced the Ecuador moth dataset; and the study of
Valan et al. [8], who constructed a dataset of beetles with 3 orders. Our constructed datasets
have advantages in terms of angle and position coverage—-a 360° view at superior and lateral
positions for image acquisition of the morphology of a specimen-and the annotation was
achieved according to the taxonomic levels order, family, and genus (Fig 1). A customized
dataset has also been emphasized by Goodwin et al. [18] when the recognition task was
domain specific and public or when an open-source database achieved poor performance in
prediction. Nevertheless, customization of the dataset always poses a challenge in terms of the
cost and data size [7, 17-19] and therefore is always one of the key constraints for a DL model-
ing study.

When considering deep learning as the algorithm for a recognition system, we must under-
stand the importance of the system to be used in the real world to infer unseen data. Our
experimental results of the generalization of InceptionV3 and VGG19 were similar to those of
the studies of Lytle et al. [16], who used a random forest algorithm with a selection operator
and correctly classified 89.5% of stonefly images belonging to 9 taxa and 7 families; Valan et al.
[8], who used VGG16 and obtained at least 90% internal test set accuracy on four datasets that
consisted of flies, beetles and stoneflies; and Yang et al. [20], who compared InceptionV3,
VGG16, and ResNet50 in classifying insect images with complicated backgrounds and con-
cluded that InceptionV3 outperformed the other models. Nevertheless, we extended their
studies by updating more comprehensive comparisons among the state-of-the-art deep learn-
ing model in the Keras library and having better performance coverage in terms of precision
and F1-score. Moreover, taking note of the model characteristic such as trainable parameters
versus the taxonomic level, which a decrease of parameters (VGG19 to MobileNetV2), higher
the performance with lower taxonomic levels.

In addition, we determined the actual performance of the deep learning model in classifying
insect external morphology according to the taxonomic rank and detailed the performance on
individual classes (groups of levels). For instance, Xception and MobileNetV2 were seldom
considered by previous studies in insect classification; nevertheless, MobileNetV2 has a smaller
file size and is capable of classifying the insect to the species level, which was demonstrated by
Ong et al. [4], who classified Aedes aegypti and Aedes albopictus mosquitoes in real time by
providing key close-up morphology images as the training data. Our generalization result also
supports the idea that a customized deep learning architecture is required based on taxonomic
ranks.

Our results show that the model performed poorly on blow flies that have metallic bodies,
such as Lucilia and Rhiniinae, but interestingly, Chrysomya is an exception. Therefore, to ratio-
nale that Chrysomya had significantly higher performance than Lucilia and Rhininae, we used
a heatmap to visualize the region that distinguished Chrysomya and found that the identifica-
tion was focused on the thorax area of the flies (Fig 5). This outcome agreed with one of the
keys for the identification of Chrysomya and Lucilia, which is the relatively dark and nonmetal-
lic thorax of Chrysomya, compared with Lucilia and Rhininae [21]. From the perspective of the
convolutional neural network (CNN) architecture of deep learning, the feature extraction
blocks in the CNN before the classification layers could consist of generic (low-level features)
and specific (high-level features) features. Yosinski et al. [22] and Zeiler & Fergus [23] pro-
posed that shallow features were generic and captured primitive patterns. Therefore, the four
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Fig 5. Heatmap visualization of the classification region: a) original image and b) heatmap of the region used by the neural network in
classification.

https://doi.org/10.1371/journal.pone.0279094.9005

models that we studied are pretrained on the images in the ImageNet dataset, which are more
general and colorful than our insect images. Finally, features learned from the ImageNet data-
set are generally useful for overcoming the scarcity of data, but overall fine-tuning is required
by some models to capture specific features of insects and achieve better performance.

We demonstrated that a single DL architecture was not robust enough to classify different
taxonomic levels of specimens. This result is crucial when future works are intended to design
next-generation technologies in taxonomic classification or insect monitoring by automated
recognition, and integration of different DL models may be one of the solutions. Another pos-
sible solution for automated taxonomic classification could be using other supervised machine
learning models, for instance, deep recurrent neural networks (DRNN) that have the capability
of fetching a previous output (result of prediction) as a new input for the current step, to self-
learn the misclassify group and eventually make improvements [24]. Nevertheless, this study
has some limitations in terms of image quality. First, the images used for training were
museum specimens that were in good condition, and the model performance may be different
when implemented/deployed on specimens caught in the field that may be damaged or con-
tain other backgrounds or objects or a new species. Second, image data were taken in a high-
resolution camera and under standardized laboratory conditions. The images were acquired
by using a DSLR camera under sufficient light illumination. Therefore, images from a smart-
phone that has been internally processed to enhance the visualization of an image and images
from the field may not be recognized by the model constructed by this dataset.
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