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Abstract

In animals with internal fertilization, males transfer gametes and seminal fluid during copula-

tion, both of which are required for successful reproduction. In Drosophila and other insects,

seminal fluid is produced in the paired accessory gland (AG), the ejaculatory duct, and the

ejaculatory bulb. The D. melanogaster AG has emerged as an important model system for

this component of male reproductive biology. Seminal fluid proteins produced in the Dro-

sophila AG are required for proper storage and use of sperm by the females, and are also

critical for establishing and maintaining a suite of short- and long-term postcopulatory

female physiological responses that promote reproductive success. The Drosophila AG is

composed of two main cell types. The majority of AG cells, which are referred to as main

cells, are responsible for production of many seminal fluid proteins. A minority of cells, about

4%, are referred to as secondary cells. These cells, which are restricted to the distal tip of

the D. melanogaster AG, may play an especially important role in the maintenance of the

long-term female post-mating response. Many studies of Drosophila AG evolution have sug-

gested that the proteins produced in the gland evolve quickly, as does the transcriptome.

Here, we investigate the evolution of secondary cell number and position in the AG in a col-

lection of eight species spanning the entire history of the Drosophila genus. We document a

heretofore underappreciated rapid evolutionary rate for both number and position of these

specialized AG cells, raising several questions about the developmental, functional, and

evolutionary significance of this variation.

Introduction

Along with sperm, Drosophila males transfer seminal fluid proteins (Sfps) to females. Transfer

of molecules from male to female provides a fascinating example of male-female co-operation

and conflict [1]. Female reproduction requires seminal fluid, yet this requirement exposes

females to male adaptations that may subvert their reproductive interests [2–7]. Seminal fluid

may also mediate competitive interactions between the sperm of multiple males in the female

reproductive tract [8–10]. Significant polymorphism of genes affecting seminal fluid function

is evident in the rapid laboratory evolution of male toxicity toward females and the rapid evo-

lution of male sperm displacement phenotypes in experimental populations of Drosophila
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melanogaster [2, 3, 11]. The outcome of sperm competition is also influenced by female genetic

variation and the interaction of genetic variation in the two sexes [12–14]. Drosophila Sfps are

produced in the accessory gland (AG), ejaculatory duct, and ejaculatory bulb. The molecular

products of the seminal fluid producing organs exhibit rapid evolution, as expected given their

role in sexual conflict [15, 16] Sfp protein sequences often evolve very quickly [17], sometimes

under the influence of directional selection [18–21]. Expression levels of AG-biased genes may

vary widely even between closely related populations and species [22–25], and the AG tran-

scriptome exhibits rapid turnover due to gene presence/absence variation [26–28] or the

expression of different homologues in the AG of different species [23, 29–31].

In most Drosophila species the AG is composed of two major cell types [32]. In D. melano-
gaster, main cells constitute about 96% of the cells, which are the primary producers of the

secreted proteins required for fertility, and induce both short- and long-term changes to

female post-copulatory physiology and behavior [8, 33–38]. The secondary cells (estimated to

be 4% of the cells) are clustered in the distal portion of the organ (reviewed in [39]). Their

secreted products appear to play an important role in maintaining female post-copulatory

responses [39–41]. Secondary cells (SC) play a role in the secretion of extracellular vesicles (i.
e., exosomes), which bind to sperm, interact with the female reproductive tract epithelium,

and play a role in the long-term mating response of females [42].

Recent RNA-seq analysis of secondary cells has revealed that their transcriptome is distinct

from that of main cells and also evolves in a distinct manner [43, 44]. Given that male repro-

ductive proteins and transcriptomes evolve quickly and that mating systems vary dramatically

across Drosophila [45], whether most basic conclusions about the AG as described in the D.

melanogaster model apply generally to Drosophila is an open question. A report by [32], which

focused on AG main cell binucleation in multiple Drosophila species, provided incidental data

(their Fig 1) strongly suggesting that Drosophila secondary cell number evolves, perhaps

quickly. Given their inherent biological interest and relative ease of measurement, we set out to

quantitatively investigate secondary cell number variation in a collection of Drosophila species.

Materials and methods

Fly stocks

D. melanogaster RAL 517, RAL 399, RAL 360 [46] (Mackay et al. 2012), D. yakuba Tai18E2

[47], D. simulans w501 [47], D. hydei, D. virilis (gift of S. Lott, UC Davis), D. mojavensis (Dro-

sophila Species Stock Center #s 0218.15 and 0218.17), D. ananassae 11–4 (gift of B. Cooper,

University of Montana), D. pseudoobscura SLC 10 (gift of S. Schaeffer, Pennsylvania State Uni-

versity). All stocks were maintained in a 25C incubator on a 12:12 hr light:dark cycle.

The phylogenetic relationships of these species is depicted in Fig 1. Four of these species (D.

melanogaster, D. simulans, D. yakuba, and D. ananassae) are from the melanogaster group;

two (D. hydei and D. mojavensis) are from the repleta group; one (D. pseudoobscura) is from

the obscura group, and one (D. virilis) is from the virilis group. The species were sampled to

provide information about shorter and longer time scale evolutionary change. On a long time-

scale, the most recent common ancestor of all eight species existed about 40–50 million years

ago [48, 49]. On a shorter timescale, divergence between D. melanogaster and D. simulans is

about 2–3 million years [50]. Three inbred lines of D. melanogaster were used to investigate

the possibility of genetic variation affecting SC number in this species.

Dissecting, fixing, and staining glands

Virgin males were collected and then dissected two days after their estimated age of sexual

maturity, which varies among species [45]. D. melanogaster, D. simulans, and D. yakuba were
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dissected two days post-eclosion. D. hydei were dissected 10 days post eclosion. D. mojavensis,
D. pseudoobscura, D. ananassae, and D. virilis were dissected eight days post eclosion.

Dissected accessory glands were fixed in 4% paraformaldehyde for 30 minutes at room tem-

perature, and then washed with 1X PBS. The glands were treated with a 1:100 dilution of 10mg/

ml RNAse in PBT for 30 minutes at room temperature and stained using propidium iodide at a

concentration of 1:1000 for 30 minutes at room temperature [32]. Glands were then mounted

on glass slides with spacers—Scotch tape layered and cut into squares that would mark where

the corners of the 0.5mm coverslip would lie. Spacers were necessary to prevent compression of

the gland. One gland of the two was imaged using a Leica confocal microscope at 20X (dry) and

40X (oil) magnification with 75–100 z-stacks per gland. The Z step size was approximately 1.8–

2.0μm. Images were stitched together using the Pairwise Stitching of Images [51] or were merged

at the Leica confocal upon image acquisition using the tilescan function with 10% overlap.

Secondary cell quantification

Due to the nature of the propidium iodide staining and the structure of the cell itself, SCs were

easily distinguished from main cells by their characteristic large, dark vacuoles (Fig 3). SCs

Fig 1. Estimates of secondary cell number for eight Drosophila species. Phylogeny of eight Drosophila species and estimates of secondary cell

number for each. Number of glands analyzed for each species are indicated next to the species name; mean and standard deviation of secondary cell

number per species are shown to the right.

https://doi.org/10.1371/journal.pone.0278811.g001
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were counted manually across z-stack images using the Cell Counter Plugin in FIJI [52]. After

initializing a .tif file in this plugin, the “show all” function allowed us to track and count each

SC throughout the z plane. Two arbitrary counters, which were conveniently different colors,

were used to tally the different secondary cells to properly ensure that double counting did not

occur. One counter tracked one side of the epithelial layer, and after going through the lumen

of the gland; the second counter was used to track cells on the other epithelial layer. The plugin

then tallied the number of times the counter was used. Totals from the two counters were

summed to estimate the number of secondary cells in a gland. Distinguishing between each

epithelial layer was possible due to the spacers on the slide to prevent the compression of the

tissue.

Accessory gland length and area

AG gland measurements were done using FIJI [52]. Gland length measurements were done by

using the freehand tool and drawing a line directly down the middle of the gland spanning

from the top of the ejaculatory duct and the tip of the gland. The measurements were taken in

pixels following [53, 54]. AG area was estimated by using the lasso tool on FIJI to draw perime-

ters around the glands, after which, measurements were made and the area in microns gener-

ated following [53, 54].

Statistics and phylogeny

Statistics were done using R version 4.2.2; R Core Team 2020 /Rstudio version 2022.02.3 Build

492. "Prairie Trillium" Release (1db809b8, 2022-05-20) for Windows [55]. For ANOVA and

Tukey’s Honest Significant Difference Test, the package ‘multicomp’ was used [56]. Violin

plots were created using ggplot2 version 3.4 [57]. The phylogeny was constructed using pack-

age ‘ape’ version 5.6.2 in R/Rstudio [58].

Results and discussion

Fig 1 presents our estimates of SC number in eight species. Previous estimates of SC number

in D. melanogaster were roughly 43 SC per gland [59]. Our results provide a similar, though

slightly greater estimate of SC number per gland, and also provide a quantitative measure of

variation among genotypes. The three D. melanogaster inbred lines we assayed, which origi-

nated in Raleigh, North Carolina [46], were not significantly heterogeneous for SC number

(S1 Fig). Thus, while there may be genetic variation for SC number currently segregating in D.

melanogaster, we observed no evidence for this in our small sample. It is worth noting that a

range of SC numbers were observed within each inbred RAL genotype (e.g., for RAL 517 the

range across individuals was 29 to 56). While some of this variation could represent measure-

ment error, developmental variation in the process leading to SC differentiation could also

contribute. D. simulans, the sister species to D. melanogaster, had significantly fewer SC (Figs 1

and 2). This provides strong evidence that SC numbers can evolve substantially, even on short

timescales. Of course, the observation of species differences provides primae facie evidence for

genetic variation affecting SC number. While our estimate of D. yakuba SC number is greater

than the estimates from D. melanogaster and D. simulans, it is not significantly different from

D. melanogaster. Thus, the most parsimonious explanation for the observed variation in SC

number in the melanogaster subgroup is a recent decrease in SC number in D. simulans. All

samples from the three melanogaster subgroup species exhibited the well documented spatial

patterning previously observed in D. melanogaster, with all SC distributed in the distal tip of

the gland (Fig 3).
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D. ananassae is the nearest outgroup for the melanogaster subgroup in our sample. D. ana-
nassae mean SC number was significantly lower than the mean for the melanogaster subgroup

(Fig 2), but without formal phylogenetic modeling of the trait we cannot infer the ancestral SC

number of the melanogaster group and thus the direction of evolution in the branch leading to

D. ananassae and the branch leading to the melanogaster subgroup. Despite the similar num-

ber of SC cells in D. ananassae and the melanogaster subgroup, there is evidence of qualitative

differences in their spatial distribution in the gland. D. ananassae differs from the three mela-
nogaster subgroup species in that the SC are not restricted to the distal tip of the gland. Instead

they appear to be roughly homogeneously distributed throughout the distal half of the gland

(Fig 3).

Fig 2. Summary of secondary cell number across the Melanogaster subgroup. Violin plot showing distributions of number of secondary cells in each

species. Red bar = mean. Asterisks indicate p-values from ANOVA. *< 0.05, **< 0.01, ***< 0.001.

https://doi.org/10.1371/journal.pone.0278811.g002
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Fig 3. Confocal images of representative AGs for eight Drosophila species. (A-C) Accessory glands imaged at 40X, tilescan with 10%

overlap, max projection confocal images of D. melanogaster, D. simulans, D. yakuba. (A’- C’) is a 40X image of the distal tip of those species.

(D-H) are 40X tilescan images, 10% overlap, max projection confocal images of D) D. ananassae, E) D.pseudoobscura, F) D.hydei, G) D.

mojavensis, H) D.virilis.

https://doi.org/10.1371/journal.pone.0278811.g003
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D. pseudoobscura, our only representative of the obscura group, is sister to the melanogaster
group. It exhibits fewer SC than any melanogaster subgroup species, though the difference is

not significant. Much like the melanogaster subgroup, the secondary cells are enriched in the

distal tip of the gland. The D. pseudoobscura accessory gland was clearly shorter and about the

same width (mean length and width, 546 microns and 191 microns, respectively) compared to

the melanogaster subgroup (mean length and width, 1426 microns and 189 microns,

respectively).

D. hydei and D. mojavensis, sister species in our sample, belong to the repleta group, a

diverse clade of primarily cactophilic flies that originated about 20–30 MYA, most likely in

South America [60, 61]. The reproductive biology of these flies differs from several other Dro-
sophila species in multiple ways. For example, D. mojavensis and D. hydei share high re-mating

rates compared to most other Drosophila species, with D. hydei apparently having a particu-

larly high rate [45]. D. hydei also has very long sperm and testis compared to most flies [62].

We observed that these two species have extraordinarily high numbers of SC per gland,

roughly six times as many as observed in the melanogaster group (Fig 1). Given that the D.

hydei gland is only about four times the size of D. melanogaster (Table 1), it appears that the

species differences in SC number cannot be explained solely by gland size variation, which is

driven primarily by gland length differences. Supporting this conclusion, in striking contrast

to the melanogaster group, repleta group flies exhibit SC distributed homogeneously through-

out the gland (Fig 3). Interestingly, the repleta group appears to have lost the sex-peptide gene

[63, 64], which codes for a protein critical for proper sperm use in D. melanogaster [65].

Whether the absence of sex-peptide, the increase in number of SC, and the homogeneous

physical distribution of SC in the AG in the repleta group are functionally related is an interest-

ing question.

D. virilis, which is sister to the repleta group (Fig 1), also exhibits substantially greater num-

bers of SC than the Sophophora species, though many fewer than repleta group flies (Fig 4).

Thus, data from the sampled taxa are suggestive of greater numbers of SC per gland for the

Drosophila group than for the Sophophora group (Fig 1), though additional sampling would be

required to be confident of this inference. Similar to the repleta group species, D. virilis SC

appear to be distributed homogeneously throughout the gland (Fig 3). In general, our data

support the idea that restriction of the SC to the distal tip of the accessory gland in the D. mela-
nogaster model system is a highly derived trait and not characteristic of most Drosophila line-

ages. The developmental basis of SC number and position, as well as their functional

consequences and evolutionary processes driving divergence of these traits, are unknown.

Conclusion

While phylogenetic comparative analysis of SC number and position in the accessory gland

would be necessary to make strong, specific inferences on rates of phenotypic evolution of SC

number on particular branches of the Drosophila phylogeny, the results reported here leave no

doubt that SC number evolves quickly in the genus. Additionally, the physical distribution of

SC in the gland also evolves, as most species do not appear to share the stereotypical clustering

of SC in the tip of the gland seen in the D. melanogaster model. Further investigation of the

Table 1. Mean (SD) area and length of AG in microns.

Species (# glands) Area Length

D. melanogaster (n = 9) 129476 (24130) 801(90)

D. hydei (n = 7) 514505 (633262) 2017(854)

https://doi.org/10.1371/journal.pone.0278811.t001
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patterns presented here promise to reveal new functional and evolutionary attributes of acces-

sory gland diversification and its broader connections to mating system biology in the genus.

Supporting information

S1 Fig. Summary of SC number intraspecies. A summary of the secondary cell numbers

within the 3 RAL lines examined (517, 360, 390). Red bars = mean.

(TIF)
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