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Abstract

With the development of medical science, long noncoding RNA (lncRNA), originally consid-

ered as a noise gene, has been found to participate in a variety of biological activities. Sev-

eral recent studies have shown the involvement of lncRNA in various human diseases, such

as gastric cancer, prostate cancer, lung cancer, and so forth. However, obtaining lncRNA-

disease relationship only through biological experiments not only costs manpower and

material resources but also gains little. Therefore, developing effective computational mod-

els for predicting lncRNA-disease association relationship is extremely important. This

study aimed to propose an lncRNA-disease association prediction model based on the

weight matrix and projection score (LDAP-WMPS). The model used the relatively perfect

lncRNA-miRNA relationship data and miRNA-disease relationship data to predict the

lncRNA-disease relationship. The integrated lncRNA similarity matrix and the integrated dis-

ease similarity matrix were established by fusing various methods to calculate the similarity

between lncRNA and disease. This study improved the existing weight algorithm, applied it

to the lncRNA-miRNA-disease triple network, and thus proposed a new lncRNA-disease

weight matrix calculation method. Combined with the improved projection algorithm, the

lncRNA-miRNA relationship and miRNA-disease relationship were used to predict the

lncRNA-disease relationship. The simulation results showed that under the Leave-One-Out-

Cross-Validation framework, the area under the receiver operating characteristic curve of

LDAP-WMPS could reach 0.8822, which was better than the latest result. Taking adenocar-

cinoma and colorectal cancer as examples, the LDAP-WMPS model was found to effec-

tively infer the lncRNA-disease relationship. The simulation results showed good prediction

performance of the LDAP-WMPS model, which was an important supplement to the

research of lncRNA-disease association prediction without lncRNA-disease relationship

data.

Introduction

According to the traditional central principle, RNA is divided into messenger RNA (mRNA)

and noncoding RNA (ncRNA). mRNA is the medium for DNA to be transcribed into a pro-

tein, while ncRNA has always been regarded as noise and has no real effect. However, the
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sequencing results showed that in the whole human gene pool, less than 5% of DNA and RNA

were involved in protein transcription, while other genes were involved in RNA transcription

that could not be encoded, that is, the number of ncRNA was far greater than that of coding

RNA [1]. In 1998, two American scientists, Andrew Farr and Craig Mello, jointly published a

paper on the discovery of RNA interference mechanism in the journal Nature. They believed

that RNA interference existed in all organisms, and RNA played a regulatory role in gene

expression [2], virus infection [3, 4], immune system [5], and so forth, thus bringing biological

research into a new stage. Then, the research on ncRNA gradually increased, among which the

research on long ncRNAs (lncRNAs) has been one of the hot topics. lncRNA is a kind of

ncRNA whose nucleotide length is more than 200. In previous studies, it was considered to be

the noise generated in the process of transcription [6, 7]. Nowadays, lncRNA has been found

to be involved in all aspects of cell life cycle, including transcription [8], cell differentiation [9],

cell transport [10], apoptosis [11], metabolic process [12], and so on. Moreover, lncRNA has

also been found to be associated with various human diseases [13], including leukemia [14,

15], diabetes [16, 17], prostate cancer [18, 19], lung cancer [20, 21], colon cancer [22, 23], car-

diovascular disease [24, 25], and so on. lncRNA participates in diseases through abnormal

sequence and spatial structure, abnormal expression level, and abnormal interaction with

binding proteins, thus affecting human health [26, 27].

Therefore, linking lncRNA with diseases can help realize the early detection of diseases, the

targeted treatment of diseases, and the systematic understanding of the etiological characteris-

tics of complex diseases. The biological experiments related to lncRNA cost a lot of money and

time to carry out because of the complex lncRNA-disease relationship. Computer-aided exper-

iment has become an effective research method. These experiments can effectively predict the

complex lncRNA-disease relationship. The datasets in the open lncRNA database are used to

verify the prediction results. The prediction of the lncRNA-disease relationship is of great sig-

nificance in biology, medicine, and other fields. In the field of biology, computer-aided experi-

ments can reduce the cost of experiments and improve the success rate of experiments. In the

field of medicine, computer-aided experiments can help researchers identify lncRNAs related

to various diseases and understand the pathogenesis of diseases at the molecular level so as to

effectively prevent and treat diseases [28].

The proposed prediction model is developing rapidly. Many prediction models, including

CircRNA-disease association prediction model [29], miRNA-disease association prediction

model [30, 31], lncRNA-miRNA association prediction model [32, 33],and lncRNA-disease

association prediction model. have greatly enriched the relationship between computer science

and biology. This paper mainly proposes a new prediction method for lncRNA- disease associ-

ation prediction. The following is an analysis of some previous lncRNA-disease association

prediction models: The proposed model can be divided into two categories based on the exper-

imental data. The first model relies only on the lncRNA-disease relationship information. Spe-

cifically, we can predict the lncRNA-disease relationship through the association information

between lncRNAs and diseases. For example, Xie et al. proposed a new method for human

lncRNA disease association prediction based on network consistent projection (NCPHLDA)

[34]. The model integrates lncRNA cosine similarity network and disease cosine similarity net-

work. At the same time, it has no requirements for parameters and has good prediction perfor-

mance. However, there are some limitations. If the known lncRNA disease correlation is very

small, the prediction results will be biased. Chen et al. developed the NCMCMDA [35] model,

innovatively combines neighborhood constraints with matrix completion, providing a new

idea to use similarity Information used to aid forecasting. However, NCMCMDA also has lim-

itations. Currently known miRNA deficiency—disease association may affect the long road of

NCMCMDA performance expansion data. Secondly, how to effectively select parameter
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information, miRNA similarity information and low order constraints to balance the influence

of disease similarity still needs further research Based on disease semantic similarity and

lncRNA-disease relationship information. Zhang et al. developed an LDAI-ISPS model to pre-

dict the potential lncRNA-disease relationship through network consistency [36]. The model

integrated Gaussian interaction profile central similarity to calculate disease similarity and

lncRNA similarity, which made up the incompleteness of the similarity network construction

only with semantic similarity. However, this method still had limitations in that the predicted

results were biased toward the diseases with more related lncRNAs or the lncRNAs with more

related diseases. The other model integrated multiple data; collected multiple biological data,

such as lncRNA, miRNA, protein, disease, and so on; and integrated these data into matrix or

heterogeneous network to infer the potential lncRNA-disease relationship. For example, Fu

et al. proposed an lncRNA disease association prediction method (MFLDA) based on matrix

decomposition [37]. In this way, the weight of the data source and the correlation matrix of

the disease can be assigned to the data source with smaller weight to speculate the potential

association of lncRNA disease. The biggest advantage of this model is that it can easily predict

the correlation between different research objects by classifying various heterogeneous data

sources. However, MFLDA prefers to study data sparse matrix. Its performance depends on

low-quality and irrelevant internal relational data sources, but it does not get rid of the use of

lncRNA disease association attribute information. Yu and Wang et al. developed an NBCLDA

model [38], which integrated a variety of organisms to construct a new tripartite network,

including miRNA-disease, miRNA-lncRNA, and lncRNA-disease relationship and interaction.

Then, a quadruple network was constructed, and a naïve Bayesian classifier was applied for the

prediction. The important limitation of the naïve Bayesian classifier was that the information

of negative samples was required. Therefore, unlabeled lncRNA-disease pairs were always ran-

domly selected as negative samples, which could seriously influence the prediction perfor-

mance. Yu et al. proposed a new model CFNBC [39], which was an improvement of the

original NBCLDA model. It combined collaborative filtering with naïve Bayes and inferred the

potential lncRNA-disease relationship by calculating the relationship score between lncRNA

and disease. Although the introduction of a collaborative filtering algorithm effectively

improved the prediction ability of CFNBC, it still failed to resolve the limitations of the naïve

Bayesian model.

Most of the prediction of lncRNA-disease correlation needed to know the correlation

between lncRNA and diseases. However, the known lncRNA-disease relationship is quite

rare. To solve the aforementioned problems, this study proposed an lncRNA-disease associ-

ation prediction model based on the weight matrix and projection score (LDAP-WMPS).

The model used the relatively perfect lncRNA-miRNA relationship data and miRNA-dis-

ease relationship data to predict the lncRNA-disease relationship. The integrated lncRNA

similarity matrix and the integrated disease similarity matrix were established by fusing var-

ious methods to calculate the similarity between lncRNA and disease. On this basis, the

weight algorithm was improved and applied to the lncRNA-miRNA-disease triple network.

Based on the network, a new lncRNA-disease weight matrix calculation method was pro-

posed. Combined with the improved projection algorithm, the lncRNA-miRNA relation-

ship and the miRNA-disease relationship were used to predict the lncRNA-disease

relationship. The simulation results showed that based on the Leave-One-Out-Cross-Vali-

dation (LOOCV) framework, the area under the receiver operating characteristic (ROC)

curve (AUC) of LDAP-WMPS could reach 0.8822, which was better than the latest result.

Taking adenocarcinoma and colorectal cancer as examples, LDAP-WMPS was found to

effectively infer the lncRNA-disease relationship.
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Materials and methods

Dataset and preprocessing

The known lncRNA-disease relationship dataset was downloaded from the MNDRv2.0 data-

base (2017 edition) [40]. The known miRNA-disease relationship datasets were downloaded

from the HMDD database (2018 edition) [41]. The known lncRNA-miRNA relationship data-

set was downloaded from the Starbase v2.0 database (2015 edition) [42]. After data cleaning

and name unification, three datasets DLM, DMD, and DLD were retrieved. The DLM database

comprised 1089 different lncRNAs and 246 different miRNAs; the DMD database comprised

246 different miRNAs and 373 different diseases; and the DLD comprised 1089 different

lncRNAs and 373 different diseases. The DLD dataset was not used as the training set, but only

as the test set. The DMD and DLM datasets were analyzed and transformed into adjacency

matrices. Taking lncRNA-miRNA relationship dataset as an example, the adjacency matrix

ALM was constructed. The lncRNA was listed as the row, and miRNA was listed as the column.

If the miRNA in row j interacted with lncRNA in column i, then ALM(i,j) = 1; else, ALM(i,j) = 0.

Similarly, the adjacency matrix AMD was constructed.

Cosine similarity for diseases

The principle of disease cosine similarity was based on the assumption that if disease i and dis-

ease j were similar to each other, which is a commonly used similarity calculation method

[43].then the binary vectors AMD(:, i) and AMD(:, j) should also be similar to each other. The

same assumption should also be true for diseases. According to the known miRNA-disease

relationship data, the cosine similarity for disease between miRNA and disease was calculated

as:

CDði; jÞ ¼
AMDð:; iÞ � AMDð:; jÞ
jjAMDð:; iÞjjjjAMDð:; jÞjj

ð1Þ

Where AMD(:, i) is the ith column vector in the adjacency matrix of miRNA and disease, which

represents the relationship feature of disease i.

Jaccard similarity for diseases

Similarity measurement is the core of a prediction model. Cosine similarity is widely used in

related prediction researches. However, in many practical applications, the sparsity of evalua-

tion data is too high, and the calculation of cosine similarity between diseases produces mis-

leading results. Compared with the traditional similarity measurement method, the Jaccard

method improves the disadvantage that the cosine similarity only considers the disease score

and ignores other information. It is especially suitable for data with high sparsity. The Jaccard

similarity for disease between miRNA and disease was calculated as follows:

JDði; jÞ ¼
A MDð:; iÞ \ A MDð:; jÞ
A MDð:; iÞ [ A MDð:; jÞ

ð2Þ

Where AMD(:, i) is the ith column vector in the adjacency matrix of miRNA and disease, which

represents the relationship feature of disease i Similarly, AMD(:, j) represents the relationship

feature of miRNA j; AMDð:; iÞ \ AMDð:; jÞis the number of miRNAs associated with disease i
and disease j; and AMDð:; iÞ [ AMDð:; jÞ is the sum of miRNAs related to disease i and disease j.
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Integrated disease similarity

The two similarity calculation methods were integrated, the shortcomings of various similarity

calculation methods were reduced to a certain extent, and the prediction ability of unknown

relationships was greatly increased. Integrating disease semantic similarity and cosine similar-

ity for diseases gave:

IDSði; jÞ ¼
CDði; jÞ if CDði; jÞ 6¼ 0;

JDði; jÞ if CDði; jÞ ¼ 0;
ð3Þ

(

Cosine similarity for lncRNA

Similar to the disease cosine similarity calculation method, the cosine similarity for lncRNA

between lncRNA and miRNA was calculated as follows:

CLði; jÞ ¼
ALMði; :Þ � ALMðj; :Þ
jjALMði; :Þjjjj ALMðj; :Þjj

ð4Þ

Where ALM(i,:) is the ith row vector in the adjacency matrix of lncRNA and miRNA, which

represents the relationship feature of lncRNA i.

Jaccard similarity for lncRNA

Similar to the disease Jaccard similarity calculation method, the Jaccard similarity for lncRNA

between lncRNA and miRNA was calculated as follows:

JLði; jÞ ¼
ALMði; :Þ \ ALMðj; :Þ
ALMði; :Þ [ ALMðj; :Þ

ð5Þ

Where ALM(i,:) is the ith row vector in the adjacency matrix of lncRNA and miRNA, which

represents the relationship feature of lncRNA i. Similarly, ALM(j,:) represents the relation-

ship feature of lncRNA j; ALMði; :Þ \ ALMðj; :Þ is the number of miRNAs associated with

lncRNA i and lncRNA j; and ALMði; :Þ [ ALMðj; :Þ is the sum of miRNAs related to lncRNA i
and lncRNA j.

Integrated lncRNA similarity

Similar to the disease-integrated similarity calculation method, integrating miRNA similarity

MS and cosine similarity CL for lncRNA gave:

ILSði; jÞ ¼
CLði; jÞ if CLði; jÞ 6¼ 0;

JLði; jÞ if CLði; jÞ ¼ 0;
ð6Þ

(

Establishment of lncRNA-disease weight matrix

Weight assignment algorithm [44, 45] is often used in the association prediction of the

lncRNA dual network. The correlation score between lncRNA and diseases could be obtained

through weight distribution. This was further improved and applied to the lncRNA-miRNA-

disease triple network, as shown in Fig 1. Taking L to M as an example, the first step was

defined as follows:

f ðMjÞ ¼
Xm

i¼1

aijf ðLiÞ

k ðLiÞ
ð7Þ

Where m is the number of lncRNAs, k(Li) gives the number of miRNAs related to lncRNA i,
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and aij represents an entity in the lncRNA-miRNA matrix ALM. f(Li) represents a binary vector

formed by miRNA j corresponding to all lncRNA-miRNA relationships (if lncRNA is associ-

ated with miRNA, the value is 1; otherwise, the value is 0).

Fig 1. Flow chart of lnRNA-disease association weight matrix construction.

https://doi.org/10.1371/journal.pone.0278817.g001
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The second step was M to D, defined as:

f ðDeÞ ¼
Xn

j¼1

bje
kðMjÞ

Xm

i¼1

aijf ðLiÞ

k ðLiÞ
ð8Þ

Where n is the number of miRNAs, and e is the number of diseases. k(Mj) is the number of

diseases related to miRNA j, and bje represents an entity in the miRNA-disease matrix AMD.

f(De) could be expressed as:

f ðDeÞ ¼
Xm

i¼1

smd � f ðLiÞ ð9Þ

Combining Eqs (8) and (9), the following formula was obtained:

smd ¼
1

kðLiÞ

Xn

j¼1

bjeaij
k ðMjÞ

ð10Þ

In the aforementioned formula, SMD = {smd}n�n is the score of miRNA-disease relationship.

The miRNA-disease relationship weight matrix was defined as:

WMD ¼ SMD � AMD ð11Þ

Similarly, the weight matrix WLM from D to M to L was defined as:

slm ¼
1

kðDeÞ

Xn

j¼1

bjeaij
k ðMjÞ

ð12Þ

WLM ¼ ALM � SLM ð13Þ

For lncRNA i, the potential relationship characteristics between miRNAs and lncRNA i were

calculated; and for disease j, the potential relationship characteristics between miRNAs and

disease j were also calculated. WLM(i,:) was used to represent the eigenvalue of miRNA associ-

ated with lncRNA i, and WMD(:, j) to represent the eigenvalue of miRNA associated with dis-

ease j. Then, the weight between lncRNA and disease was defined as follows:

wij ¼
WLMði; :Þ �WMDð:; jÞ
jjWLMði; :ÞjjjjWMDð:; jÞjj

ð14Þ

Building LDAP-WMPS prediction model

The flowchart of the LDAP-WMPS model is shown in Fig 2. The LDAP-WMPS model was

divided into three parts: the first step calculated the disease projection score; the second step

calculated the lncRNA projection score; and the third step fused the disease projection score

and the lncRNA projection score proportionally, which were then normalized to get the pre-

diction score matrix [46].

The disease projection score was defined by the following formula:

DSPði; jÞ ¼
WLDði; :Þ � IDSð:; jÞ
jWLDði; :Þj

ð15Þ

where WLD(i,:) is the vector formed by the ith row of the lncRNA-disease weight matrix, which

represents the relationship score between lncRNA i and various diseases. Its calculation
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process is shown in Fig 1. IDS(:, j) is the vector formed by column j of the integrated disease

similarity matrix, which represents the vector composed of the similarity between disease j and

other diseases. |WLD(i,:)| represents the module length of disease i-related lncRNA component

vector. DSP(i, j) is the projection score of the disease. The multidimensional similarity relation

was transformed into a concrete value by projection.

The projection score of lncRNA was defined as follows:

LSPði; jÞ ¼
ILSði; :Þ �WLDð:; jÞ
jWLDð:; jÞj

ð16Þ

In the aforementioned formula, ILS(i,:) is the vector formed by the ith row of the functional

similarity matrix of lncRNA, which represents the vector composed of the similarity between

Fig 2. Flow chart of LDAP-WMPS applied to lncRNA-disease association prediction.

https://doi.org/10.1371/journal.pone.0278817.g002
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lncRNA i and other kinds of lncRNA. WLD(:, j) is the vector formed by column j of lncRNA-

disease relationship weight matrix, which represents the relationship score between disease j
and various lncRNAs. |WLD(:, j)| is the module length of lncRNA i-related disease component

vector. LSP(i, j) is the projection score of lncRNA.

The final lncRNA-disease potential association prediction score matrix was formed by fus-

ing lncRNA projection score with the disease projection score, defined as:

LDAP � WDPSði; jÞ ¼
@ � LSPði; jÞ þ ð1 � @ÞDSPði; jÞ
jILSði; :Þj þ jIDSð:; jÞj

ð17Þ

where LDAP-WDPS(i, j) is the final relationship score between lncRNA i and disease j. |ILS

(i,:)| is the module length of the lncRNA composition vector similar to lncRNA i in integrated

lncRNA similarity matrix, and |IDS(:, j)| is the module length of the disease composition vec-

tor similar to disease j in integrated disease similarity matrix. @ is the proportion of the

lncRNA projection score and the disease projection score in the fusion score calculation.

Results

Performance evaluation

The performance of the LDAP-WMPS model was evaluated using the LOOCV framework,

and each known disease-lncRNA relationship was left out in turn as a test sample. How well

this test sample was ranked relative to the candidate samples (all the disease-lncRNA pairs

without the evidence to confirm their relationships) was evaluated. When the rank of this test

sample exceeded the given threshold, this model was considered to provide a successful predic-

tion. The evaluation process (LOOCV) came from the reference [39]. For a more detailed

code, the code was link in reference [39]. The results were compared with other prediction

models using LOOCV, and with other prediction models for LOOCV. The true-positive rate

(TPR) and false-positive rate (FPR) were calculated to obtain the ROC and the AUC for intui-

tive evaluation:

TPR ¼
TP

TP þ FN
ð18Þ

FPR ¼
FP

FP þ TN
ð19Þ

The ROC curve was drawn with TPR and FPR, and the AUC was calculated.

Comparison with other advanced models

The LDAP-WMPS model was compared with other advanced models to prove the effective-

ness of the LDAP-WMPS model. Considering that the dataset used in this model was the same

as those of NBCLDA [38] and CFNBC [39] models, the NBCLDA and CFNBC models were

chosen as the comparison models. The ROC and AUC were obtained by applying three differ-

ent models to the same dataset. After comparison, the LDAP-WMPS model was slightly better

than the other methods in the ROC curve, and the AUC reached the value 0.8822. The highest

AUC values of the NBCLDA and CFNBC models were 0.8521 and 0.8576, respectively. The

results showed that the proposed method was slightly better than the CFNBC method. The

results are shown in Table 1 and Figs 3 and 4. All models were statistically tested, and the P

value was less than 0.05, indicating that all models had statistical significance.

PLOS ONE lncRNA-Disease Association Prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0278817 January 3, 2023 9 / 17

https://doi.org/10.1371/journal.pone.0278817


Analysis of parameters

In the proposed model, a parameter @ was introduced. The range of the parameter @ was [0,1].

When @ = 0, only the disease projection score was used for the final score calculation; when @

= 1, only the lncRNA projection score was used for the final score calculation. The results are

shown in Fig 5. Obviously, when @ = 0.52, AUC reached the highest value of 0.8822. The mod-

els using and not using weight matrix were evaluated, respectively, to further prove the effec-

tiveness of the proposed lncRNA-disease weight matrix, and the results are shown in Fig 6. It

was obvious that the weight matrix of the proposed model effectively improved the prediction

ability.

Case studies

Tumor refers to a new organism formed by the proliferation of local tissue cells under the

action of various oncogenic factors because this new organism is mostly space-occupying mas-

sive protuberance, also known as vegetation. According to the cellular characteristics of

tumors and the degree of harm to the body, tumors are divided into benign tumors and malig-

nant tumors: benign tumors can be removed by surgery and do not metastasize and relapse.

Malignant tumors, often called cancer, are easy to metastasize, difficult to cure by surgery, and

have a possibility of recurrence after cure [47]. Adenocarcinoma and colorectal cancer were

studied to further prove the practicability of LDAP-WMPS in lncRNA-disease association pre-

diction. The first 20 pieces of information about LDAP-WMPS predicting adenocarcinoma

and colorectal cancer are shown in Tables 2 and 3, respectively.

Table 1. AUC values of LDAP-WMPS model and other models under LOOCV framework under the same

dataset.

Method AUC AUPR P value

LDAP-WMPS 0.8822 0.0355 <0.05

NBCLDA 0.8521 0.0238 <0.05

CFNBC 0.8576 0.0241 <0.05

https://doi.org/10.1371/journal.pone.0278817.t001

Fig 3. The performance of LDAP-WMPS and others models in terms of ROC curves and AUCs based on 407

known lncRNA-disease associations under the framework of LOOCV.

https://doi.org/10.1371/journal.pone.0278817.g003

PLOS ONE lncRNA-Disease Association Prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0278817 January 3, 2023 10 / 17

https://doi.org/10.1371/journal.pone.0278817.t001
https://doi.org/10.1371/journal.pone.0278817.g003
https://doi.org/10.1371/journal.pone.0278817


Colorectal cancer is a common cancer type. Its incidence rate and mortality rate are high in

the world. In 2018 alone, the number of new cases reached nearly 2 million, and the number of

deaths was nearly 900,000. Some data showed that about 5.2% of men and 4.8% of women

were at risk of colorectal cancer in the United States, and the mortality caused by colorectal

cancer was close to 33% [48]. Many studies showed that lncRNA was closely related to colorec-

tal cancer. In the prediction results of this study, 12 of the first 20 lncRNAs associated with

colorectal cancer had been already proved by relevant medicine: lncRNA XIST expedited

metastasis and modulated epithelial-mesenchymal transition in colorectal cancer [49]; lncRNA

SNHG16 promoted colorectal cancer cell proliferation, migration, and epithelial-mesenchy-

mal transition through miR-124-3p/MCP-1 [50]; and lncRNA MALAT1 promoted the colo-

rectal cancer malignancy by increasing DCP1A expression and miR203 downregulation [51].

The lncRNA HCG18 promoted the growth and invasion of colorectal cancer cells through

Fig 4. The performance of LDAP-WMPS and others models in terms of PR curves and AUPRs based on 407

known lncRNA-disease associations under the framework of LOOCV.

https://doi.org/10.1371/journal.pone.0278817.g004

Fig 5. Influence curve of parameter a on AUC within [0,1].

https://doi.org/10.1371/journal.pone.0278817.g005
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sponging miR-1271 and upregulating MTDH [52]. lncRNA FGD5-AS1 promoted colorectal

cancer cell proliferation, migration, and invasion through upregulating CDCA7 via sponging

miR-302e [53]. lncRNA TUG1 mediated 5-fluorouracil resistance by acting as a competing

endogenous RNA of miR-197-3p in colorectal cancer [54].

Adenocarcinoma is a kind of lung cancer. It is least related to smoking, accounting for 40%

of primary adenocarcinoma. It is often located in the peripheral part of the lung, but also

involves the pleura and the formation of associated scarring and pleural effusion. Extensive

resection should be performed because of the invasive growth of adenocarcinoma. The rate of

lymph node metastasis of adenocarcinoma is high, which can be as high as 36%-47%. It is easy

to relapse and has a poor prognosis. Lin Guoji reported 68 cases of adenocarcinoma. The

5-year and 10-year cure rates were 43.9% and 29.0%, respectively [55]. In the prediction results

of the proposed model, 14 of the first 20 lncRNAs associated with adenocarcinoma had been

already proved by relevant medicine: lncRNA XIST promoted human lung adenocarcinoma

cells to cisplatin resistance via let-7i/BAG-1 axis [56]; lncRNA MALAT1 promoted gastric ade-

nocarcinoma through the miR-181a-5p/AKT3 axis [57]; lncRNA CTB-89H12.4 regulated

Fig 6. Comparison of ROC curve calculated with weight matrix and ROC curve calculated without weight matrix.

https://doi.org/10.1371/journal.pone.0278817.g006

Table 2. Top 20 lncRNA of colorectal neoplasms predicted by LDAP-WMPS.

lncRNA Evidence (PMID) Rank

XIST 28837144 1

MALAT1 25031737;21503572 3

DCP1A 29964337 4

KCNQ1OT1 16965397;11340379 5

NEAT1 30185232 8

OIP5-AS1 29773344 9

HCG18 31854468 10

FGD5-AS1 31332696 13

TUG1 31528224 14

RP4-773N10.5 31966592 15

SNHG16 32859986 18

GAS5 31619268 20

https://doi.org/10.1371/journal.pone.0278817.t002
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phosphatase and tensin homolog expression in prostate cancer [58]; lncRNA HCG18 acted on

the oncogene in lung adenocarcinoma and enhanced lung adenocarcinoma progression by

targeting miR-34a-5p/HMMR axis [59]; and lncRNA SNHG16 promoted cell proliferation

and invasion in lung adenocarcinoma via sponging let-7a-5p [60].

Next, we took the XIST gene as an example for further analysis to verify whether it might be

associated with Colorectal cancer. In our study, we divided all Colorectal cancer patient sam-

ples into high and low expression groups. Tis phenomenon was observed by survival analysis.

Tat, the survival time of Colorectal cancer patients in the XIST gene high expression group

was relatively short, as shown in Fig 7.

Discussion

Investigating the lncRNA-disease relationship is not only of great significance to the treatment

of diseases but also helpful to explore the mystery of the human body. Using artificial

Table 3. Top 20 lncRNA of adenocarcinoma predicted by LDAP-WMPS.

lncRNA Evidence (PMID) Rank

XIST 28961027 1

MALAT1 31480991 3

DCP1A 25089265 4

RP6-24A23.7 28299977 5

KCNQ1OT1 30932685 7

HCG18 32559619 8

NEAT1 30036873 9

OIP5-AS1 32669972 10

CTB-89H12.4 26975529 12

FGD5-AS1 33416094 13

SNHG16 31580045 16

SENP3-EIF4A1 32602848 17

TUG1 29960845 18

LINC00662 33108738 20

https://doi.org/10.1371/journal.pone.0278817.t003

Fig 7. Survival period of XIST in high and low expression.

https://doi.org/10.1371/journal.pone.0278817.g007
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intelligence to mine the existing medical data not only improves the use rate of data but also

speeds up the process of medical intelligence. In this study, a computational model

LDAP-WMPS was proposed. In this model, a weight allocation algorithm based on the

lncRNA-miRNA-disease triple network and an lncRNA-disease relationship weight calcula-

tion method were proposed. The lncRNA-disease weight matrix was combined with the

improved projection algorithm to calculate the relationship between each lncRNA and disease

the interaction between lncRNA and disease information was obtained. Compared with the

other three models, LDAP-WMPS was slightly better in AUC. Twelve of the first 20 lncRNAs

were confirmed to predict the relationship between adenocarcinoma and colorectal cancer,

which also proved the reliability of LDAP-WMPS. In addition, the proposed model was based

on the lncRNA-miRNA relationship and miRNA-disease relationship to achieve the predic-

tion of the lncRNA-disease relationship. The present relatively perfect lncRNA-miRNA rela-

tionship dataset and miRNA-disease relationship dataset to predict the lncRNA-disease

relationship could effectively avoid the current lack of lncRNA-disease relationship data in

data prediction. However, the proposed model also had some limitations. Many kinds of data

were required for prediction, such as the miRNA-disease relationship dataset and lncRNA-dis-

ease relationship dataset. At the same time, the density of the aforementioned two datasets had

a great impact on the final prediction results.

Conclusions

The main contributions of this study were as follows: (1) An integrated lncRNA similarity cal-

culation method and an integrated disease similarity calculation method were proposed. The

similarity was calculated by a variety of similarity calculation methods, which could effectively

avoid the defects of insufficient similarity obtained by a single similarity calculation method

and improve the prediction ability of the model to unknown relationships. (2) Based on the

weight distribution of lncRNA-miRNA-disease triple network, a method of lncRNA-disease

weight calculation was proposed. This method could effectively associate lncRNA-miRNA

dataset with miRNA-disease dataset and help in indirectly predicting lncRNA-disease relation-

ship through lncRNA-miRNA dataset and miRNA-disease dataset. (3) The existing consis-

tency projection scoring formula was improved, and the proportion of the projection of the

lncRNA part and the projection of disease part was adjusted in the final score to improve the

prediction ability. (4) The lncRNA-disease relationship could be predicted by the

LDAP-WMPS model without relying on the known lncRNA-disease relationship data.
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