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Abstract

Abnormally high serum homocysteine levels have been associated with several disorders,

including obesity, cardiovascular diseases or neurological diseases. Leptin is an anti-obesity

protein and its action is mainly mediated by the activation of its Ob-R receptor in neuronal

cells. The inability of leptin to induce activation of its specific signaling pathways, especially

under endoplasmic reticulum stress, leads to the leptin resistance observed in obesity. The

present study examined the effect of homocysteine on leptin signaling in SH-SY5Y neuro-

blastoma cells expressing the leptin receptor Ob-Rb. Phosphorylation of the signal trans-

ducer and activator of transcription (STAT3) and leptin-induced STAT3 transcriptional

activity were significantly inhibited by homocysteine treatment. These effects may be specific

to homocysteine and to the leptin pathway, as other homocysteine-related compounds,

namely methionine and cysteine, have weak effect on leptin-induced inhibition of STAT3

phosphorylation, and homocysteine has no impact on IL-6-induced activation of STAT3. The

direct effect of homocysteine on leptin-induced Ob-R activation, analyzed by Ob-R BRET bio-

sensor to monitor Ob-R oligomerization and conformational change, suggested that homo-

cysteine treatment does not affect early events of leptin-induced Ob-R activation. Instead, we

found that, unlike methionine or cysteine, homocysteine increases the expression of the

endoplasmic reticulum (ER) stress response gene, a homocysteine-sensitive ER resident

protein. These results suggest that homocysteine may induce neuronal resistance to leptin

by suppressing STAT3 phosphorylation downstream of the leptin receptor via ER stress.

Introduction

Obesity has become a global concern because of its association with metabolic diseases such as

diabetes, hypertension, and dyslipidemia. Leptin plays an important role in the regulation of

food consumption and hunger and controls energy metabolism. Leptin signaling is triggered

by the binding of leptin to the Ob-Rb receptor, followed by the activation of Janus Kinase 2

(JAK2), which leads to the activation of the Signal Transducer and Activator of Transcription
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3 (STAT3), known as the JAK2-STAT3 signaling pathway [1,2]. Insensitivity to the action of

leptin, termed “leptin resistance”, is a potential mechanism underlying the development of

obesity [3,4]. The mechanism of leptin resistance remains unclear, but the suppressor of cyto-

kine signaling 3 (SOCS3) and the tyrosine phosphatase 1B, have been reported to block leptin

induce-signal transduction [5,6] and are known negative regulators of ER stress [7]. Alteration

of the JAK2-STAT3 pathway and enhancement of SOCS3 expression are crucial factors in lep-

tin resistance in the central nervous system [8].

The endoplasmic reticulum (ER) is an organelle where protein folding and synthesis occur

[9]. When the ER cannot handle an overwhelming amount of protein, which must be moved

into the Golgi bodies, homeostasis in the ER lumen is disrupted, and this condition is called

“ER stress” [10]. We and other groups have reported that ER stress may play a role in inducing

leptin resistance [3,11], and could affect the result in the development of obesity [12,13]. Satu-

rated fatty acid-palmitate has been suggested to increase ER stress by binding to the Toll-like

receptor (TLR-4), and thereby trigger leptin resistance contributing to the development of

obesity [14,15]. ER stress initiates unfolded protein response (UPR) signaling [16] by inducing

a molecular chaperone called glucose-regulated protein 78 [17]. Accumulation of unfolded

proteins in the ER activates stress sensor proteins such as inositol-requiring kinase 1α, double-

stranded RNA-activated protein kinase R-like ER kinase, and activating transcription factor 6

(ATF6). These ER stress sensor proteins activate UPR-related genes via X-box binding protein

1 or decrease the translation by activating ATF4 [18]. Although cells have the capacity to adapt

to ER stress, they encounter apoptosis when their capacity is overloaded [19].

The homocysteine-responsive ER-resident protein (HERP), located in the ER mem-

brane, plays an important role in ER-associated protein degradation (ERAD) [20]. It is also

considered a marker of ER stress-related apoptosis as it is linked to the ERAD pathway that

functions on ubiquitin-and proteasome-dependent degradation to discard the unfolded

proteins [21]. HERP, which has a ubiquitin-like domain, has also been used to examine pro-

tein folding in the ER membrane since Herp has been suggested to ameliorate the folding of

ER proteins and to dampen ER protein load [22]. When ER stress occurs, HERP is highly

induced [23].

Homocysteine is formed by methionine metabolism [24] through the chronological synthe-

sis of S-adenosylmethionine and S-adenosylhomocysteine. Several reports have suggested the

involvement of homocysteine and its metabolites in obesity. Changes in plasma betaine, cho-

line, and glycine in the development of obesity may result in changes in the homocysteine/

methionine metabolism [25–28]. Plasma homocysteine showed significant accumulation in

obesity [29,30]. Homocysteine has been reported to participate in DNA methylation in the

methionine cycle, which is involved in epigenetic modification of the genome [31,32].

Our previous findings and those of others have found ER stress to be one of the factors

inducing leptin resistance. In addition, we previously reported that homocysteine may induce

leptin resistance using HEK293 cells expressed leptin receptors [3]. However, the mechanism

of homocysteine-induced leptin resistance remains unclear. Furthermore, it is unknown

whether homocysteine can cause leptin resistance in neuronal cells.

Materials and methods

Reagents

Homocysteine (Hcy) was obtained from SIGMA (St. Louis, MO), methionine was obtained

from Sigma-Aldrich Cheme, cysteine was obtained from Wako Pure Chemical Industries, Ltd,

anti-phospho STAT3 was obtained from Cell Signaling Technology, anti-STAT3 was obtained

from Santa Cruz Biotechnology, anti-HERP was obtained from Proteintech.
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Cell lines

SHSY5Y cell line. Human neuroblastoma cell lines: SH-SY5Y neuroblastoma cell line,

which stably expressed Ob-Rb leptin receptor (SH-SY5Y Ob-Rb cells), was established previ-

ously [33]. SH-SY5Y Ob-Rb cells were cultured in Dulbecco’s modified Eagle’s medium sup-

plemented with 10% (v/v) heat-inactivated fetal calf serum at 37˚C in humidified 5% CO2 and

95% air.

HEK293T cell line. Human embryonic kidney 293T cells were cultured in Dulbecco’s

modified Eagle’s medium supplemented with 10% (v/v) heat-inactivated fetal calf serum at

37˚C in humidified 5% CO2 and 95% air.

Cell culture

Homocysteine was dissolved directly into the medium. The cells were stimulated with homo-

cysteine 10 mM for 4 hours by replacing the medium containing homocysteine.

Western blotting

Cells were washed with ice-cold phosphate buffer saline and then lysed with lysis buffer con-

taining 10 mM HEPES-NaOH (pH 7.5), 150 mM NaCl, 1 mM ethylenediaminetetraacetic

acid, 1 mM Na3VO4, 10 mM NaF, 1% NP-40, 10 μg/mL aprotinin, 10 μg/mL leupeptin, and 1

mM phenylmethylsulphonyl fluoride. Following this, the lysates were centrifuged at 15,000

rpm at 4˚C for 20 minutes. After centrifugation, the supernatants were collected. The samples

were boiled with Laemmli buffer for 3 minutes, fractioned using SDS-PAGE, and transferred

to nitrocellulose membranes at 4˚C. These membranes were incubated with anti-phospho

STAT3 (Tyr705; dilution 1:2000; Cell Signaling Technology), anti-STAT3 (dilution 1:1000;

Santa Cruz Biotechnology), anti-glyceraldehyde 3-phosphate dehydrogenase (dilution 1:1000;

Proteintech), and anti-HERP (dilution 1:1000; Proteintech) antibodies, followed by an anti-

horseradish peroxidase-linked antibody. Finally, peroxidase binding was detected using a

chemiluminescence reagent.

STAT3 reporter gene assay

SH-SY5Y Ob-Rb cells, transfected with STAT3 promoter-NanoLuc plasmid (Promega), were

cultured at 96 well plate for 48 h. Cells were then treated with homocysteine (1–10 mM) and

leptin (0.01μg/mL, equal to 0.6 nM) for 4 h, and luminescence signal was measured using

Nano-Glo1 Luciferase Assay System (Promega).

Bioluminescence resonance energy transfer (BRET) analysis

The BRET assay was performed based on the literature (34). HEK293T cells were transfected

with luciferase-fused leptin receptor (OBR-2K Rluc, energy donor) and with leptin receptor

fused to YFP (OBR-2K YFP, energy acceptor) using polyethyleneimine (PEI) in a 12-well

plate. Twenty-four hours after the transfection, cells were plated to a 96-well plate (PerkinEl-

mer, Culture PlateTM-96) and grown for 20 h. The cells were then pre-treated with homocyste-

ine for 4 h and then with leptin (10 nM) for 30 min. For the BRET assay, the plate was washed

with PBS, and Coelenterazine h (FUJIFILM Wako Pure Chemical cop., Japan) was added at

final concentration of 20 μM. Luminescence signals were detected with filter settings for

Donor: 495SP and Acceptor: 530LP at GloMax (Promega). The results were expressed as milli-

BRET units (mBRET unit) = {(YFP/Rluc)–(YFP/Rluc of cells expressing the donor alone)} ×
1,000.
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Statistical analysis

Results were expressed as the mean ± standard error of the stated value. Statistical analysis was

performed using one-way analysis of variance followed by Dunnett’s test or Turkey’s test (Fig 1B).

Results

Homocysteine leads to significant inhibition of leptin receptor-induced

signaling pathway

To assess the effect of homocysteine on leptin signaling, we pre-treated the SH-SY5Y-Ob-Rb

human neuroblastoma cell line with homocysteine at 3 and 10 mM and analyzed the phos-

phorylation of STAT3 induced by leptin (0.01 μg/mL, equal to 0.6 nM). As expected, leptin

treatment caused an increase in STAT3 phosphorylation in these neuronal cells. Pretreatment

with 3 mM homocysteine slightly but not significantly inhibited leptin-induced STAT3 phos-

phorylation (p-value = 0.44), while 10 mM homocysteine significantly inhibited leptin phos-

phorylation (�p< 0.05) (Fig 1A and 1B).

To account for the chemical specificity of these effects, we also evaluated the impact of

other compounds related to homocysteine, i.e., methionine (10 mM) and cysteine (10 mM),

which have a structural formula similar to homocysteine. Whereas methionine did not inhibit

and cysteine tended slightly to decrease leptin-induced phosphorylation of STAT3 homocyste-

ine has a drastic inhibitory impact (�p<0.05) (Fig 1C and 1D). These results therefore, suggest

that homocysteine specifically inhibits the leptin-induced STAT3 signaling compared to

methionine and cysteine in a neuronal context.

Homocysteine-mediated inhibition of leptin-induced STAT3

transcriptional activity assessed by STAT3 reporter gene assay

We next evaluated the effect of homocysteine on leptin-induced STAT3 transcriptional activity

with a STAT3 reporter gene assay in SH-SY5Y Ob-Rb cells. We used SH-SY5Y Ob-Rb cells

Fig 1. Homocysteine leads to significant inhibition of leptin receptor-induced signaling pathway. (A-B) Homocysteine inhibited leptin-induced STAT3

phosphorylation. SHSY5Y Ob-Rb cells were pretreated with homocysteine (Hcy; 3 and 10 mM) for 4 h and then stimulated with leptin (Lep; 0.01 μg/mL) for 15 min and

leptin-induced STAT3 phosphorylation was analyzed by immunoblot. Statistical analysis used Dunnett’s post-hoc test following one-way ANOVA; �p< 0.05, n = 3–5.

(C-D) Methionine and cysteine were slightly inhibited leptin-induced STAT3 phosphorylation. SHSY5Y Ob-Rb cells were treated with homocysteine (Hcy, 10 mM),

methionine (Met, 10 mM) and cysteine (Cys, 10 mM) for 4 h and then stimulated with leptin (Lep; 0.01 μg/mL, 15 min), and leptin-induced STAT3 phosphorylation was

analyzed. Statistical analysis used Turkey’s post-hoc test following one-way ANOVA; �p< 0.05, n = 3–5.

https://doi.org/10.1371/journal.pone.0278965.g001
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stably expressing the STAT3 reporter gene and analyzed the effect of homocysteine on leptin-

induced activation of STAT3 reporter. We found that leptin-induced STAT3 transcriptional

activity was significantly inhibited by homocysteine in a dose-dependent manner (1–10 mM)

(Fig 2). The results suggest that homocysteine also inhibits STAT3 transcriptional activity

induced by leptin treatment.

No impact of homocysteine on leptin-induced receptor conformational

change using the leptin receptor BRET biosensor

To understand the mechanisms involved in homocysteine-induced leptin resistance, we evalu-

ated the effect of homocysteine at the early events of the STAT3 signaling pathway, i.e. at the

receptor activation stage, using a BRET biosensor. Upon stimulation by leptin, a protomer of

the leptin receptor Ob-R fused to the energy donor, luciferase, and another protomer to the

energy acceptor, yellow fluorescent protein (YFP), oligomerize and undergo a conformational

change, causing an increase in the BRET signal, which is associated with the Ob-R activation

state [34].

Using stably transfected HEK293 cells with Ob-Rb receptor expression, we have previously

shown that homocysteine can inhibit leptin-induced STAT3 phosphorylation in HEK293 [3].

We therefore, investigated whether homocysteine affected the leptin-induced activation

Fig 2. Homocysteine-mediated inhibition of leptin-induced STAT3 transcriptional activity assessed by STAT3 reporter gene assay. SH-SY5Y-Ob-Rb cells

transfected with the STAT3-promoter-Nluc construct were treated with homocysteine (Hcy; 1–10 mM) and leptin (Lep; 0.01 μg/mL), and the luminescence

signal is measured 4 hours after treatments. Data were expressed as relative luciferase activity, normalized with the control condition. �p< 0.05, ��p< 0.01,

n = 4.

https://doi.org/10.1371/journal.pone.0278965.g002
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signature of the Ob-R receptor using the Ob-R-BRET biosensor probe in HEK293T cells trans-

fected with the donor (OBR-2K Rluc) and acceptor (OBR-2K YFP) constructs. We observed a

3-fold increase in BRET signal upon leptin stimulation, evoking leptin receptor oligomeriza-

tion and conformational change. In contrast, homocysteine treatments (1–10 mM) did not

modify this profile (Fig 3), suggesting that homocysteine probably does not affect the leptin-

induced conformational change and oligomerization of the leptin receptor.

Homocysteine induced endoplasmic reticulum stress

Next, we evaluated the mechanism of homocysteine-induced leptin resistance. One possible

explanation is that homocysteine induces leptin resistance through the activation of ER stress.

We found that homocysteine increased the expression level of the ER stress response gene,

HERP at 4 and 8 hours, by 4-fold in SHY5Y neuronal cells. We analyzed whether homocyste-

ine-induced HERP is known to be involved in ER stress.

In contrast, we did not detect an increase in HERP expression after treatment with cysteine

and methionine (�p< 0.05, n = 5) (Fig 4A–4D). Thus, we suggest that homocysteine may par-

ticipate in leptin resistance by inducing ER stress.

Homocysteine has no impact on the IL-6 signaling pathway

To assess whether homocysteine has a specific impact on leptin signaling, we examined the

effect of homocysteine on the IL-6-induced STAT3 pathway. We treated cells with

Fig 3. No impact of homocysteine on leptin-induced receptor conformational change using the leptin receptor BRET biosensor. HEK293T cells were

transfected with leptin receptor fused to luciferase (OBR-2K-Rluc, energy donor) and leptin receptor fused to the yellow fluorescent protein (OBR 2K YFP, energy

acceptor). The cells were then pre-treated with homocysteine (1–10 mM) and leptin (10 nM)-induced OBR conformational changes were detected by BRET assay

n = 4.

https://doi.org/10.1371/journal.pone.0278965.g003
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homocysteine (10mM, 4 h) and analyzed interleukin-6 (IL-6) (100ng/mL)-induced STAT3

phosphorylation in the HEK293T cell line. We found that homocysteine did not affect IL-

6-induced STAT3 signaling (Fig 5A and 5B). On the other hand, homocysteine can inhibit lep-

tin-induced STAT3 phosphorylation in HEK293 cells stably transfected with Ob-Rb. Interest-

ingly, the expression level of HERP as an ER stress response gene at 4 hours was significantly

increased by homocysteine in HEK293T cells (Fig 5C and 5D), suggesting that homocysteine

also likely contributes to ER stress in the HEK293T cell line, similar to the neuronal cells.

Therefore, the impact of homocysteine on leptin-induced STAT3 phosphorylation appears to

be specific to leptin receptor signaling since homocysteine, by inducing HERP expression, did

not affect STAT3 phosphorylation mediated by IL6.

Discussion

Leptin is a hormone that plays a crucial role in managing energy expenditure and food con-

sumption by sending signals to the hypothalamus. Leptin binds to the Ob-Rb receptor, which

then activates JAK2/STAT3 signaling pathway in neurons. Leptin resistance, in which the acti-

vation of its receptors at the central level no longer occurs correctly, is observed in obesity. Sev-

eral possible mechanisms have been proposed to contribute to leptin resistance, including

impaired leptin transport into the brain [35–38], a decreased availability of the Ob-R receptor

on the cell surface [39–46], or induction of ER stress [3,11].

Homocysteine is a sulfur-containing, non-protein amino acid that naturally exists in the

bloodstream. Its concentration is preserved by the re-methylation and transsulfuration

Fig 4. Homocysteine-induced endoplasmic reticulum stress. (A-D) SHY5Y-Ob-R cells were treated with homocysteine (Hcy), methionine (Met), and

cysteine (Cys) for 4 and 8 hours at 10 mM, and the expression level of ER stress response gene, HERP, was analyzed by Dunnett test. �p< 0.05, n = 5.

https://doi.org/10.1371/journal.pone.0278965.g004
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pathways. The re-methylation pathway involves the conversion of homocysteine to methio-

nine, whereas the transsulfuration pathway involves the conversion of homocysteine to

cystathionine to form cysteine.

In this study, we discovered a functional link between homocysteine and leptin resistance

in neuronal cells that were previously unknown. Homocysteine inhibits leptin signaling (inhi-

bition of leptin-induced STAT3 phosphorylation and subsequent STAT3 transcriptional activ-

ity), suggesting that homocysteine may be involved in the leptin resistance phenomenon (Fig

1). We demonstrated that homocysteine reduces STAT3 signaling without affecting the leptin-

induced activation state of Ob-R (oligomerization and conformational change). The mecha-

nism by which homocysteine inhibits the leptin-induced STAT3 signaling pathway may

involve the ER stress response gene, HERP, whose expression is increased upon homocysteine

treatment. Thus, homocysteine may induce ER stress leading to leptin resistance in neuronal

cells (Fig 4).

Other homocysteine-related compounds are methionine and cysteine, which have similar

structural formulas. However, the results showed that only homocysteine strongly inhibited

leptin signaling, whereas cysteine and methionine had no significant or very weak effect.

Homocysteine and cysteine have thiols in their structural formula, whereas methionine has a

sulfide. Therefore, it is possible that the thiol, not the sulfide, is involved in the development of

leptin resistance.

Normal blood homocysteine levels range from 5 to 12 μM, and hyperhomocysteinemia is

classified as mild (12–30 μM), moderate (30–100 μM), and severe (>100 μM) [47,48]. While in

the in vitro experiment, the used concentrations vary. They are 0,1 mM, 1 mM, 2 mM, 3 mM

[49,50], 2.5 mM [51], 5 mM [52], and 10 mM [53]. Also, we cannot exclude that local homo-

cysteine concentrations around neurons may reach even higher values. High levels of homo-

cysteine have been found in obese humans [54,55] and in obese mice [56]. A study also

revealed that an increase in total body fat percent and lower lean mass are associated with

increased homocysteine concentrations [57]. Because we would like to examine the leptin sig-

nal, we majorly focused on in vitro experiment, using SHSY5Y cell lines expressing Ob-Rb. In

in vivo experiment, the Wistar of the National Institute of Nutrition obese (WNIN/Ob)

seemed to be an appropriate animal model for obesity and other metabolic diseases. These rats

are reported to show the characteristics of obesity such as insulin resistance and leptin

Fig 5. Homocysteine has no impact on the IL-6 signaling pathway. (A-B) HEK293T cells were treated with homocysteine (Hcy) for 4 hours at 10 mM, then stimulated

with IL-6 (100 ng/mL) for 15 minutes. The level of phospho-STAT3 was analyzed. n = 5. (C-D) HEK293T cells were treated with homocysteine (Hcy) for 4 hours at 10

mM, then stimulated with IL-6 (100 ng/mL) for 15 minutes. The level of HERP was analyzed. n = 5.

https://doi.org/10.1371/journal.pone.0278965.g005
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resistance. They also are linked to decreased antioxidants which are then associated with aging

problems [58,59]. It would be an important future subject to analyze in vivo effects using these

models.

In light of our results and the link between homocysteine and obesity, it is possible that

homocysteine plays a key role in leptin resistance by inducing ER stress, contributing to the

development of obesity and metabolic syndrome in conditions of hyperhomocysteinemia. In

light of our results, we suggest that the induction of ER stress by homocysteine could constitute

one of the mechanisms of leptin resistance (Fig 6).

A high level of homocysteine would trigger stress in the ER, which could subsequently alter

specifically the JAK2-STAT3 signaling pathway regulated by the hormone leptin. When ER stress

occurs, the inhibition of STAT3 phosphorylation increases [60–63]. We had shown that endo-

plasmic reticulum stress causes leptin resistance by decreasing the phosphorylation of STAT3.

ER stress activates three signaling networks, i.e.; IRE1, PERK, and ATF6 [64]. PERK was reported

to stimulate JAK-STAT signaling [65–67]. The IRE1 signaling pathway was also reported to be

affected by the JAK-STAT signaling [68,69]. Even the mechanisms are still unknown, but the

alteration of XBP1 was reported to disrupt the phosphorylation of STAT3. These reports suggest

that IRE1/XBP1 and STAT3 signaling pathways may be closely related [70].

Fig 6. Model of homocysteine-induced leptin resistance. High concentrations of homocysteine trigger ER stress and inhibit the phosphorylation and

transcriptional activity of STAT3 regulated by the anti-obesity hormone leptin. This mechanism may contribute to homocysteine-induced leptin resistance in

neuronal cells.

https://doi.org/10.1371/journal.pone.0278965.g006
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There was no report of homocysteine on leptin resistance in neuronal cells. We found for

the first time that homocysteine causes leptin resistance in neuronal cells. We also found that

the effect of homocysteine on leptin signaling may be specific to leptin receptor signaling, as

we did not observe the inhibition of STAT3 signaling against IL-6. Targeting the homocysteine

metabolic pathway and/or inhibiting the excessive action of homocysteine could have thera-

peutic value.

Conclusion

Homocysteine may ameliorate the leptin signaling pathway by inhibiting JAK-STAT signaling

that is regulated by the obesity hormone, leptin. In conclusion, homocysteine could cause neu-

ronal leptin resistance by triggering endoplasmic reticulum stress, which would be one of the

mechanisms of obesity.
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