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Abstract

This paper aims to provide insight into the driving distraction domain systematically on the

basis of scientific knowledge graphs. For this purpose, 3,790 documents were taken into

consideration after retrieving from Web of Science Core Collection and screening, and two

types of knowledge graphs were constructed to demonstrate bibliometric information and

domain-specific research content respectively. In terms of bibliometric analysis, the evolu-

tion of publication and citation numbers reveals the accelerated development of this domain,

and trends of multidisciplinary and global participation could be identified according to

knowledge graphs from Vosviewer. In terms of research content analysis, a new framework

consisting of five dimensions was clarified, including “objective factors”, “human factors”,

“research methods”, “data” and “data science”. The main entities of this domain were identi-

fied and relations between entities were extracted using Natural Language Processing

methods with Python 3.9. In addition to the knowledge graph composed of all the keywords

and relationships, entities and relations under each dimension were visualized, and relations

between relevant dimensions were demonstrated in the form of heat maps. Furthermore,

the trend and significance of driving distraction research were discussed, and special atten-

tion was given to future directions of this domain.

Introduction

Road traffic crash was ranked the eighth leading cause of death by World Health Organization

(WHO), claiming more than 1.35 million lives and causing up to 50 million injuries globally

each year [1]. Humans are the weakest part of the road traffic system and it was estimated by

the US National Highway Traffic Safety Administration (NHTSA) that 94% of the crashes

could be attributed to drivers [2]. Among all the driver-related reasons, driving distraction is

not to be ignored, which led to 9% of fatal crashes and 15% of injury crashes across the USA in

2019 [3]. Due to the severe consequences caused by driving distraction, scientific research into

this issue is of great practical importance.

In the academic world, driving distraction or driver distraction is commonly defined as

“the diversion of attention away from activities critical for safe driving toward a competing activ-
ity, which may result in insufficient or no attention to activities critical for safe driving” [4]. Sev-

eral studies have summarized certain aspects of driving distraction. For example, the
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distracting effect of telephones [5], the impact of roadside billboards [6] and young drivers’

distraction problems [7] have been discussed thoroughly. And there have also been reviews

concentrating on certain research methods like naturalistic driving study [8], on certain dis-

traction measurements like eye movement [9] and on certain data processing ways like the

application of computer vision in distraction recognition [10]. Meanwhile, more general

themes that contain driving distraction have been systematically addressed, such as driver

understanding and modeling [11], contributors of road accidents [12], as well as road safety

[13, 14]. However, there exists a gap of a comprehensive overview concerning the driving dis-

traction domain exactly. Thus, this study aims to complete this task.

To achieve the goal of providing a systematic understanding of the driving distraction

domain, the scientific tool of knowledge graphs is adopted, which normally appear as multi-

relational graphs composed of nodes and edges [15]. While the nodes represent entities or sig-

nificant concepts, the edges linking nodes serve the purpose of exhibiting relations between

entities. And two methods are employed for graph construction:

• The first is the bibliometric analysis of existing literature. In addition to traditional biblio-

metric methods such as yearly quantitative distribution, software tool specializing in auto-

matic text-mining and visualization of bibliometrics is adopted in this work. Similar

approaches have been extensively applied to social science [16, 17], medicine [18], workplace

safety [19], safety climate [20] and road safety [13, 14]. One of the efforts of this paper is to

analyze the driving distraction domain using bibliometrics-based knowledge graphs.

• The second is the establishment of a framework specially for the research content analysis of

this domain and the construction of knowledge graphs under this framework through text

mining. Mature text-mining and visualization tools designed for general use have been

proved to be effective for bibliometric analysis, as mentioned in the first method. However,

when it comes to content analysis, although general tools could produce keyword co-occur-

rence maps, which present the most frequent keywords and keywords appearing most fre-

quently in the same documents [21], the limitations of embedded algorithms and graphical

user interfaces manifest. For one thing, since the embedded algorithms are unable to extract

phrases as minimum meaning units like “deep learning” in sentences of titles and abstracts,

only listed keywords are generally utilized to form the map, leading to serious information

loss. For another, since all the keywords are just symbols for the software and the semantic

information is lost, it is impossible for words in different dimensions to be categorized,

which may obscure understanding. One solution of the algorithms’ limitations could be the

incorporation of human knowledge. As a matter of fact, constructing specialized knowledge

graphs with the combination of human knowledge and objective algorithms has become a

trend, and similar works have been completed in fields like arts and humanities [22], medi-

cine [23], disease [24], public security [25] and energy [26]. Therefore, instead of obtaining

graphs automatically with general tools, this study aims to go further to develop a specific

framework specially for the driving distraction domain and create knowledge graphs on this

basis. This paper is the first of its kind in driving distraction or even the more general road

safety field.

Materials and methods

Data source

TheWeb of Science Core Collection was retrieved using (“drive” OR “driving” OR “driver�”)
AND (“distract�” OR “inattention�” OR “non driving task�” OR “nondriving task�” OR “multi
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task�” OR “multitask�” OR “dual task�” OR “secondary task�”) in the Topic field to obtain the

original data for this study. Document types were restricted to articles and review articles, and

publication years were limited to 1990–2022. Then articles within categories that are irrelevant

to this study, such as Cell Biology, Dentistry Oral Surgery Medicine and Nanoscience Nanotech-
nology, were excluded through manual check. The retrieval was updated on February 6th, 2022

and yielded 3,790 documents altogether. All the contents of Full Record and Cited References
were exported to plain text file for subsequent analysis.

Bibliometric analysis

Bibliometric analysis was conducted in terms of five aspects: yearly quantitative distribution of

literature, major publication sources, productive and influential countries/regions, productive

and influential organizations, as well as productive and influential researchers.

For the first aspect, yearly publications and citations were counted. As baseline reference,

number changes of driving related articles were considered. To gain the number of driving

related studies, theWeb of Science Core Collection was retrieved using (“drive” OR “driving”
OR “driver�”) in the Topic field, and document types were also restricted to articles and review

articles. The publication numbers of 1990, 2000, 2010 and 2021 were recorded, and then

growth rates were calculated using these numbers. Although checking all these documents

manually is impossible due to the large quantity, the growth rates serve as estimations of rela-

tive number changes. After that, these growth rates were compared to those of driving distrac-

tion publications over the same period. Then a statistical graph regarding the publication and

citation numbers of the driving distraction domain was drawn for explanation and three devel-

opment stages were divided on this basis.

As regards to the latter four parts, the software tool VOSviewer (visualization of similarities

viewer) developed by van Eck NJ and Waltman L was employed [27], and thresholds of docu-

ment and citation numbers were set in the software to obtain the most productive and influen-

tial publication sources, countries/regions, organizations and researchers for visualization

respectively. The composition of the four graphs is in accordance with knowledge graphs’ nor-

mal appearance of multi-relational graphs composed of entities (nodes) and relations (edges)

[15]. The node size implies the document number, while the node color implies the average

publication year of the documents by a source, a country/region, an organization or a

researcher, with a color bar at the bottom right of each graph for explanation. The edge weights

in all the four graphs indicate the bibliographic coupling relationships, namely the number of

cited references that two entities have in common.

Research content analysis

Research content is much more complicated and domain-specific than bibliometric informa-

tion. Although mature tools such as VOSviewer, CiteSpace and CitNetExplorer enable

research content analysis as well, the fact that the embedded algorithms of such software dis-

tinguish only between the appearance of words or phrases but not the meaning of them could

impair the detailed presentation of information. As a result, the outputs could be too general

and lead to vague understanding. To solve this dilemma, this study attempts to reveal the

research content of this interdisciplinary domain clearly by means of knowledge graph con-

struction under a structured framework. Six steps were taken for this purpose:

• Framework construction and concept clarification. In accordance with knowledge graphs’

definition of multi-relational graphs composed of entities (nodes) and relations (edges) [15],

Fig 1 illustrates the framework composed of entity types represented by rectangles and
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correlations represented by arrows. The five entity types stand for five research dimensions:

(1) “objective factors” refer to the external elements of driving distraction, such as cellphone

and roadside billboard; (2) “human factors” refer to the individual elements of driving dis-

traction, such as age and gender difference of drivers; (3) “research methods” refer to the sci-

entific methods for research conduction, like naturalistic driving study and driving

simulation; (4) “data” refers to the information collected for analysis, like driving perfor-

mance and eye activity; (5) “data science” refers to the processing methods to make raw data

more meaningful, such as statistical means like logistic regression and artificial intelligence

algorithms like deep learning. These entities are logically related: (1) “objective factors” and

“human factors” are the starting point and purpose of studies; (2) “research methods” are

chosen according to the requirement of “objective factors” or “human factors”; (3) “data” is

generated by certain “research methods”; (4) “data science” takes in original “data” and

regenerates more valuable “data”. Note that “objective factors” and “human factors” can be

independent variables, dependent variables and even preconditions in studies. For instance,

“mental workload” as a human factor can be selected as independent variable [28] or depen-

dent variable [29], while “intersection” as an objective factor can be the precondition and

does not have to be compared to other conditions [30]. Regardless of their roles in studies,

these factors share the commonality of being the origins of research questions.

• Keyword identification and frequency accounting. Keywords depict the focus of a research

domain. To obtain the keywords within the five dimensions and corresponding frequencies,

Author Keywords and Keywords Plus of the retrieved documents were counted using Python

3.9. It should be noted that keywords with the same implication were mapped into one term.

For example, “cellphone(s)”, “cell phone(s)”, “cellular phone(s)”, “mobile phone(s)”, “smart-

phone(s)”, “smart phone(s)” and “phone(s)” were all mapped into the term “cellphone”.

• Relationship extraction using Word2Vec. Relationships between keywords could be

obtained through text mining with Natural Language Processing methods. To extract rela-

tionships between keywords, several operations were implemented on the original plain text

file exported fromWeb of Science Core Collection with Python 3.9: (1) Titles and abstracts

were extracted and lowercased, and functional words frequently appearing in abstracts such

as “background” and “result(s)” were removed. (2) The NLTK (Natural Language Toolkit)

package was employed for word tokenization (splitting textual data into tokens [31], the sim-

ple tokenization of splitting text into words adopted here), deletion of punctuations/num-

bers, removal of stop words and stemming. (3) Set phrases obtained by the counting of

Author Keywords and Keywords Plus were converted into single words with ‘‘_” separating

original words so as to ensure the completeness of minimum meaning units, and keywords

with the same implication were mapped into one term. For example, “logist regress”, “logit

regress” and “logit model” (“logistic regression”, “logit regression” and “logit model” before

stemming) were all replaced with “logistic_regression”. (4) Word embedding was carried

out using the Word2Vec model with the Genism package in Python 3.9. As a neural net-

work-based deep-learning language model proposed by Google scholars, Word2Vec enables

word representations in vector space and semantic similarity extractions among different

words [32, 33]. Words in the preprocessed text were projected to a 300-dimensional vector

space through this model, and a window of 10 words (the maximum distance between cur-

rent word and prediction word in a sentence) was selected after fine-tuning. (5) Similarities

of keywords were calculated based on the embedding vector of words from the Word2Vec

model and false positives were removed manually.
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• Visualization of all the keywords and relationships. To get an overview of the research con-

tent, the keywords and corresponding occurrence frequencies, as well as the values of rela-

tionships, were imported into the open-source software Gephi 0.9.2 for visualization [34],

and the algorithm ForceAtlas2 was adopted for graph layout [35]. Note that “driving distrac-

tion” is omitted in the presentation of all these keywords. For instance, “passenger” implies

drivers’ distraction problem with the presence of passengers.

• Visualization of the five dimensions. Keywords grouped according to entity types could

serve the purpose of revealing each of the five dimensions in detail. To achieve this goal, the

keywords obtained above were reviewed and classified into the five dimensions manually.

Then keywords under each dimension, the occurrence frequencies and interrelationships

were imported into the same software Gephi 0.9.2 for visualization, and the same algorithm

ForceAtlas2 was adopted for graph layout.

• Visualization of relationships between dimensions. Among all the relationships, those

between keywords under related dimensions in Fig 1 reveal the fundamentals of studies and

so should be emphasized. To achieve this target, similarities of keywords under related

dimensions were extracted and visualized in the form of heat maps.

Results

Results of bibliometric analysis

Yearly quantitative distribution of literature. On the whole, 3,790 publications and

42,220 citations were identified in the driving distraction domain during the period from 1990

to 2022. It should be noted that the numbers of 2022 do not indicate the whole year due to the

retrieval time in February, 2022. The publication number of driving distraction in 2021 turns

out to be 495 times that of 1990, 26 times that of 2000 and 5 times that of 2010. By contrast, the

number of driving-related publications in 2021 turns out to be 103 times that of 1990, 11 times

that of 2000 and 4 times that of 2010. It could be concluded that within the promising filed of

driving research, increased attention has been drawn to driving distraction.

The publication and citation numbers of the driving distraction domain are demonstrated

in Fig 2. According to the explanatory graph, the evolution could be divided into 3 stages: the

lengthy primary development stage (1990–2010), the intermediate steady growth stage (2011–

2018) and the booming stage during the recent years (2019-now).

Major publication sources. Of the publication sources of the retrieved articles, 11 meet-

ing the threshold of 50 documents and 500 citations are displayed in Fig 3. As shown in the

graph,Human Factors and Ergonomics are among the earliest to pay attention to driving

Fig 1. The framework of research content analysis.

https://doi.org/10.1371/journal.pone.0278822.g001
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distraction. Although becoming concerned about this field later, Accident Analysis and Preven-
tion and Transportation Research Part F appear as the center of the network at present, with

422 and 335 documents respectively. In recent years, the journal PLOS ONE turns as a new

main participant of this domain. Although the network is concentrated, it’s worth noting that

the journals in the network cover plenty of categories actually, like transportation, engineering,

psychology, public health, social science, behavioral science, ergonomics and computer

science.

Productive and influential countries/regions. Of the countries/regions involved in the

analysis, 15 meeting the threshold of 50 documents and 500 citations are displayed in Fig 4. As

Fig 2. Annual distribution of publications and citations, 1990–2022.

https://doi.org/10.1371/journal.pone.0278822.g002

Fig 3. Major publication sources of documents.

https://doi.org/10.1371/journal.pone.0278822.g003
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demonstrated in the graph, the USA is the absolute center of the geographical network, with

1,497 documents and 39,643 citations. Canada and European countries such as England and

France are also active at this domain from the very beginning, whose documents hence enjoy

relatively high average citations. Moreover, scholars in emerging Asian countries like China

and India have also been making more exploration into this field over the past few years.

Productive and influential organizations. Of the organizations concerned, 18 with the

minimum number of 30 documents and 300 citations are exhibited in Fig 5. Being different

from the document allocations among publication sources and countries/regions, the distribu-

tion among organizations is pretty decentralized, with only 74 publications belonging to the

most productive one, Monash University. In relation to countries/regions, 10 of the 18 most

productive and influential organizations are located across the USA, while the rest 8 ones are

based in the Netherlands, England, Germany, Canada, Australia and China. In accordance

with China as a new country player, Tsinghua University in China appears as a new organiza-

tion participant.

Productive and influential researchers. Of the researchers in this domain, 13 with at

least 20 documents and 200 citations are exhibited in Fig 6. Reimer B turns out to be the

most productive researcher with 37 documents, while Strayer DL appears as the most influ-

ential one with 1611 citations. Generally, all the researchers form a whole and there exists no

separation. Clusters could be only identified when combining the graph and investigation

into these researchers: Lee JD, Boyle LN, and Donmez B from the University of Iowa form a

small cluster; Reimer B and Mehler B from the Massachusetts Institute of Technology are

closely related academically; Young KL and Lenne MG from Monash University are close to

each other.

Fig 4. Geographical distribution of documents.

https://doi.org/10.1371/journal.pone.0278822.g004
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Results of research content analysis

The domain of driving distraction as a whole

The knowledge graph composed of all the keywords and relationships shown in Fig 7 offers a

general view of the driving distraction domain. As shown in the graph, “cellphone” turns out

to be the most concerned issue and is related to entities like “passenger”, “eating/smoking/

drinking”, “gender difference” and “age difference”, which all could be interpreted as classical

and significant hotspots of the domain [36–38]. Algorithms like “deep learning”, “random for-

est” and “support vector machine” are grouped together, indicating that some studies may lay

emphasis on comparison or integration of algorithms in application of the driving distraction

domain [39]. More local connections could be identified as well. For example, the strong con-

nection between “questionnaire survey” and “prevalence” reveals the adoption of question-

naire method to gain distraction prevalence data [40]. By and large, keywords are closely

linked to form a whole, which confirms the inseparability of this domain but impairs under-

standing, especially for newcomers. Therefore, more structuralized clarification is necessary.

Main entities under each dimension. The framework of five dimensions illustrated in

Fig 1 offers to structuralize research content of the driving distraction domain and facilitate

understanding. Knowledge graphs for the five dimensions are demonstrated in Fig 8. In each

subgraph, the nodes represent the main entities under each dimension, whose sizes indicate

the occurrence frequencies, and the connecting lines reveal the degrees of closeness.

“Objective factors” shown in Fig 8(A) are the external starting point of driving distraction

research. In vehicles, “cellphone”, conversation with “passenger”, “eating/smoking/drinking”,

“music” and “navigation” are ordinary distractors [36, 37, 41, 42], “head-up display” has been

Fig 5. Distribution of documents among organizations.

https://doi.org/10.1371/journal.pone.0278822.g005
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proposed to reduce the distraction caused by conventional head-down displays in automobiles

by keeping the glance on the road [43], and new “human-machine interaction” methods and

designs have brought new vitality into distraction reduction [44, 45]. Outside of vehicles,

“roadside billboard” and “traffic sign” are common distractors [6, 46, 47], while “intersection”,

which could be subdivided into signalized and unsignalized ones, draws much attention with

the complex traffic flow [48, 49]. “Driver assistance system” and “automated driving”, although

leading to more freedom and less effort, could also provoke human drivers’ excessive engage-

ment in non-driving tasks and cause accidents [50, 51].

“Human factors” shown in Fig 8(B) are the internal starting point of driving distraction

research. “Age difference” regarding driving distraction has been widely proven, and “young

driver”, “older driver” and “novice driver” are vulnerable groups [52]. As regards to “gender

difference”, some studies suggested that males showed more confidence and engaged more in

distracted driving [53], while others indicated that gender difference exclusively was not signif-

icant [54]. “Professional drivers” are a group of special concern due to the long driving time

and tedious task in vehicles [55–57]. In addition, psychological factors, including mainly

“working memory capacity” [58], “executive functioning” [59], “mental workload” [28], “risk

perception” [60], “attitude” [60] and “self-regulation” [61], have been extensively discussed in

relation to driving distraction. It should be mentioned that concepts of “working memory

capacity”, “executive functioning” and “mental workload” are closely related in psychology,

which all root in Working Memory (WM). The theory of WM assumes that “a limited capacity
system, which temporarily maintains and stores information, supports human thought processes
by providing an interface between perception, long-term memory and action” and brings about

the term “working memory capacity”. The mainstream model of WM includes a central

Fig 6. Main researchers in the driving distraction domain.

https://doi.org/10.1371/journal.pone.0278822.g006
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executive and three other components: the visuospatial sketchpad, the phonological loop and

the episodic buffer. The central executive is linked to “executive functioning”, while the mental

operations and efforts involved in these components produce “mental workload” [62–64].

“Research methods” required by scientific exploration into “objective factors” and “human

factors” are demonstrated in Fig 8(C). Five main “research methods” are identified in this

domain. “Driving simulation” remains as the main method from the beginning of this field up

to now [65, 66]. In simulation, surrogate driving tasks such as LCT (lane change task) and BT

(box task) could be adopted to mimic driving [67, 68], and tools like visual occlusion and n-

back task could be employed for distraction imitation [69, 70]. “Naturalistic driving study”

(NDS) provides insight into this issue under natural driving conditions [71]. “On-road test” is

a middle way of simulation and NDS: similar to NDSs, participants engage in real driving

tasks; similar to simulation, non-driving tasks are assigned by experimenters [72, 73]. Further-

more, the two epidemiological methods, “observational study” and “questionnaire survey”,

reflect social behaviors and public opinions in time and thus support subsequent technological

development, educational campaign and legislation [74, 75].

“Data”, the measure of driving distraction generated from “research methods”, is displayed

in Fig 8(D). “Prevalence”, “driving performance” and “dual task performance” are direct evalu-

ations [76, 77]. “Eye activity”, “brain activity”, “cardiovascular activity” and “posture” are all

data depicting drivers’ real-time status. “Eye activity” could be obtained through eye tracker

[78], camera [79] or electrooculogram (EOG) [80]. “Brain activity” is often acquired by

electroencephalogram (EEG) [80] or functional near-infrared spectroscopy (fNIRS) [81]. “Car-

diovascular activity” includes mainly heart rate and blood pressure. While heart rate and heart

rate variability could be measured by electrocardiogram (ECG) or wearable devices, blood

Fig 7. Visualization of all the keywords and relationships.

https://doi.org/10.1371/journal.pone.0278822.g007
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pressure could be exploited with blood pressure cuff applied to the upper arm and connected

to monitor [82, 83]. And “posture” involving head, face, hand and body features is mainly

recorded by camera [84]. Moreover, “subjective measure” of distracted drivers could be ana-

lyzed alone or together with the aforementioned objective data [85].

“Data science”, a hot and even sexy concept without precise definition actually [86], refers

to the processing methods to make the original “data” meaningful for analysis in this study

and is displayed in Fig 8(E). Statistical methods frequently adopted in this field include “factor

analysis” [87], “structural equation model” [88] and “logistic regression” [76]. Traditional arti-

ficial intelligence approaches form another branch of “data science”, containing mainly “ran-

dom forest” [89], “support vector machine” [90], “Bayesian network” [30] and “clustering”

[91]. “Deep learning”, the promising direction of artificial intelligence, accounts for a large

proportion of work in this field currently [80]. Meanwhile, the rise of “computer vision” has

empowered distraction detection [10] and new human-machine interaction modes to reduce

distraction like gesture interaction [92].

Relationships between related dimensions. The arrows in Fig 1 imply the logical rela-

tions of the five dimensions. Under this framework, entities in related dimensions are

unevenly connected. Fig 9 reveals the connection strengths using heat maps.

Fig 9(A) and 9(B) display the application of “research methods” for exploration into “objec-

tive factors” and “human factors” respectively. According to the two subgraphs, “naturalistic

driving study”, “driving simulation” and “on-road test” have been adopted to most factors,

while the employment of “observational study” and “questionnaire survey” has been restricted

to certain topics. Most factors turn out to be firmly related with more than one method except

“automated driving”. And the current situation that “automated driving” is merely closely

associated with “driving simulation” could be explained by the fact that it is still not available

Fig 8. Visualization of the main entities under each dimension.

https://doi.org/10.1371/journal.pone.0278822.g008
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to the most public [93]. Yet the primary phase of automated driving still requires driver inter-

vention, and the risk of excessive involvement in secondary tasks should be taken into consid-

eration during the system development [51]. At the same time, certain research gaps still exist

in this field. For instance, although “head-up display” has been introduced into the automotive

field over two decades ago [66], there are still few naturalistic driving studies regarding its dis-

traction impact.

Fig 9(C) demonstrates the association of “research methods” and “data” collected. “Driving

performance” turns to be the only data type that is widely gathered by all the five methods. In

observational studies and questionnaire surveys, driving performance is usually limited to

crashes, near-crashes and traffic violations [94, 95]; in naturalistic driving studies, driving sim-

ulations and on-road tests, more sensors could be exploited to provide detailed data, such as

driving speed, acceleration, headway, lane positioning, lateral acceleration and steering wheel

angle [96–98]. Remarkably, collected mainly in naturalistic environments, “posture” data has

been recorded to form public datasets to facilitate follow-up studies, like the 3MDAD dataset

(Multiview, Multimodal and Multispectral Driver Action Dataset) and State Farm dataset [99,

100]. Some blanks in the heat map are decided by the nature of research method and data type.

For example, “questionnaire survey” could never produce “brain activity” or “cardiovascular

activity”. However, some gaps could be eliminated by future studies. For instance, “naturalistic

driving study” and “brain activity” may be linked more closely with the application of wearable

brain-computer interface devices in the driving research field [80].

Fig 9. Visualization of the relationships between related dimensions.

https://doi.org/10.1371/journal.pone.0278822.g009
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Fig 9(D) shows the relationships between “data” and “data science”. According to this sub-

graph, statistical methods have mainly been employed for the procession of intuitive data like

the prevalence of driving distraction, whereas traditional artificial intelligence approaches

have been widely applied to nearly all kinds of data. Another observation is that “computer

vision” and “deep learning” are both firmly correlated with “posture”, which should be attrib-

uted to the fact that the combination of “computer vision” and “deep learning” has contributed

much to distraction detection utilizing the “posture” data. For instance, excellent deep learning

models from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in the com-

puter vision field, such as AlexNet, GoogLeNet, ResNet50, VGG 16 and VGG 19, have been

transferred to driving distraction detection [101, 102]. However, it should be mentioned that

although the quantity of studies using deep learning is large (Fig 8(E)), the kinds of data treated

with this method are limited (Fig 9(D)), which indicates the promising direction of applying

deep learning to richer data types like driving performance.

Discussion

Trends of the driving distraction domain

The stage division demonstrated in Fig 2 reveals the evolution of this field. When combining

bibliometric information with research content, the development trends could be more

explicit.

During the primary development stage (1990–2010), literature of driving distraction started

to emerge, and numbers of publications and citations fluctuated upward gradually, laying the

foundation of this field. Classical topics like the impacts of hand-held/hands-free cellphone

use and passenger presence were studied [36, 103], while vulnerable groups like young drivers

and old drivers gained extensive attention from researchers [104]. And the simulation meth-

ods were widely adopted over this lengthy period [105, 106].

During the steady growth stage (2011–2018), the numbers of publications and citations

increased smoothly. Large-scale naturalistic driving studies were conducted to understand

driving distraction under natural conditions and brought about influential papers [71], and

certain study programs with public accessibility like the Second Strategic Highway Research

Program Naturalistic Driving Study (SHRP 2 NDS) have enabled follow-up studies worldwide

till today [107–109]. Meanwhile, systematization was achieved with the clarification of relevant

definitions [4] and the appearance of highly-cited meta-analyses [110, 111].

During the booming stage (2019-now), research in this field advanced to a new level of

prosperity. This could be partly attributed to the new challenges and opportunities brought by

progresses of driving automation systems [112]. In addition, distraction detection has become

the hotspot over the years, and new directions have been proposed in this regard, like selecting

features based on human factors domain knowledge to improve recognition accuracy [113],

employing explainable artificial intelligence methods to promote comprehensibility of the rec-

ognition model and drivers [114] and adopting simple devices like smartphone sensors or

wearable devices for data acquisition [115, 116].

The transition of major publication sources over time in Fig 3 indicates certain trend of this

area as well. The early players of this field,Human Factors and Ergonomics, as the names them-

selves indicate, are devoted to the discipline of human factors/ergonomics (HFE), which is

about all kinds of systems with people and allows interchangeable use of the two terms human

factors and ergonomics actually [117]. Then journals concentrating on safety including Acci-
dent Analysis and Prevention and Journal of safety research paid much attention to driving dis-

traction, and Accident Analysis and Prevention appears as the center of the graph with its

emphasis on road safety currently [118]. Journals about transportation like Transportation
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Research Part F and Transportation Research Record turn out to be important contributors of

relevant research as well. Furthermore, the appearance of the comprehensive journal PLOS
ONE as the new participant implies that more importance is being attached to the interdisci-

plinary characteristic of this complex topic [119, 120], which then justifies the necessity of this

study to discuss the driving distraction domain as a whole systematically.

The productive countries/regions, organizations and researchers shown in Figs 4–6 present

the situation and developing trend across the world together. Research of driving distraction

originated from North America and Europe, while other places of the world took part in grad-

ually as well. It should be noted that although the USA appears as the center in the geographi-

cal distribution map, numerous organizations and researchers contribute to that together and

there is no central organization or researcher in this domain actually. In recent years, the

increasingly higher participation degree of developing countries like China and India brings

new vitality to this field, especially when considering the large populations, complicated traffic

conditions, improved economies and fast-developing social environments [121, 122].

Significance of driving distraction research

Compared to other factors of road accidents like drunk driving or drug driving, which have

been proven to be harmful and banned in most countries, driving distraction has only been

partly prohibited by laws and remained controversial in the scientific community. The current

situation could be attributed to the theoretical complexity of this issue, while future legislation

and social norms could rely on the scientific understanding of this problem even more heavily.

The essence of distraction turns to be one source of the complexity and controversy con-

cerning this issue. Essentially, driving distraction could be classified into “cognitive distrac-

tion”, “visual distraction” and “manual distraction”, which indicate “mind off the task”, “eyes

off the road” and “hands off the wheel” respectively, and many behaviors in real driving could

be attributed to a combination of two or three categories [123]. As regards to the risk of these

three distractions, plenty of studies proved that all of them could exert negative impacts [124,

125], but there was also research suggesting that purely cognitive distraction did not increase

accident rates obviously compared to normal driving [107, 126]. Taking the cellphone as an

example, using handheld cellphones and texting messages while driving, which involve more

than one kind of distraction, have been proven to damage driving by numerous studies and

forbidden by laws in most countries, whereas the use of hands-free cellphones, which involves

cognitive distraction only, is often legally allowed and has remained controversial among

researchers [107, 127].

The intricacy of human beings adds to the complexity and controversy of this problem. The

influence of the same distraction on different people may vary dramatically. Executive func-

tioning is a typically distinguishable element. For people with high level of executive function-

ing, forcing them to concentrate on the single driving task may lead to boredom and fatigue,

especially in simple environment, whereas secondary task engagement has the potential of

increasing attention and improving driving performance [128]. Moreover, the nature of

human beings is still to be discussed. Taking the mental workload as an example, contrary to

traditional belief that lower workload leads to better performance, there has been study show-

ing that transitions of mental workload could produce better primary and secondary task per-

formance than duration of both high and low mental workload, which justifies appropriate

secondary task engagement while driving [129]. At the same time, distinct characteristics of

specific groups are not to be ignored in research as well. For instance, in terms of young or

novice drivers, who are often the same group, limited driving experience, addiction to elec-

tronic devices and tendency of sensation seeking should be taken into consideration when
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discussing distraction-related accidents [12, 130]; in terms of older drivers, with the disadvan-

tageous factor of physiological decline and the advantageous factor of abundant experience,

tasks of different types and difficulties could exert entirely different influence [131, 132].

The significance of driving distraction research has been magnified by the progress of driv-

ing automation in recent years. According to the up-to-date division from SAE (Society of

Automotive Engineers) and ISO (International Standardization Organization), the L1 (driver

assistance) and L2 (partial driving automation) functions in widespread use nowadays serve

the purpose of “driver support” merely, and the on-coming L3 (conditional driving automa-

tion) systems still require human attentions [93]. However, there may exists a “valley of

degraded supervision” during the transition from “human driver” to “automated driver”, and

undue disengagement from driving may lead to failure of human-machine cooperation and

consequent accidents [50, 51, 133, 134]. Despite the risks of driving distraction, it is worth not-

ing that forbidding distraction behaviors during automated driving totally may be not feasible.

For one thing, driving automation indicates more freedom of drivers essentially and strict pro-

hibition on non-driving tasks may adversely affect public acceptance of automation technology

[135]. For another, when liberated from driving operations and prohibited from other tasks

simultaneously at the automated wheel, the fatigue and sleepiness problem could be even more

devastating than distraction [136, 137].

Future directions

Several research directions could be identified according to the academic trend and practical

need.

Firstly, research into the interaction of distraction and fatigue may generate strategies to

improve overall safety. Fatigue is another well-concerned traffic accident factor in parallel with

driving distraction [138]. Driving fatigue could be classified into sleep-related fatigue, active

task-related fatigue and passive task-related fatigue [139]. Of the three types of fatigue, passive

task-related fatigue in particular could interact with distraction. In fact, the possibility of intro-

ducing suitable secondary task to reduce passive fatigue has been validated by researchers

[140]. Future research into the interaction mechanism of secondary tasks and fatigue may ben-

efit the comprehensive understanding of human driver as a whole and the realization of opti-

mal driver status.

Secondly, suitable secondary tasks could be customized according to automation levels, sce-

narios and people with different characteristics. It has been proven that whether secondary

tasks exert positive or negative influence depends heavily on automation level [133], scenarios

like complexity level of environment [128] and human characteristics [58]. Therefore, recom-

mending secondary tasks like listening to music at the right time may be helpful both for driv-

ing safety and user satisfaction, and strategies to achieve this goal are to be obtained by future

research. In addition, although the applications of laws regarding secondary tasks are the same

under all conditions at present, future research may justify the necessity of allowing different

secondary tasks under different circumstances and thus benefit the advances of laws.

Thirdly, meaningful features could be selected to improve distraction recognition. The

development of data science has made the work of driving distraction detection possible even

without knowledge about driving distraction, with the focus of detection being improving

algorithms to achieve better performance on existing datasets [10]. Surely, these studies are of

great significance. However, selection of indicators based on knowledge of the distraction

domain should also be valued. For example, researchers have improved detection by incorpo-

rating glance features (percent road center, the standard deviation of gaze pitch, and yaw

angles) that have been proved to be indicative of distraction in the human factor domain
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[113], while vehicle dynamics [141] and driver dynamics [116] have also shown potential in

detection. Distraction recognition in the future could rely on the cooperation of the driving

distraction, ergonomics and data science domain.

Fourthly, distraction in the context of L2+ automation deserves more attention. In the aca-

demic world, distraction issues of L2 and L3 functions have been addressed respectively [50,

51]. However, some automation functions on the market are actually between L2 and L3, like

the NOA (Navigate on Autopilot) by Tesla, NOP (Navigate on Pilot) by NIO and NGP (Navi-

gation Guided Pilot) by Xpeng, which all provide to drive automatically from one place to

another place according to navigation. These are L2 functions nominally and drivers are

required to put their hands on steering wheels during the use. However, different from basic

L2 functions defined by SAE and ISO of executing lateral and longitudinal vehicle motion con-

trol [93], these functions’ ability to make decisions to change lanes so as to overtake or avoid

obstacles means much to drivers and may change driver behavior. The misuse of these func-

tions has been hot topics in practice, but little attention has been paid to them academically.

Research to fill this gap is imperative to guide the practical transition from L2 to L3.

Conclusions

In this study, knowledge graphs were constructed to understand the science domain of driving

distraction from the two aspects of bibliometric information and research content.

For bibliometric information, according to the yearly quantitative distribution of literature,

evolution of this domain could be divided into three stages, i.e., the primary development

stage (1990–2010), the steady growth stage (2011–2018) and booming stage (2019-now),

which are accompanied by transition of research content. Meanwhile, knowledge graphs from

Vosviewer indicate certain trends of this field as well. The publication source graph reveals the

interdisciplinary characteristic of this issue and the necessity of systematic consideration. The

graph of countries/regions implies the shift of geographical distribution from developed coun-

tries to the whole world. And graphs of organizations and researchers show the decentralized

distribution and extensive connections.

For research content, which is more complicated and domain-specific, a new framework

consisting of five dimensions was established and knowledge graphs were constructed on this

basis. “Objective factors” and “human factors” are the origins of research, represented by the

common distractor cellphone and young/novice drivers’ issue respectively. “Research meth-

ods” required by objective or human factors include mainly driving simulation, naturalistic

driving study, on-road test and the two epidemiological methods of observational study and

questionnaire survey. “Data” collected from these methods is diverse, varying from driving or

dual task performance to drivers’ eye or brain activity. “Data science” to make data more

meaningful involves mainly statistical methods, traditional artificial intelligence methods,

deep learning and computer vision. Moreover, research gaps and potential directions have

been identified and clarified.

Driving distraction has remained a major factor of road accidents with special complexity

and controversy, which has been manifesting even more clearly in the new era of driving auto-

mation. Research into this issue serves as the foundation of legislation for accident reduction

practically and promotes the understanding of humankind theoretically. More studies are

expected to fill the blanks and advance the progress of this field.
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