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Abstract

Neuromotor dysfunction after a concussion is common, but balance tests used to assess

neuromotor dysfunction are typically subjective. Current objective balance tests are either

cost- or space-prohibitive, or utilize a static balance protocol, which may mask neuromotor

dysfunction due to the simplicity of the task. To address this gap, our team developed an

Android-based smartphone app (portable and cost-effective) that uses the sensors in the

device (objective) to record movement profiles during a stepping-in-place task (dynamic

movement). The purpose of this study was to examine the extent to which our custom

smartphone app and protocol could discriminate neuromotor behavior between concussed

and non-concussed participants. Data were collected at two university laboratories and two

military sites. Participants included civilians and Service Members (N = 216) with and with-

out a clinically diagnosed concussion. Kinematic and variability metrics were derived from a

thigh angle time series while the participants completed a series of stepping-in-place tasks

in three conditions: eyes open, eyes closed, and head shake. We observed that the stan-

dard deviation of the mean maximum angular velocity of the thigh was higher in the partici-

pants with a concussion history in the eyes closed and head shake conditions of the

stepping-in-place task. Consistent with the optimal movement variability hypothesis, we

showed that increased movement variability occurs in participants with a concussion history,

for which our smartphone app and protocol were sensitive enough to capture.
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Introduction

Concussions have been labeled as a public health concern due to our emerging knowledge of

their short- and long-term negative effects [1], including dysfunction in working memory [2],

altered sensitivity to sensory information [3], and balance control [4]. The latter has long been

used as a clinical indicator of a potential concussion, as the head trauma event can lead to a

neurological disruption, which in turn can affect downstream motor functions [5]. Thus, the

integration of the neurological system with motor control (termed neuromotor control)

affords an opportunity to probe motor behavior that may be disrupted from a concussion.

Such was the impetus for balance tests commonly used in concussion assessment and follow-

up care, such as the Balance Error Scoring System (BESS) [6], Sensory Organization Test

(SOT) [7], and the Balance Tracking System (BTrackS) [8].

When selecting a balance test to be used for concussion assessment, it can either be subjec-

tive or objective [9]. Subjective tests, such as the BESS, rely on the perspective of the adminis-

trator to grade the participant’s balance performance across various task conditions. While the

BESS has been shown to have clinical utility [10], questions about its reliability have been dis-

cussed due to the subjective nature of the test [11]. A solution to this challenge is to use an

objective test in which sensors and/or a computer quantifies balance control. Such is the case

with the SOT, which uses a force plate to measure the center of pressure movement while the

participant’s visual, vestibular, and/or somatosensory information is altered in six conditions

[7]. Although it is objective, the SOT has the challenge of being cost- and space-prohibitive in

most clinical settings. The BTrackS is a more affordable way to objectively measure balance,

consisting of a portable force plate connected to an iPad or laptop [8]. Although BtrackS may

be suitable for a hospital/rehabilitation setting, it still requires a computer or tablet, which

could limit its field deployment capabilities. A method to overcome this limitation can be

using a smartphone app (Sway Medical, LLC, Tulsa, OK) [12–14]. This method can surpass

the above-mentioned limitations (space, cost, portability, objective assessment).

A potential limitation of the existing portable technologies (i.e., BtrackS and Sway Medical)

is that they were designed to probe neuromotor control via a static balance task. While such

tests do have clinical utility [15, 16], a more challenging dynamic balance task could uncover

dysfunctional behavior that may not have been observed in the easier static balance task. This

postulate was explored in a recent review in which the authors examined the use of Fitts’ Law

as a way to control for and/or scale up task difficulty in balance tasks [17]. While they noted

most of the papers in their review only included healthy populations, they did note that Fitts’

law has been used in this context in clinical settings. The idea of scaling up task challenge (or

difficulty) to discriminate neuromotor performance is the basis of many clinical tests, includ-

ing the BESS test. In the original BESS paper where individuals with a concussion were

assessed [6], the stances that presented the least difficulty (i.e., controlling balance on a firm

surface) exhibited no differences between the concussed and non-concussed groups. However,

once task difficulty was scaled up via balance control on a foam surface, discrimination

between the groups was observed. Furthermore, a review of gait task analysis for concussions

revealed that a more complex task showed differences in many more variables between non-

concussed and concussed individuals than a simple gait task [18]. Lastly, in postural control,

static balance performance may not reflect performance on a dynamic balance task [19], so

they should not be used interchangeably. Thus, there is a need for a portable, objective, and

dynamic assessment. To meet this challenge, our team developed an Android-based smart-

phone app (portable and cost-effective) that uses the sensors in the device (objective) to record

movement profiles during a stepping-in-place task (dynamic movement). Version 1 of our

app exhibited clinical utility by identifying neuromotor dysfunction in Service Members after
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blast-exposure [20]. We then developed Version 2 of our app and published its reliability and

validity [21].

The theoretical foundation for this line of research is rooted in the observation that variabil-

ity in movement profiles is informative about the health of the neuromotor system. Unlike the

traditional view about variability as noise, it has been proposed that movement variability pro-

vides sensitive measures of pathologies and movement disorders [22–30]—a position that has

been formalized into the optimal movement variability hypothesis [22]. Previous research

using this and related frameworks have shown that healthy biological systems exhibit a partic-

ular magnitude and structure of variability, while injury, aging, or disease can lead to a behav-

ioral shift in movement such that it becomes more variable [23–29]. Relative to head trauma,

previous research has shown changes in movement variability following a concussion [31, 32],

which suggests that neuromotor dysfunction from a concussion can be tested via variability

assessment. Moreover, using a metronome to anchor a timing task and then removing the

metronome to examine the timing of the continuation movement (known as the synchroniza-

tion–continuation paradigm) has a long history in basic motor behavior research [33, 34],

along with concussion research [35]. This paradigm affords the ability to look at the response

(movement pattern) to a constraint (metronome timing), with the working hypothesis that a

neurological insult makes it more difficult to adhere to the timing constraint. Thus, we merged

the optimal movement variability hypothesis with the synchronization-continuation paradigm

to develop our smartphone dynamic balance protocol in order to create a theory-based and

empirically driven approach to probe neuromotor performance after a concussion.

The purpose of the current study was to examine the extent to which the neuromotor

behavior data obtained from our smartphone app could associate with a history of concussion.

Since concussions are a problem in both civilian [36] and Service Member [37] populations,

both groups were recruited for this study. We hypothesized that concussed participants would

exhibit neuromotor dysfunction indexed by greater variability in their movement during the

dynamic balance task.

Materials and methods

Participants

A total of 216 participants voluntarily participated in the study (N = 100 healthy civilians,

N = 54 healthy Service Members, N = 44 civilians with a concussion history, N = 18 Serviced

Members with a concussion history). All participants provided written informed consent. The

demographics of N = 54 healthy Service Members were not obtained. Sex of the participants

for whom demographics were obtained are as follows: (1) for the 100 healthy civilians, 51 were

female and 49 were male, (2) for the 44 civilians with a concussion history, 26 were female and

18 were male, (3) and for the 18 Service Members with a concussion history, 4 were female

and 14 were male. The height and weight of participants for whom demographics were avail-

able were similar between groups (Table 1). Civilian participants were recruited from two uni-

versities in the United States (one in the northeast and one in the southeast). Active-duty

Service Members were recruited from two sites in the western United States. Both healthy

(non-concussed) and participants with a concussion history were recruited. The sampling

strategy at all sites was similar and consisted of a convenience sample from participants who

self-identified as qualifying for the study. At the civilian sites, flyers were posted in public areas

and information was provided verbally to various groups (e.g., via announcements in univer-

sity courses and with student-athletes). At the military sites, participants were given the oppor-

tunity to volunteer outside of their standard daily duty. Participants in the concussion history

group must have received an official diagnosis with a concussion by a medical professional in
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the past six months to qualify for our study. Inclusion criteria for both groups included: (1)

18–50 years old, (2) at least moderately active (> 3 times of physical activity per week), (3)

BMI under 33, (4) non-smoker, (5) normal or corrected-to-normal vision, (6) no surgeries in

the past six months, (7) ability to walk with a prosthetic or assistive device, and (8) not preg-

nant at the time of study data collection. The protocol was approved by two institutional

review boards, and all participants signed the informed consent forms. If participants did not

have a history of a concussion, they were allocated to the non-concussed healthy control (here-

after, healthy) group. If participants had a history of a concussion, they were assigned to the

concussion history group. History of concussion was initially self-reported by the participants

at the time of recruitment. However, prior to the day of testing, the participants medical pro-

fessional provided a medical clearance consent form verifying that their patient did have a con-

cussion within the last 6 months and that they supported them enrolling in our study with the

knowledge of the type of testing that would occur. It is important to note that given the dura-

tion of time since the concussion event presented in Table 1, our population on average was

not an acutely concussed population. Rather, our population was comprised of those who had

a clinically diagnosed concussion within the past 6 months, and therefore are labeled as those

with a concussion history.

Study design and protocol

This study was a cross-sectional design that was part of a larger project that required partici-

pants to complete several static and dynamic balance tests in a single testing session. This paper

focuses on our dynamic balance test from our smartphone app (named AccWalker). The proto-

col for AccWalker included strapping a customized armband onto the lateral aspect of the par-

ticipants’ thigh, halfway between the lateral epicondyle and the greater trochanter, and placing

the smartphone in the armband holder (Fig 1A). Participants were instructed to (a) naturally

step in place while synchronizing their step timing to the app’s metronome, (b) look straightfor-

ward during trials, and (c) during familiarization trials, participants were informed to raise

their knees higher if they were not moving as they normally walked (e.g., feet are not leaving the

floor). The pacing metronome (period = 0.575 s or 1.15 s per stride) was provided for the initial

10 s of each trial. After 10 s, the metronome turned off, and the participant was instructed to

continue stepping for 60 s. No other information was provided to participants in an attempt to

capture natural kinematic patterns. The general protocol of the stepping-in-place task consisted

of three trials for each of the three following conditions to alter sensory input: (1) with eyes

open (EO), (2) with eyes closed (EC) to remove visual information, and (3) while rotating the

Table 1. Demographics by group (healthy, concussed) and population (civilian, Service Member) (M ± SD).

Demographics by Group (Civilians and Service Members Collapsed)

Category Healthy (n = 154) Concussion History (n = 62) p-value

Height (cm) 171.99 ± 9.70 171.43 ± 12.59 0.749

Weight (kg) 70.93 ± 13.82 75.26 ± 16.19 0.072

Time from concussion

to testing (weeks)

N/A 10.13 ± 8.67 N/A

Healthy and Concussion History within Each Population

Population Civilians Service Members

Category Healthy (n = 100) Concussion History (n = 44) Healthy (n = 54) Concussion History (n = 18)

Height (cm) 171.99 ± 9.70 170.08 ± 13.87 N/A 174.72 ± 8.13

Weight (kg) 70.93 ± 13.82 73.75 ± 17.90 N/A 78.94 ± 13.46

Time from concussion to testing (weeks) N/A 6.52 ± 6.32 N/A 18.16 ± 8.15

https://doi.org/10.1371/journal.pone.0278994.t001
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head left-right to perturb vestibular information (head shake; HS). A 30-second practice session

was provided for the EO and HS conditions prior to data collection to familiarize the participant

with the task. The manual of the protocol was recorded by the smartphone app developing team

for consistency and shared the protocols with partner teams.

For the present study, participants at the civilian sites performed 3 trials per condition for

the EO, EC, and HS conditions (i.e., 60 seconds per trial x 3 trials x 3 conditions). Due to time

constraints, participants at one military site performed only 2 trials of all three conditions (i.e.,

60 seconds per trial x 2 trials x 3 conditions), and participants at the other military site per-

formed 2 trials per condition only the EC and HS conditions (i.e., 60 second per trial x 2 trials

x 2 conditions). In both sites, all participants completed the task in the order of EO, EC, HS for

civilians and EC, HS for service members, with brief standing rest between trials (20–30 sec-

onds). To compare common data that were collected at all sites, the mean of all dependent var-

iables for the first 2 trials (instead of all 3 trials) were calculated for the EC and HS conditions,

which were then submitted for statistical analysis. This is congruent with previous work show-

ing acceptable concurrent validity when averaging 2 trials in our protocol [21].

Data collection and dependent variables

With the phone placed on the lateral aspect of the thigh, the thigh flexion angle in the sagittal

plane was quantified over time, with 0 degrees representing the leg perpendicular to the

Fig 1. Smartphone app. (A) Placement of the phone on the thigh and the illustration of stepping movement. (B)

Representative time series of the thigh flexion angle in the sagittal plane during the stepping in place task. (C) Study

design and dependent variables extracted from the smartphone app.

https://doi.org/10.1371/journal.pone.0278994.g001
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ground plane (neutral standing position), positive angles representing thigh flexion angles

beyond neutral, and negative angles representing thigh extension angles beyond neutral (Fig

1B). This thigh angle time series data were obtained from the Android smartphone’s (Moto

X2nd Generation, version 5.1 or Google Pixel, version 8.1.0 or 9) sensor fusion from the accel-

erometer, gyroscope, and magnetometer, which were recorded at 100.86Hz as described in

our previous work [21]. The extracted thigh angle data from the phone were processed with a

customized MATLAB script (R2020a, MathWorks Inc., Natick, MA). The obtained data were

evenly distributed to 100Hz to consider sampling lags with spline interpolation. Then, the data

were filtered with the 4th order low-pass Butterworth filter (both directions) with a cutoff at

5Hz. Non-normal trials (e.g., the phone slipped from the original position; participants

stopped or paused during trials; data with noise) were visually detected. For all trials, the first

10 seconds from each trial, during the metronome tones were provided, were removed, result-

ing in the analysis of 60 s duration for each trial.

Our previous work showed which spatial and temporal variables derived from the thigh

angle time series are reliable and valid [21]. For the present study, we report seven variables

derived from the app (Fig 1C): four that describe general performance kinematics and three

that describe movement variability. The general performance kinematics variables include (1)

the mean of maximum angular velocity (MaxVel), (2) the mean of peak flexion angle (Peak-

Flex), (3) the mean of knee range of motion (ROM), and (4) the mean of stride time. The first

three variables represent spatial characteristics (i.e., primary variables) and the last variable

represents the temporal characteristics (i.e., confirmation purpose). For MaxVel and PeakFlex,

maximum values (peaks) of the knee angular velocity and knee angle, respectively, were

obtained from each stride across one trial. The mean of these peaks was calculated. For the

knee extension angle used in the ROM calculation, the obtained thigh angle data were parti-

tioned into 100 bins and plotted into a histogram. Then, the most frequent bin was selected

since the longest phase of a step-in-place task is the single-leg stance (i.e., when the knee is

extended). The maximum value from this bin was defined as the knee extension angle. ROM

was found as the mean difference between the peak flexion and knee extension. Stride time

was determined by quantifying the intervals in seconds between maximal thigh flexion events.

Stride time was analyzed to examine whether participants complied with the temporal restric-

tion prescribed during the first 10 seconds of the task.

The variables that quantify movement variability are (1) SD MaxVel, (2) CV Peak Flex, and

(3) CV Stride Time. To calculate SD MaxVel, the SD of MaxVel was extracted for each individ-

ual. Then, the mean and dispersion of the MaxVel SDs were calculated within each group.

Thus, SD MaxVel represents the dispersion of SD (i.e., variability across individuals). For CV

Peak Flex and CV Stride Time, CV was obtained by SD divided by its corresponding mean.

During the dependent variable extraction, non-normal trials were removed. Trials were

considered as errors and removed if the phone slipped from the strap, participants did not

comply with the metronome pace (e.g., participants stopped or paused during trials), or ROM

was less than 10 degrees.

Statistical design

For each dependent variable, a linear mixed-effect model analysis was adopted. The original

model specification was three fixed effects and one random effect. The condition (EC, HS),

group (Healthy, Concussion History), and the interaction between condition and group were

fixed effects and the individual intercept variance was the random effect (Fig 2B). The model

specification process was predetermined as follows: (a) the original model was tested, if neces-

sary, with a model with different variance structures; (b) the condition x group interaction
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term was omitted if the interaction term was not significant; and (c) the final model was deter-

mined based on the results of model comparison with Likelihood Ratio Test and AIC (Akaike

Information Criterion) (Fig 2A). A model with parsimonious parameters was chosen if the

two models were not statistically different. Since the task used in the present study constrained

the temporal characteristics (i.e., stride time) and measured spatial characteristics, Stride Time

was fitted first. The healthy group was a reference for the group variable, and the EC condition

was a reference for the condition variable. The results were interpreted based on the output of

the final model, with the coefficient value representing the magnitude change between the con-

ditions or groups. Alpha was set at 0.05.

Results

Participant demographics and time since concussion are presented in Table 1. No difference

in height (t160 = 0.320, p = 0.749) and weight (t160 = -1.812, p = 0.072) were observed between

healthy and concussion history groups.

During data processing, a total of 12 participants from the healthy group and one partici-

pant from the concussion history group were removed (Fig 2A). Nine of these participants

were from the same cohort (i.e., healthy service members). Further, additional four trials were

removed for CV Stride time as outliers. Following the model specification for the Stride Time

variable, three additional outliers were identified, which were likely due to the incompliance

with the stepping pace. Thus, these trials were removed. This resulted in n = 141 healthy and

Fig 2. Data processing and model specification flow chart. Abbreviations: HS = head shake, EC = Eyes-closed

conditions. (A) Flow chart of the data processing. The two boxes in the bottom are the sample size submitted for the

statistical analyses for all variables except CV Stride time. �1 n = the number of subjects, nt = the number of trials. �2

for CV stride time, n = 138 healthy and n = 61 concussed participants for the EC condition and n = 141 healthy and

n = 60 concussed participants for the HS condition were submitted for analyses. (B) the model specification process:

Fixed effects coefficients are B0, B1, B2, and B3, j = j-th group of i-th individual. u0i represents the random effect of the

individual intercept, and e0i represents the residuals, where both are assumed to be normally distributed.

https://doi.org/10.1371/journal.pone.0278994.g002
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n = 61 concussion history participants for the EC condition, n = 140 healthy, and n = 61 con-

cussion history participants for the HS condition (four additional trials removed for CV Stride

Time) (Fig 2A). These remaining data were submitted for statistical analyses.

General performance kinematics

The results of the final model are for the general performance kinematics are summarized in

Table 2. As described above, we identified outliers that were likely due to incompliance with

the stepping pace after the diagnosis of residuals of the final model. Thus, the model specifica-

tion process was repeated without these outliers. First, homogeneity of variance between

healthy and concussion history participants was potentially different from visual inspection.

However, a model with a heterogeneous variance structure of the residuals was not statistically

different from the original model with a homogeneous variance structure [X2(1) = 2.592,

p = 0.107]. Next, the group and condition interaction of the fixed effect was omitted in the

final model since it was not significant [t = 1.001, p = 0.318]. The results of the final model

(Table 2) showed no difference between conditions (p = 0.090) nor group (p = 0.087). The esti-

mated means of the stride time were 1.15 s for the healthy group and 1.13 s for the concussion

history group after controlling for the condition. This result suggests that the step interval of

both groups approximated the target pace (i.e., 1.15 s), and the following spatial and variability

dependent variables were not confounded by differences in the imposed temporal

characteristics.

For other variables, the model specification process was similar to Stride time. Specifically,

visual inspection showed an indication of different variances by group, but they were all non-

significant, and no interaction was not found. Thus, the final model had two fixed effects

(group and condition) and one random intercept. Therefore, the main effects of the final

model were reported for other variables. For variability measures, we did not identify an

Table 2. Final model and statistical results of each general performance kinematic dependent variable.

Stride Time

Variable Coefficient SE DF t-value p-value Final model

Intercept 1.1503 0.006 200 208.716 < 0.001 StrideTimeji ¼ b0 þ B1 � Conji þ B2 � Grpji þþu0i þ εji

Condition -0.005 0.003 200 -1.703 0.0901

Group -0.017 0.001 200 -1.718 0.0873

Mean Maximum Knee Flexion Velocity (Max Vel) in deg/s

Variable Coefficient SE DF t-value p-value Final model

Intercept 170.314 3.309 200 51.476 < 0.001 MaxVelji ¼ b0 þ B1 � Conji þ B2 � Grpji þþu0i þ εji

Condition -5.944 1.565 200 -3.798 0.0002

Group 8.301 5.847 200 1.421 0.157

Mean Peak Knee Flexion Angle (Peak Flex) in deg

Variable Coefficient SE DF t-value p-value Final model

Intercept 41.663 0.842 200 49.472 < 0.001 PeakFlexji ¼ b0 þ B1 � Conji þ B2 � Grpji þþu0i þ εji

Condition -1.639 0.379 200 -4.326 < 0.001

Group 0.810 1.492 200 0.543 0.588

Mean of Range of Motion (ROM) in deg

Variable Coefficient SE DF t-value p-value Final model

Intercept 37.782 0.782 200 48.323 < 0.001 ROMji ¼ b0 þ B1 � Conji þ B2 � Grpji þþu0i þ εji

Condition -1.502 0.381 200 -3.941 0.0001

Group 1.261 1.379 200 0.914 0.362

https://doi.org/10.1371/journal.pone.0278994.t002
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Fig 3. Estimated marginal means of SD knee maximum angular velocity. EC = Eyes-closed, HS = Head Shake

conditions; Bars = Standard error of the mean; the values are estimated marginal means from the final model.

https://doi.org/10.1371/journal.pone.0278994.g003

Table 3. Final model and statistical results of each movement variability dependent variable.

Variability (SD) of Maximum Velocity (SD_MaxVel)

Variable Coefficient SE DF t-value p-value Final model

Intercept 12.110 0.283 200 42.828 < 0.001 SD MaxVelji ¼ b0 þ B1 � Conji þ B2 � Grpji þþu0i þ εji

Condition 0.400 0.185 200 2.167 0.0314

Group 2.001 0.486 200 4.120 < 0. 001

Variability (CV) of Peak knee flexion (CV_PeakFlex)

Variable Coefficient SE DF t-value p-value Final model

Intercept 6.432 0.189 199 34.091 < 0.001 CVPeakFlexji ¼ b0 þ B1 � Conji þ B2 � Grpji þþu0i þ εji

Condition 0.370 0.135 199 2.738 0.0067

Group 0.268 0.319 199 0.839 0.4023

Variability (CV) of Stride time (CV_Stride Time)

Variable Coefficient SE DF t-value p-value Final model

Intercept 2.510 0.085 200 29.356 < 0.001 CV StrideTimeji ¼ b0 þ B1 � Conji þ B2 � Grpji þþu0i þ εji

Condition 0.177 0.083 197 2.128 0.0346

Group 0.241 0.135 200 1.785 0.0758

https://doi.org/10.1371/journal.pone.0278994.t003
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indication of heterogeneous variance. Thus, after fitting the original model, it was compared

with a model without an interaction term to determine the final model.

For the mean of maximum knee velocity (MaxVel), there was no main effect of group

(p = 0.157), but the main effect was found in condition (p< 0.001), suggesting that the change

from the EC condition to the HS condition was associated with 5.944 (m/s) decrease in Max-

Vel (p< 0.001) (Fig 3).

For the mean of maximum knee flexion (PeakFlex), the results showed no significant effect

of group (p = 0.588) and a significant main effect of condition, suggesting that the HS condi-

tion was associated with a 1.639-degrees decrease in the knee flexion angle relative to the EC

condition (p< 0.001).

For the mean range of motion (ROM), similarly, there was no significant effect of group

(p = 0.362) and a significant main effect of condition, suggesting that the HS condition was

associated with a 1.502-degrees decrease in ROM relative to the EC condition (p< 0.001).

Movement variability variables

The results of the final model are for the movement variability variables are summarized in

Table 3. For the variability (SD) of MaxVel (SD_MaxVel), the main effects were found in both

condition (p = 0.031) and group (p< 0.001) (Table 2). The change in the HS condition to the

EC condition was associated with an increase in variability by 0.400. The concussion history

group was associated with a 2.001-point variability increase after controlling for the condition.

For the variability (CV) of Peak Knee Flexion (CV_PeakFlex), the results of one participant

were extreme scores. We were confident that it was a processing error (i.e., the extreme score

was 34.92 compared to the estimated mean of 6.43 with SE = 0.189). Thus, this participant was

removed. Our results showed no main effect of group (p = 0.402) with a main effect of condi-

tion (p = 0.007). The HS condition was associated with a 0.370-point variability increase com-

pared to the EC condition.

For the variability (CV) of Stride Time (CV_Stride Time), the main effect was found in con-

dition (p = 0.035) with no difference in group (p = 0.076). The HS condition was associated

with an increase of variability by 0.177 points.

Discussion

The purpose of the current study was to examine the extent to which the neuromotor behavior data

obtained from our smartphone app could associate with a history of concussion. Aligned with our

hypothesis, we showed that movement variability (via SD Max Vel) was significantly higher in the

EC and HS conditions for participants with a concussion compared to participants without a con-

cussion. We discuss our findings in the context of previous balance control tests for concussion

assessment and using the optimal movement variability hypothesis to frame our observations.

Previous work has shown that neuromotor dysfunction occurs after a concussion [31, 38,

39]. Specifically, balance control becomes more variable due to neuromotor sensory integra-

tion challenges [32]. This is thought to result from the neurometabolic cascade that happens

after a significant head impact [40], leading to challenges downstream in controlling motor

actions [5]. For this reason, balance tasks have a long history of being used in concussion

assessments [41]. Our findings align with previous work showing that the control of move-

ment can become more variable after a concussion [31, 32, 42–44]. More specifically, our par-

ticipants with a concussion exhibited a higher standard deviation of the maximum angular

velocity of their thigh during the stepping-in-place task, indicating the inability to maintain

consistent motion, even though they were cued by a metronome at the beginning of the task

(utilizing the synchronization-continuation paradigm). Previous studies suggested that metrics
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including velocity information are more sensitive to gait impairments in post-stroke patients

than joint angles and timing parameters alone [45]. Our findings are consistent with this

observation and extend it by adopting the paradigm in a manner suitable for field-testing.

The impetus for this project was the goal of creating an objective, cost-effective, and portable

way to measure neuromotor control in individuals with a suspected concussion. Our solution

for that challenge was to develop a custom smartphone app and a specific testing protocol. It

should be noted that smartphone apps have been previously developed to meet this challenge,

but many of these apps have not been rigorously and scientifically tested [46, 47]. An app that

has been tested and is commercially available is the Sway Balance app (Sway Medical, LLC,

Tulsa, OK), which has been shown to be valid [14], reliable [12], and have clinical utility [13].

Another empirically-based portable balance test is the BTrackS [8, 48, 49], which is an objective

and relatively cost-effective solution to measure neuromotor performance [8]. In the context of

concussion assessment, BTrackS was shown to have clinically acceptable sensitivity to detect

dysfunctional balance performance [16]. In that study, 16 out of 25 participants with a concus-

sion were observed to have increased variability in their balance control, an observation that

aligns with our current findings. While the Sway Balance app and BTrackS have both demon-

strated clinical utility, both assesses balance control with a static task, which may mask neuro-

sensory dysfunction relative to a more challenging dynamic task [17, 18]. Thus, our dynamic

balance protocol was developed to overcome this potential limitation in mind. However, it

should be noted that the current paper does not address the static versus dynamic balance com-

parison. Nevertheless, our data do show that individuals with a concussion exhibited elevated

variability in the dynamic balance control relative to non-concussed individuals, adding impor-

tant insight to our knowledge base on ways that a concussion may affect movement patterns.

The observation that an increase in variability (SD maximum angular velocity) was exhib-

ited in our participants with a history of concussion relative to our healthy participants aligns

with the optimal movement variability hypothesis (OMVH) [22]. OMVH builds upon decades

of research that show variability patterns in a biological system are informative about its health

and functional capacity [22–30]. The original work in this area focused on a unidirectional

change in the variability pattern—from a complex signal toward a less complex signal—in the

presence of aging and disease [29]. This was articulated as the loss of complexity hypothesis,

which was rooted in the premise that a healthy biological system exhibits a certain level of vari-

ability, which could be described mathematically as a more complex signal (commonly via the

use of entropy metrics). When changes to the biological system occur due to aging or disease

(e.g., reduced neural firing rate, reduced reaction time, reduced aerobic and anerobic capac-

ity), a less variable (and less complex) signal was commonly observed. This framework origi-

nated in cardiovascular dynamics research [28, 29, 50, 51], but has since been extended to

study human movement [22, 23, 27, 52–57]. Moreover, this framework has been extended to

include a bi-directional movement of variability, which is the premise of the OMVH. That is, a

continuum of variability is considered, with the “optimal” variability residing in the middle of

the continuum. A shift away from the middle—toward less complex variability on one side or

overly complex variability on the other side—represents a non-optimal variability pattern

reflecting reduced functional capacity. In the context of this study and the dynamic balance

task, the variability exhibited by the non-concussed individuals would be considered “opti-

mal”. The individuals with a concussion history exhibited elevated variability in their move-

ment pattern relative to the non-concussed individuals. This observation aligns with the

increased variability that was observed in the BESS [10] and in the SOT [38] after a concussion.

Our findings also align with Purkayastha et al. [31], where they showed an increase in ante-

rior-posterior variability during a static balance task in participants with a concussion relative

to controls. While our study was not a within-subjects tracking study where data before and
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after the concussive event were available, it would be hypothesized that the individuals with a

concussion likely shifted from the optimal zone of variability toward the increased variability

on the continuum. While outside the scope of this study, a prospective tracking study could

confirm this shift, as well as the potential shift back toward the optimal variability zone after

the concussion effects reside. Such a study design would help provide more contextual infor-

mation when using the OMVH as the framework.

It should be noted that temporal dynamics have significantly contributed to our knowledge

of the optimal movement variability hypothesis. Under this framework, temporal dynamics

are typically examined via a metric(s) that quantify the structure of the variability (i.e., sample

entropy). However, a limitation of this approach is that enough data points (and more impor-

tantly, cyclic events) must be present in order for repeating patterns to naturally emerge. Short

datasets typically do not allow for an emergence of such repeating patterns, and thus are not

good candidates for structure of variability metrics. Our task was confined to 60 seconds of

stepping-in-place per trial, leading to ~52 steps on average. While nonlinear dynamics could

be run on such a short dataset, it would open up questions about validity and reliability of such

an approach. Thus, we elected to focus on magnitude of variability metrics (i.e., coefficient of

variation), which is more appropriate to quantify variability in short time series.

While the current study was a retrospective design that tested participants with a concus-

sion history, it is important to note that work has been done to predict the risk of motion sick-

ness after head trauma [58–60]. This approach aligns with the general approach to identify risk

factors for a concussion [61], which has led to questions related to what strategies can be used

to modify the sport and/or player care to reduce concussion risk [62]. As these approaches

advance, it is plausible that such predictive analytics could be part of a smartphone app similar

to the one tested in this paper, which could enhance athlete care.

There are several limitations of this study to acknowledge. First, although the inclusion cri-

teria required the concussive event to have occurred no longer than six months prior to our

testing, the number of weeks since the event varied substantially in our population. Concus-

sion symptoms can dissipate for many people 7–10 days after the event, so future work should

explore the factor of time-since-injury as part of their study design. Prior to the main analysis,

we had run a correlation analysis within the concussion history group between the dependent

variable and time from concussion (n = 54; time from concussion was missing for n = 8). The

results of the Spearman correlation did not show a significant association (rho = - 0.013,

p = 0.888) (Fig 4). Thus, we did not include this variable in our model. However, it is possible

that this characteristic is unique to our cohort. More research is warranted to understand

movement variability and the time from concussion. Second, the testing environment differed

between our groups (civilians in a university laboratory, Service Members with a concussion

history in a military clinical setting, healthy Service Members on a military training site).

While our app and protocol were designed to be deployed to diverse settings, future research

should examine how different environmental factors (e.g., performing the task on concrete vs.

gravel or in a quiet laboratory vs. noisy field-based setting) may influence the results. Third,

although the stepping-in-place task is dynamic, one could argue that it is not functional out-

side of military context, so future work should focus on the inclusion of more functional tasks

to examine dynamic balance control. Fourth, it is unclear if the dynamic measures in this

study are more sensitive than existing static assessments, so a head-to-head study comparing

static and dynamic balance assessments after a concussion is warranted in the future. Fifth, we

acknowledge that sex can moderate the control of balance [63, 64], as well as the effect of a

concussion on neuromotor control [65]. Unfortunately, sex was not reported for our entire

dataset, so we were not able to include this variable in our statistical analyses. Thus, we recom-

mend future work makes it a priority to include sex as a biological variable, congruent with
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current NIH policy [66]. Sixth, the observation that SD MaxVel was sensitive to neuromotor

changes, but CV PeakFlex and CV Stride Time were not (although generally trending in the

same direction as SD MaxVel) needs to be further examined. Understanding this etiology will

be key for future research. Lastly, the participants in this study could be generally characterized

and young, fit, and physically active. Thus, these results may not generalize to populations out-

side of this characterization.

Conclusion

We aimed to explore the extent to which neuromotor performance changes after a concussion

could be detected with a custom smartphone app. We showed that increased variability in per-

formance (SD maximum angular velocity of the thigh) during the dynamic balance task was

observed in the participants with a concussion relative to the participants without a concus-

sion. These findings are consistent with the optimal movement variability hypothesis that indi-

cates variability characteristics will change if the neuromotor system is disrupted. Collectively,

this study shows that neuromotor performance on an objective, cost-effective, and portable

dynamic balance assessment is associated with a history of concussion.
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