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Abstract

Clinical neuroimaging data availability has grown substantially in the last decade, providing

the potential for studying heterogeneity in clinical cohorts on a previously unprecedented

scale. Normative modeling is an emerging statistical tool for dissecting heterogeneity in

complex brain disorders. However, its application remains technically challenging due to

medical data privacy issues and difficulties in dealing with nuisance variation, such as the

variability in the image acquisition process. Here, we approach the problem of estimating a

reference normative model across a massive population using a massive multi-center neu-

roimaging dataset. To this end, we introduce a federated probabilistic framework using hier-

archical Bayesian regression (HBR) to complete the life-cycle of normative modeling. The

proposed model provides the possibilities to learn, update, and adapt the model parameters

on decentralized neuroimaging data. Our experimental results confirm the superiority of

HBR in deriving more accurate normative ranges on large multi-site neuroimaging datasets

compared to the current standard methods. In addition, our approach provides the possibil-

ity to recalibrate and reuse the learned model on local datasets and even on datasets with

very small sample sizes. The proposed method will facilitate applications of normative

modeling as a medical tool for screening the biological deviations in individuals affected by

complex illnesses such as mental disorders.

Introduction

Normative modeling was recently introduced as a statistical framework for studying the

biological heterogeneity of mental disorders in clinical neuroimaging cohorts [1]. Normative
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modeling involves estimating the centiles of variation, i.e., the normative ranges, of a biological

brain measure (e.g., ROI cortical thickness, ROI volume, functional connectivity) as a function

of clinical covariates. This is performed via regressing the units of neuroimaging data (e.g., a

voxel in structural or functional MRIs) against a set of clinically relevant covariates (e.g., age).

Analogous to the use of ‘growth charts’ in pediatric medicine, such a mapping function pro-

vides a norm for the changes in the structure or functional dynamics of the brain across the

human lifespan [2]. Deviations of individuals from the normative range can be quantified as z-

scores [3]. This approach has recently been used to dissect the heterogeneity of several mental

disorders [4–7], providing compelling evidence that brain abnormalities of patients with psy-

chiatric disorders cannot be captured in a case-control setting, i.e., by average group differ-

ences between patients with a specific disorder and healthy controls. Thus, normative

modeling allows us to enhance classical symptom-based diagnostics by incorporating biologi-

cal and environmental factors in a principled way. Such a paradigm change will hopefully

result in developing effective biological tests and individualized treatments to improve the

quality of life of patients with psychiatric, neurodevelopmental, and neurodegenerative disor-

ders [8, 9].

The success of normative modeling depends on the accuracy of estimating the norm and

the variability around this norm for a certain brain measure (or putative biomarker) across a

population. Therefore, massive data availability from a large and diverse population, extensive

computational resources, and intelligent modeling techniques play pivotal roles. The advance-

ments in data sharing standards [10] and protocols [11–13] led to an exponential growth in

neuroimaging data availability. Neuroimaging groups worldwide join forces in international

consortia leading to clinical neuroimaging studies that are orders of magnitude larger today

than a decade ago [10, 14, 15]. This trend has just begun, and with the recent advances in high-

performance computing technologies such as grid computing, cloud computing, and GPU

technologies, we now possess enough computational power to store and process these massive

datasets. Furthermore, progress in artificial intelligence and machine learning over the last

decades brought ubiquitous applications in healthcare. These developments are the founda-

tions for large-scale normative modeling.

In this article, we attack the problem of estimating a reference normative model on decen-

tralized multi-center neuroimaging data. Developing such a reference normative model is

challenged in practice by two main obstacles. First, it requires aggregating smaller neuroimag-

ing datasets acquired at several imaging centers with different acquisition protocols and scan-

ners. Furthermore, the data is often processed using various preprocessing pipelines and

toolboxes, each of which leaves its signature on the final derived statistics [16], referred to as

site-effects. Site-effects introduce artefactual variability in data which confounds the derived

deviations in normative modeling [3]. Thus, the practical application of normative modeling

as a medical tool is limited as the data collected at different centers may express variable char-

acteristics. To this end, developing effective methods to deal with these confounds is essential.

The second barrier in deriving a reference normative model and deploying it as a medical tool

at local clinical centers is data privacy [17, 18]. Clinical data are always subject to privacy regu-

lations and cannot be distributed freely without acquiring appropriate consent. This fact

challenges the centralized model estimation in which the model estimation algorithm requires

access to whole data at once. Therefore, it is essential to decentralize the model estimation

phase by developing a federated learning [18–21] approach for normative modeling.

Federated learning (FL) [19] offers a natural solution for decentralizing the learning process

of a reference normative model on distributed data. In FL, multiple local data centers (clients)

collaborate in learning the parameters of a machine learning model [22]. This process is gener-

ally orchestrated by a central server that handles the distribution and aggregation of model
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parameters. In this scheme, the data are stored locally and are not transferred across data cen-

ters during the model estimation process. Therefore, FL addresses the data sharing and privacy

issues in applications of machine learning in the medical domains [18]. However, applying FL

methods in practice poses several algorithmic and practical challenges such as computational

and communication complexities, non-IID (independently and identically distributed) data,

and unbalanced sample distribution [22]. The latter two problems are ubiquitous in the neuro-

imaging context as data collected across different centers are generally non-IID (due to the

site-effect) and unbalanced (some are with big and some are with very small sample size).

In this study, we first sketch the life-cycle of normative modeling. Then, we show how a

hierarchical Bayesian regression (HBR) [23] model can be employed to close this life-cycle. To

this end, we extend our previous effort in using HBR for multi-site normative modeling [24]

by introducing a fully probabilistic federated learning framework for normative modeling on

decentralized neuroimaging data. Our method offers several notable features: i) it provides the

possibility of federated model estimation/calibration on decentralized data; ii) it can handle

the site-effect in multi-center neuroimaging data without the need for data harmonization,

thus largely avoids its shortcomings (e.g., removing too much variance when site effects are

correlated with effects of interest); iii) it is suitable for federated learning on non-IID data

from multiple sites; iv) it offers a mechanism for few-shot learning on small local data thus is

suitable for federated learning on unbalanced data distributions; v) given its probabilistic

nature, it provides estimations of phenomenological variability in data and epistemological

uncertainty in the model [25], thus is well-suited for normative modeling; and vi) it is highly

flexible and accommodates different modeling choices (e.g., non-linear effects or heteroscedas-

tic noise). More specifically, our contribution extends our previous conference publication

[24] in methodological and experimental aspects. From the methodological point of view, here

and for the first time, we use the generative nature of the HBR model to estimate/update

model parameters in a federative manner and on decentralized data. From the experimental

point of view, we scaled up the size of our experimental data from 7 to 16 datasets, from 33 to

79 scanners, and from 7499 to 37126 scans. We have also added several experiments including

i) performance comparison with polynomial and B-spline models, ii) the performance com-

parison between centralized and decentralized scenarios, and iii) few-shot learning in the

extremely unbalanced data distribution. Our experimental results on massive neuroimaging

data demonstrate the effectiveness of the proposed FL framework in several scenarios for

developing and deploying a reference normative model on decentralized data.

Materials and methods

In this section, we discuss the components involved in this life-cycle of normative modeling

and their technical requirements in model development and deployment stages. After formal-

izing the definition of normative modeling in a machine learning setting, we review possible

existing solutions for normative modeling on multi-site data and their limitations. Then, we

show how the hierarchical Bayesian framework is used to overcome these limitations and close

the life-cycle of normative modeling. Finally, we describe the experimental materials and set-

ups used to validate the proposed solution.

Normative modeling: The life-cycle

The complete pipeline of normative modeling, Fig 1, is comprised of two main components i)

model development and ii) model deployment. The model development refers to the i) estima-

tion of an early version of a reference model on a multi-center initial dataset and ii) iterative

and cyclic process of updating its parameters on newly observed data from new centers over
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time. The model deployment refers to the process of adapting the parameters of the reference

model to local data, e.g., at local hospitals or research centers. We refer to this complete pipe-

line as a life-cycle because it contains all the operations needed for estimating, updating, adapt-

ing, and applying a reference normative model.

However, implementing the life-cycle of normative modeling is not straightforward due to

the real-world limitations in multi-site data analysis and data privacy/access issues. To address

these issues, the modeling approach that is employed for estimating the parameters of the nor-

mative model must have four vital features:

1. It should be able to deal with site-effects;

2. In the development phase, it should have the possibility of updating the parameters of the

reference model over time and when new datasets are available, without requiring access to

the full primary dataset. We refer to this process as model extension;

3. It should apply to both centralized and decentralized data. The centralized data refers to the

scenario in which all training data are available for model estimation. In the decentralized

case, the data are distributed across different centers, and data sharing and transfer are not

possible due to privacy issues;

4. In the deployment phase, it should provide a mechanism for adapting the parameters of the

reference model to novel data at the deployment centers (e.g., local hospitals). It is crucial to

Fig 1. Model development and model deployment in the normative model life-cycle. In the model development phase, the parameters of the

reference model are estimated on d datasets (D1, D2, . . ., Dd). The model extension loop provides the possibility of model development on decentralized

data at time point t. In the model deployment phase, the parameters of the reference model are adapted to local data at hospitals or research centers.

https://doi.org/10.1371/journal.pone.0278776.g001
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emphasize that the initial data used for estimating the reference model might not be avail-

able during the adaptation process. Therefore, the knowledge transform must be performed

using a parameter transfer learning approach [26]. We refer to this process as model

adaptation.

In the remaining text of this section, we present practical solutions for implementing these

features. To this end, we first formally define the normative modeling procedure.

Normative modeling: The formal definition

Let X 2 Rn�p
represent a matrix of p clinical covariates for n participants. We denote the corre-

sponding neuroimaging measures at each measurement unit (e.g., a voxel) by y 2 Rn. Assum-

ing a Gaussian distribution over each neuroimaging measure, i.e., y � N ðm; s2Þ, in normative

modeling we are interested in finding a parametric or non-parametric form for μ and σ given

the covariates in X. Then, for example, μ ± 1.96σ forms the 95% percentile for the normative

range of y. To estimate μ and σ, we parametrize them respectively on fμ(X, θμ) and f þ
s
ðX; ysÞ,

where θμ and θσ are the parameters of fμ and f þ
s

. Here, f þ
s

is a non-negative function that esti-

mates the standard deviation of heteroscedastic noise in data. The homoscedastic formulation

is a specific case where σ is independent of X. The non-negativity of f þ
s

can be enforced for

example using the softplus function f þ
s
¼ logð1þ expðfsÞÞ [27–29].

In the normative modeling context, the deviations of samples from the normative range are

quantified as z-scores [1]:

z ¼
y � fmðX; ymÞ
f þ
s
ðX; ysÞ

: ð1Þ

As discussed, to close the application loop for normative modeling, the model must accom-

modate multi-site data. We discuss classical strategies for multi-site neuroimaging data model-

ing in the next section.

Multi-site normative modeling

Let yi 2 R
ni denote neuroimaging measures for ni participants in the ith group, i 2 {1, . . ., m},

of data and we have yi � N ðmi; s
2
i Þ. Here, a group refers to any non-ordinal categorical vari-

able such as a batch-effect (that causes unwanted and non-biological variation in data) or

other biologically relevant variables such as sex or ethnicity. In this article, since the focus is on

multi-site normative modeling, we use the term ‘batch’ to refer to each group (otherwise men-

tioned) where each batch refers to data that are collected at different imaging sites. However,

our formulations are general for application on other possible batch-effects (e.g., processing

software version) or biologically relevant group-effects (e.g., sex and ethnicity).

Traditionally, there are four possible strategies for normative modeling on multi-site data.

In the following, we explain the theoretical and practical limitations of these approaches in the

life-cycle of normative modeling.

Naive pooling. Naive pooling is a variation of the complete pooling scenario (see Fig 2) in

which the batch-effects in data are ignored by assuming that data in different batches are com-

ing from the same distribution, i.e., y1; . . . ; ym � N ðm; s2Þ and we have:

yi ¼ fmðX; ymÞ þ � 8i 2 f1; . . . ;mg; ð2Þ

where � is zero-mean error with standard deviation f þ
s
ðX; ysÞ. Even though the naive pooling

approach provides a simple solution to benefit from a larger sample size, the oversimplifying
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assumption on identical data distributions restricts its usage in normative modeling because

batch-effects are reflected on the resulting statistics in Eq 1.

Pooling after data harmonization. In this approach, data are harmonized for batch-

effects before pooling. Data harmonization overcomes the limitation of the naive pooling

approach by adjusting the location and scale of the data for batch-effects. Hence, unlike naive

pooling, assuming identical data distribution across batches is no longer a restrictive issue.

Adopted from genomics, ComBat [30] is a popular method for harmonizing neuroimaging

data. ComBat uses an empirical Bayes method for adjusting additive and multiplicative batch-

effects in data. It has shown great potential in harmonizing different neuroimaging data

modalities, including diffusion tensor imaging [31], cortical thickness [16, 32], and structural/

functional MRI [33–35].

ComBat removes additive and multiplicative batch-effects while preserving the signal of

interest in data:

~y i ¼
yi � gðXÞ � gi

di
þ gðXÞ; ð3Þ

where ~y i is harmonized data that is expected to be homogeneous across batches; γi and δi are

respectively the additive and multiplicative batch-effects. Here, g(X) is a linear or non-linear

[35] function that preserves the signal of interest as specified in the design matrix X. After

harmonization, Eq 2 can be used for modeling the pooled data.

However, ComBat (and in general data harmonization) has three potentially problematic

theoretical shortcomings. We refer to these problems as theoretical because depending on

the covariance structure of data they might or might not occur in practice, however, these

problems are theoretically present due to restrictive implicit assumption of ComBat on the

Fig 2. Graphical models of complete pooling, partial pooling via HBR, and no-pooling. The solutions for handling the site-effects form a spectrum

in the model stability-flexibility space. At the stability end of the spectrum, we have the complete pooling solution. In the complete pooling scenario, the

model learns the same set of parameters and hyperparameters on big data. At the flexibility end of the spectrum stands the no-pooling approach, where

a large set of parameters and hyperparameters are estimated for each site, however, it does not benefit from the richness of big data. Therefore, its

parameters can be unstable for sites with small sample size. The HBR lies in the middle of the spectrum, thus, it brings the best of two worlds together.

In HBR, similar to no-pooling, we allow the model to learn different sets of parameters for data from multiple sites. At the same time, similar to

complete pooling, the model has a fixed set of hyperparameters. Here, hyperparameters play the role of a joint prior over the parameters. They perform

as a regularizer and prevent the model from overfitting on small batches.

https://doi.org/10.1371/journal.pone.0278776.g002
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orthogonality of effects of interest and the noise in data (see A schematic illustration of Com-

Bat in the S1 File). First, ComBat removes all variance associated with batch-effects and pre-

serves a priori known sources of variation in data (which are accounted for in the design

matrix X) and unknown sources of variation that are not correlated with batch-effects. In

other words, it is necessary to specify in advance which shared variation should be retained.

This requirement is restrictive especially when we are interested in an exploratory analysis of

unknown biologically relevant factors (see Simulation study in the S1 File). An illustrative

example is stratifying psychiatric disorders into subtypes [36]. Since subtypes are unknown in

advance, their biological correlates in brain images can be removed or corrupted in the data

harmonization process. Second, in many cases, clinical covariates (such as age) strongly corre-

late with batch-effects, thus, preserving the age effect may result in a partial presence of

unwanted batch-effects in the harmonized data. Third, the harmonization process can make it

difficult to interpret the data in the original scale of the data. For example, data are harmonised

to have a single (average) variance across all sites, which is dependent on the sample character-

istics (e.g., larger sites will have a greater contribution to the average variance), which can be

potentially problematic if the sample characteristics change, or if the sites have different vari-

ances (e.g., due to heteroscedasticity across the range of the covariates). Moreover, harmoniza-

tion needs to be done with care to avoid serious bias to downstream analyses [37].

Data harmonization via ComBat also suffers from a practical issue when adopted in the

normative modeling life-cycle. ComBat requires access to data from all sites at the training

time to compute the parameters g(X), and the variance of the noise. This drawback is problem-

atic for updating the model parameters, model estimation on decentralized data, and model

adaptation to local data. Because in these scenarios, we may not have access to all data due to

data anonymity concerns or a lack of ethical permission for data sharing [17]. Recently, [35]

presented an ad-hoc solution to this problem in a web application. This method is based on

demeaning and rescaling the data from a new site using respectively the mean and standard

deviation of residuals. However, the effectiveness of this approach in removing the batch-

effects while preserving the signal of interest remained unexplored and needs further empirical

evaluations.

Pooling with batch-effects as fixed-effect. In this setting, the batch-effects are directly

used as covariates (in the design matrix X) in Eq 2. While effective in removing the batch-

effects, this method suffers from the same theoretical and practical limitations of data harmo-

nization. It regresses out the batch-effects, thus, part of the unknown but informative variance

of interest in data that are correlated with batch-effects. Model adaptation and extension pro-

cedures are also restricted in this setting because it requires full data availability. In other

words, since all sites need to be encoded in the design matrix at training time, it is difficult to

deploy pre-trained models to new sites.

No-pooling. In the no-pooling scenario, we assume that the data in each batch are drawn

from different distributions. Hence, a separate and independent set of model parameters are

estimated for each batch (see Fig 2):

yi ¼ fmiðX; ymiÞ þ �i i 2 f1; . . . ;mg: ð4Þ

No-pooling is immune to the theoretical problems of fixed-effect pooling and harmonization

because the batch-effects are not directly removed from the data. However, it cannot take full

advantage of the richness of big data. It is prone to overfitting, especially when fmi and f þ
si

are

complex functions and the number of samples in each batch is small. This may result in spuri-

ous and inconsistent estimations of parameters of the model across different batches.
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A solution: Partial-pooling using hierarchical Bayesian regression

To overcome the aforementioned shortcomings, we propose a partial pooling approach based

on hierarchical Bayesian regression (HBR) as a possible solution for completing the life-cycle

of normative modeling.

HBR is a natural choice in modeling different levels of variation in data [23]. In HBR, the

structural dependencies between parameters are incorporated in the modeling process by cou-

pling them via a shared prior distribution over parameters. To adopt HBR for multi-site nor-

mative modeling, we assume ymi and ysi in Eq 4 (that govern the data generating process for

each batch yi) are coming exchangeably from the same prior distribution, i.e., 8i; ymi �

N ðmym ; s
2
ym
Þ and ysi � N ðmys ; s

2
ys
Þ (see Fig 2). To this end, we use a wide Gaussian distribution

as a weakly-informative hyperprior over parameters of the priors (mym ; mys � N ð0; 103Þ and

logðsymÞ; logðsysÞ � N ð0; 2:5Þ). This choice provides a fair balance between the flexibility of

the model and its computational speed because:

1. it is conjugate with likelihood and provides more computational efficiency in the sampling

process compared to a non-informative uniform hyperprior;

2. given our limited prior knowledge about the distribution of parameters in the development

phase, it improves the model’s flexibility compared to informed hyperprior (i.e., a narrow

Gaussian distribution) when applied to different IDPs. Please note that the distribution of

parameters (e.g., intercept and slopes in the linear case) can be very different from one phe-

notype to another, therefore, using an informative hyperprior could result in poor or biased

parameter estimation;

3. such a joint Gaussian hyperprior acts like a regularizer over model parameters (similar to

ridge regression) and prevents the model from overfitting on small batches. This feature is

crucial in unbalanced data distribution settings when we have some sites with smaller sam-

ple sizes (see results in section Few-shot learning on small data).

Furthermore, HBR allows for a reasonable compromise between the complete pooling and

no-pooling scenarios in the stability-flexibility spectrum as it combines all models in Eq 4 into

a single model that benefits from the wealth of big data, thus results in more stable models. At

the same time, like no-pooling, it estimates a separate set of parameters, thus different fμ for

and f þ
s

for each batch (or group). Then in the normative modeling setting, the deviations (z-

statistics) for the ith batch are computed as follows:

zi ¼
yi � fmiðXi; ymiÞ

f þ
si
ðXi:ysiÞ

: ð5Þ

By using separate fμ and f þ
s

across batches, the z-statistics are respectively compensated for

the additive and multiplicative batch-effects without the need to harmonize data primarily.

Therefore, they accommodate batch-effects thorough modelling them explicitly in the genera-

tive model. In addition, unlike harmonization, HBR does not directly remove batch-related

variability from data, thus, it preserves unknown sources of biological variations that correlate

with batch-effects in data (see Simulation study in the S1 File).

HBR also presents several appealing features that make it the first choice for sustainable

normative modeling. The generative nature of the model and shared prior distribution over

parameters facilitate the model extension and adaptation, especially when dealing with decen-

tralized data. Hence, it fulfills the technical requirements of normative modeling life-cycle.

Furthermore, HBR provides the possibility to account for more than one group-effect and as a
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result more than one batch-effects in data. This is a favorable feature when we intend to simul-

taneously deal with several batch-effects in data (for example variability in both scanners and

preprocessing software). In addition, it provides the possibility to include other informative

group-effects (such as sex and ethnicity) in the hierarchical modeling process of the HBR.

Model extension using HBR. Considering the Bayesian nature of the HBR, once the

parameters and hyperparameters of the model for a specific brain measure yi are inferred, we

can use the generative nature of the model to simulate synthetic neuroimaging measures ŷ i by

sampling from the posterior predictive distribution of the model. In the normative modeling

context, each generated sample represents the data for a single healthy participant. We exploit

this property to implement the extension loop in the model development process. The model

extension loop in Fig 1 can be expanded to a repetitive process of data generation and model

estimation as illustrated in Fig 3. Here, we assume that we have access to the data from a single

dataset at stage i of the model estimation. To estimate the model parameters at stage i, the syn-

thetic data generated for 1, . . ., i − 1 stages are used to set up the complete dataset for parame-

ter estimation.

In this scheme, if each stage is defined as a time interval, then the model extension loop can

be used to update the model parameters over time and when new datasets are available. On the

other hand, if each stage is defined as the geographical data distribution across data centers,

then the model expansion loop can be used to train a reference normative model on decentral-

ized data. These characteristics are crucial to maintaining the life-cycle of normative modeling.

Model adaptation by transferring parameters. Importantly, HBR also provides the pos-

sibility to transfer the knowledge inferred about the distribution of hyperparameters from a

primary set of observed data y (in the model development process) to secondary datasets from

new sites y� when deploying model at local centers. To achieve this, we propose to use poste-

rior distributions of hyperparameters of the reference normative model, i.e., pðmym j yÞ,

pðsym j yÞ, pðmys j yÞ, and pðsys j yÞ, as informative hyperpriors for the secondary model.

Fig 3. Model extension loop in multi-site normative modeling using HBR. The synthetic data generated for stages 1, . . ., i − 1 are used to estimate the

model parameters at stage i. Model extension provides the possibility of updating the model parameters over time, and parameter estimation on

decentralized data.

https://doi.org/10.1371/journal.pone.0278776.g003
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Informative hyperpriors enable us to incorporate pre-existing evidence when re-inferring the

model on new data rather than ignoring it when using non-informative or weakly informative

hyperpriors. This strategy can be seen as an inductive transfer learning strategy [26] (by trans-

ferring knowledge of parameters) in which the source domains are the same (i.e., the covari-

ates), but the target domains are different but related (neuroimaging data from multiple sites).

The proposed parameter transfer learning approach enables effective model adaptation to

local data without having access to the primary data which is used to estimate the reference

model. Considering we do not need to access the local data in the development phase, no data

transfer between the development and deployment nodes is required, and only model parame-

ters are exchanged. This feature is critical for privacy-preserving model portability in the feder-

ative learning setting.

We emphasize that the model adaptation is different from the model extension process.

The model extension is used during the reference model development in which we aim to

derive a larger model from a smaller one. Whilst model adaptation is used in the model

deployment, where we aim to distill a smaller model from a reference model on local data.

Anomaly detection in normative modeling

The core aim of normative modeling is to derive the normative range for a structural or func-

tional brain measure. Therefore, we only need data from healthy participants to derive the

model (although normative models can also be estimated from other populations). This prop-

erty is advantageous given the excess of data availability for healthy populations compared to

clinical populations. If successful, then any large deviation from this normative range is inter-

preted as an abnormality in the brain that can be studied concerning different mental disor-

ders. Given the normal distribution of z-scores and without any assumption on the direction

of abnormal samples (left or right tail), these abnormalities can be quantified in the form of a

probability by computing the area of the shaded region in Fig 4. To this end, each z-score z 2 z

in Eq 1 can be mapped to its corresponding abnormal probability index Pabn(z) as follows (for

more details on derivation see appendix Calculating the abnormal probability index in the

S1 File):

PabnðzÞ ¼
1
ffiffiffiffiffiffi
2p
p

Z jzj

� jzj
e� t2=2dt ¼

2
ffiffiffiffiffiffi
2p
p

Z jzj

� 1

e� t2=2dt � 1; ð6Þ

where, 1ffiffiffiffi
2p
p
R jzj
� 1

e� t2=2dt is the cumulative distribution function of the normal distribution at |z|

and can be easily computed. Pabn is zero for a sample with 0 deviation from the norm and is

getting closer to 1 as |z| grows. This index can be employed to detect anomalies in brain mea-

sures in an anomaly detection scenario [38, 39]. This approach, in combination with norma-

tive modeling, provides an effective tool for data-driven biomarker discovery (see results in

section The deviations are distinctive).

Experimental materials and setups

In this section, we describe the experimental data and four experiments that are used for evalu-

ating HBR in the normative modeling life-cycle.

Datasets and preprocessing. Table 1 lists the 16 neuroimaging datasets that are used in

our experiments. For the ABCD dataset [15], we used data from the first imaging timepoint

for subjects included in the v2.0.1 curated release. For the UK Biobank (UKBB) study [10], we

used approximately 15000 subjects derived from the 2017 release. For the Human Connec-

tome Project aging, development and early psychosis studies (HCPAG, HCPDV and HCPEP,
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respectively) we used data from the 1.0 data release. Further details surrounding the other

datasets can be found in the relevant papers listed in Table 1. Ethical approval for the public

data were provided by the relevant local research authorities for the studies contributing data.

All subjects provide written informed consent for their data to be used for the purposes

reported in this manuscript. For the public datasets, if there are minors (e.g., under 18 years),

then this consent was also provided by the parent or guardian. For the clinical data in the TOP

dataset, approval was obtained via the Regional Committee for Medical Health Research Ethics

South East Norway Approval number 2009/2485 − C.

We have excluded participants with missing demographic (age/sex) information and

those with poor quality imaging data. We excluded 1566 (4%) subjects due to low-quality

images. Subjects were excluded if their scan-site median-centered absolute Euler number

was higher than 25. The Euler numbers are computed as a part of standard recon-all
Freesurfer [54] pipeline. The exclusion of outliers based on Euler numbers has been shown

to be a reliable quality control strategy in large neuroimaging cohorts [55, 56]. Median cen-

tering is necessary because the Euler number is scaled differently for different datasets. The

threshold of 25 was determined empirically by manually examining the excluded scans. The

final data consists of 37126 scans from 79 scanners that reasonably cover a wide range of

human lifespan from 6 to 100 years old. Fig 5 depicts the age span for each dataset. Note that

the peak at approximately 10 years is driven by the ABCD dataset, where subjects are all

nearly the same age. These properties make these data a perfect case-study for large-scale

multi-site normative modeling of aging. The data also contain 1107 scans from participants

diagnosed with a neurodevelopmental, psychiatric, or neurodegenerative disease, including

attention deficit hyperactivity disorder (ADHD), schizophrenia (SZ), bipolar disorder (BD),

major depressive disorder (MDD), early psychosis (EP), mild cognitive impairment (MCI),

and (mild) dementia (DM).

Fig 4. The area of the shaded region is computed as the abnormal probability index Pabn for a given z-score z (i.e., the deviation from norm of

population). The Pabn is zero for a sample with 0 deviation from the norm and is getting closer to 1 as |z| grows.

https://doi.org/10.1371/journal.pone.0278776.g004
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In our analyses, we use cortical thickness measures estimated by Freesurfer version 5.3 or

6.0 over 148 cortical regions in the Destrieux atlas [57]. We have two motivations for this

choice: i) the site-effect is very salient in the cortical thickness across data from different sites;

ii) the fact that the effect of aging on thinning the gray matter is well-studied in the literature

Table 1. Demographics of multi-site experimental data. (�) The HCPDV and HCPAG datasets are collected by the same data acquisition centers. We consider this in

computing the total number of scanners in data.

Datasets No. Scans No. Patients No. Scanners Age Range Sex M/F FS Version

ABCD [15] 10732 - 29 9–11 52%/48% 6.0

CAMCAN [40] 647 - 1 18–88 49%/51% 6.0

CMI [41] 893 - 2 18–88 62%/38% 6.0

CNP [42] 264 49(SZ),49(BD),41(ADHD) 2 21–50 56%/44% 6.0

FCON [43] 1021 25(ADHD) 18 8–85 43%/57% 6.0

HCP [44] 1113 - 1 22–37 46%/54% 5.3

HCPAG [45] 677 - 5� 36–100 43%/57% 6.0

HCPDV [46] 653 - 5� 8–22 49%/51% 6.0

HCPEP [47] 180 123(EP) 4 17–36 62%/38% 6.0

IXI [48] 557 - 1 20–86 44%/56% 6.0

NKI [49] 482 - 1 6–85 36%/64% 6.0

OASIS3 [50] 2044 271(DM),51(MCI) 5 43–97 42%/58% 5.3

OPN [51] 612 - 6 8–58 45%/55% 6.0

PNC [52] 1514 - 1 8–23 48%/52% 6.0

TOP [53] 823 167(SZ),193(BD),31(MDD),107(others) 1 17–69 53%/47% 6.0

UKBB [10] 14914 - 2 44–80 48%/52% 6.0

Total 37126 1107 79 6–100 49%/51% -

https://doi.org/10.1371/journal.pone.0278776.t001

Fig 5. The age span of participants across 16 neuroimaging datasets. Our experimental data cover almost the full

range of human life-span.

https://doi.org/10.1371/journal.pone.0278776.g005
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concerning different brain disorders. These features in data help us to better validate the

method presented in this study. Fig 6 shows the distribution of median cortical thickness with

respect to age across participants and scanners. It clearly shows the presence of an overall effect

of aging on cortical thinning and the site-effect in data. For example, the cortical thickness is

on average higher in the UKBB dataset than in other datasets.

Experiments. To demonstrate the effectiveness of HBR in completing the life-cycle of

large-scale normative modeling, we set up four experimental settings for predicting the cortical

thickness across 148 cortical regions: 1) multi-site data regression, 2) model extension, 3)

model adaptation, and 4) anomaly detection. In all experimental configurations, we use only

age as a covariate except for the fixed-effect site modeling in which, by definition, the one-hot

encoding of scanner ids are also included in the covariates. We use sex as a group-effect in all

estimated models. In the HBR case, the scanner is also included as a group-effect. All experi-

ments and evaluations are repeated ten times with different random healthy participants in the

training and test phases.

In the multi-site data regression setting, the goal is to compare the performance of HBR

with naive pooling, fixed-effect pooling, pooling after data harmonization, and no-pooling

models in deriving the normative range of cortical thicknesses across 148 brain areas. Here, we

assume the data from all scanners are available when estimating the normative model, i.e., a

centralized data architecture. In each experimental run, 80% of healthy samples are randomly

selected to train the regression model. The remaining 20% are used for the evaluation. We

modeled the effect of age on the response variable in three ways, 1) as a linear effect, 2) as a

non-linear effect using a cubic polynomial, 3) as a non-linear effect using a cubic B-spline

basis set expansion with 5 evenly spaced knots. Given the characteristics of experimental data,

we use a site-specific homoscedastic form for the variance. We emphasize that the proposed

framework is capable of modeling heteroscedasticity. Here, using a heteroscedastic model for

the variance did not provide any advantage at the cost of higher model complexity (for a com-

parison see HBR with heteroscedastic noise model in the S1 File). Three metrics are used to

evaluate the quality of fits, i) Pearson’s correlation coefficient (RHO) between observed and

predicted brain measures; ii) standardized mean squared error (SMSE), and iii) mean stan-

dardized log-loss (MSLL). In the latter two cases, the lower values for the metrics represent the

higher quality of the fitted function. While correlation and SMSE evaluate only the predicted

Fig 6. The distribution of median cortical thickness with respect to age across 79 scanners in 16 datasets. While an overall effect of aging on cortical

thinning is present, however, it is highly contaminated with site-effect. The data in some datasets (e.g., UKBB) show relatively higher cortical thickness

compared to the others.

https://doi.org/10.1371/journal.pone.0278776.g006
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mean, MSLL also accounts for the quality of estimated variance which plays an important role

in deriving deviations from the norm (see Eq 1).

In the model extension experiment, the goal is to compare the performance of the HBR

models trained on the centralized and decentralized data. While in the former, we use the

same configuration in the multi-site regression experiment, in the latter case, we assume that

we have only access to one dataset at each time-step and we estimate the model parameters

sequentially, i.e., adding one dataset at a time until it covers all datasets. We generated 5 sam-

ples for each age value (in the range of 10 to 90 years old) and each gender in the data genera-

tion process for each dataset (80 × 2 × 5 = 800 samples). The same evaluation metrics are used

to compare these two different settings.

In the model adaptation setting, we demonstrate an application of HBR in a more realistic

clinical scenario when the aim is to adapt the parameters of a reference normative model to

private clinical data at local hospitals. To do so, we first use a linear homoscedastic model to

estimate the parameters of the reference normative model on datasets with only healthy partic-

ipants (ABCD, CAMCAN, CMI, FCON, HCP, HCPAG, HCPDV, IXI, NKI OPN, PNC, and

UKBB). Then, in each run 50% of random healthy participants in clinical datasets, including

CNP, HCPEP, OASIS3, and TOP are used to recalibrate the parameters of the reference

model. The rest of the healthy participants and patients are used as test samples. It is important

to emphasize that other methods including harmonization and complete pooling do not apply

to this setting because they do not support model adaptation to new datasets. We compare the

HBR with no-pooling in which separate models are trained for each clinical dataset.

In the anomaly detection experiment, we aim to exemplify a possible application of the full

cycle of normative modeling (i.e., developing a reference normative model on a large healthy

population and model adaptation to clinical data) in data-driven biomarker discovery. Here,

we use the resulting z-scores in the model adaptation experiment in the anomaly detection sce-

nario described in section Anomaly detection in normative modeling. The abnormal probabil-

ity indices for each individual across 148 cortical regions are computed. Then, the region-wise

areas under the ROC curves (AUCs) are derived to evaluate the predictive power of deviations

for each diagnostic label. We employed a conservative approach to testing for statistical signifi-

cance, where we performed permutation tests with 1000 repetitions and used false discovery

rate (FDR) correction [58] to correct for multiple comparisons across 148 regions. To ensure

the stability of results, only significant areas that pass the FDR correction in 9 or more out of

10 full experimental runs are reported. We refer to this as ‘significant and stable’.

Implementations and model settings. The HBR model is implemented in Python using

the PyMC3 package [59]. A No-U-Turn sampler (NUTS) [60] is used for inferring the

posterior distributions of parameters and hyperparameters. Normal and log-normal distribu-

tions are respectively used as hyperpriors for the mean and standard deviation of parameters

of fμ (see Fig 2). The distribution of the standard deviation of the homoscedastic noise in loga-

rithmic space is set to a normal distribution with 0 mean and standard deviation of 2.5. Non-

centered parameterizations are used to simplify posterior geometries and increase the perfor-

mance of the sampler [61]. All implementations are available online within the PCNToolkit

(v.0.18) package [62] at https://github.com/amarquand/PCNtoolkit. The high-performance

computing techniques are employed in our implementations to parallelize the computations

across computational nodes on a computer cluster.

For harmonizing data using ComBat, we use a Python implementation available at https://

github.com/Warvito/neurocombat_sklearn. This implementation has the possibility to learn

the ComBat parameters on the training data and apply them to the test data that is and essen-

tial feature for out-of-sample evaluations in our experiments. Age and sex are used in the

design matrix (X in Eq 3) when applying the ComBat for data harmonization to ensure that
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their variability is preserved in data (see the distribution of data after harmonization in the

S1 File).

Results

HBR, suitable flexibility for big multi-site data

Fig 7 summarizes the empirical densities over three evaluative metrics (across 148 cortical

areas) in the multi-site data regression scenario. Each column compares an evaluation metric

across five modeling approaches (naive pooling (NV), fixed-effect pooling (FE), pooling after

ComBat harmonization (CMB), HBR, and no-pooling); and three different model parametri-

zation for the mean effect (linear, polynomial, and B-spline). In all cases, the HBR and fixed-

effect modeling show equivalently better regression performance compared to other

approaches. These two models both account for site-effect in data (unlike naive pooling), bene-

fit from the richness of big data (unlike no-pooling), and have enough model flexibility to find

the best fit to data (unlike naive pooling and pooling after harmonization). Even though they

use different strategies to provide this flexibility; HBR by accounting for the difference between

the distributions of signal and noise across multiple sites rather than ignoring or removing it,

and the fixed-effect pooling by increasing the degree-of-freedom of the model via additional

covariates (80 versus 1 for other models). However, this increased flexibility may result in an

inferior performance when applied to small sample-size data. In addition, using batch-effects

as covariates in the fixed-effect pooling method may result in regressing out informative but a-
priori unknown variance from data.

On the other hand, on these experimental data, using more complex non-linear parameteri-

zations has shown a negligible positive effect on the performances and linear models still

provide competitive results. The very poor performance of the B-spline model in the no-pool-

ing model (the SMSE and MSLL are out of range of plots) is the consequence of over parame-

trization on small sample size data. In short, our results show that choosing the right model

flexibility on bigger data always results in more favorable regression performances. Therefore,

taking an appropriate strategy for handling the site-effect in data can play a vital role in finding

Fig 7. The distributions of correlation, SMSE, and MSLL across 148 cortical areas in the multi-site data regression. The white lines highlight the

medians of distributions. Abbreviations: NV = naive, FE = fixed effects, CMB = ComBat, HBR = hierarchical Bayesian regression. The HBR and fixed-

effect modeling show equivalently better regression performance compared to other approaches.

https://doi.org/10.1371/journal.pone.0278776.g007
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a better fit to data resulting in a better estimation of the normative range in normative model-

ing. Our experimental results confirm that HBR affords the proper model flexibility for model-

ing big multi-site data.

The distribution of measured metrics across 148 brain regions (thus 148 models) is multi-

modal and wide in some cases, especially for MSLL measures. These diverse results across

brain regions can be explained from data and model perspectives. From the data perspective,

some brain regions might have a lower or higher relationship with covariates of interest (e.g.,

age). When there is no relationship between the two sides even the most complex models will

fail if fairly evaluated. From the modeling perspective, in some brain regions, the model may

not be able to explain the relationship between covariates and target brain measures. For

example, when using linear models for modeling non-linear relationships. In this experiment,

since all linear, polynomial, and B-spline models show similar performance, we conclude that

the low performances (in MSLL, SMSE, and RHO) in some brain regions are due to the small

effect of aging on the cortical thickness.

We conducted an extra experiment to evaluate the performance of different techniques in

removing site-effects in resulting z-statistics. In this experiment, the z-statistics are computed

on the test sets across different modeling approaches. Then they are used as input to a linear

support vector machine (SVM) classifier (C = 1) to classify the datasets in a one-vs-one sce-

nario. The balanced-accuracies computed over 5-fold stratified cross-validation are reported

in Fig 8. The meaningful difference between classifier performances of naive pooling (that

ignores the site-effects) and the other methods (that use different strategies to exclude site-

effects) demonstrates 1) the importance of correcting for site-effects; 2) the effectiveness of

these different strategies to remove a majority of site variation in data (drop in the average

accuracy from 0.90 to�0.53).

HBR, distributed modeling on distributed data

Fig 9 compares the evaluation metrics for the linear HBR model with homoscedastic noise

when trained on the centralized and decentralized multi-site data, adding one site at a time.

The extended model shows very close RHO, SMSE, and MSLL compared to the model trained

on full data in one run (R2 = 0.98, 0.97, 0.95, respectively). These results show the success of

the proposed model extension strategy in estimating the mean prediction. However, the MSLL

measure shows a slight but negligible decline in some regions; revealing the lower performance

of the extended model in capturing the actual variance in some brain areas. Generating more

samples in the data generation process might improve the model quality from this respect at

the higher computational costs in time and memory. These promising results confirm the pos-

sibility of estimating multi-site normative models on distributed data across multiple data cen-

ters. This can significantly reduce the need for sensitive clinical data sharing. Furthermore, it

reduces the data transfer, maintenance, and storage costs for storing several copies of the same

data across several centers in centralized model development.

Prior information matters

Fig 10 compares the regression performance of the no-pooling approach with the adapted

HBR model. While in the first case, we separately model the data from each presumably clini-

cal center, in the second case, we try to benefit from transferring the knowledge from the refer-

ence normative model to local models. In all three evaluative metrics, the adapted HBR model

shows a better regression performance compared to no-pooling. These results confirm the

value of prior information learned by the reference model on big data in estimating more accu-

rate normative models.
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The deviations are distinctive

In Fig 11, we depict significant and stable AUCs across brain regions for different complex

brain disorders and diseases. Here, the procedure explained in section Anomaly detection in

normative modeling is used to derive the abnormal probability index for each sample and

each region. Only significant and stable areas (see section Experiments for more detail on sig-

nificance and stability criteria) are reported. Only the results for dementia, schizophrenia and

early psychosis could pass our rigorous stability test.

Fig 8. Balanced-accuracies in classifying z-statistics across different datasets in a one-vs-one scenario. The z-statistics are computed using different

modeling approaches including naive pooling (NV-POOLING), fixed-effect pooling (FE-POOLING), pooling after ComBat harmonization

(CMB-POOLING) and HBR. The results show that the site-effects are to high degree not present in the z-statistics in FE-POOLING, CMB-POOLING,

and HBR.

https://doi.org/10.1371/journal.pone.0278776.g008

PLOS ONE Federated normative modeling using hierarchical Bayesian regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0278776 December 8, 2022 17 / 29

https://doi.org/10.1371/journal.pone.0278776.g008
https://doi.org/10.1371/journal.pone.0278776


In dementia cases, the best performances are observed in the occipital and temporal lobes

including bilateral occipitotemporal (fusiform) gyrus (AUC = 0.68 and 0.64), right middle

temporal gyrus (AUC = 0.65), right superior/transverse occipital sulcus (AUC = 0.65), right

middle occipital gyrus (AUC = 0.65), and left middle temporal gyrus (AUC = 0.64). Fig 12

shows that patients with dementia manifest relatively stronger deviations in the respective

brain regions. The proposed approach is capable of detecting brain regions that are repeatedly

reported in the literature and have been linked to dementia [63–66]. Note that the patients

with dementia were derived from the OASIS3 dataset, which contains only mild cases. There-

fore, the accuracies reported are not directly comparable with studies derived from patients

with more advanced forms of dementia.

In patients with schizophrenia, our results show the concentration of distinctive areas in

the frontal lobe including the right orbital inferior frontal gyrus (AUC = 0.61), right medial

orbital sulcus (AUC = 0.60), left superior frontal gyrus (AUC = 0.58), left middle frontal sulcus

(AUC = 0.58), left anterior transverse collateral sulcus (AUC = 0.58), and left inferior frontal

Fig 9. Comparison between the regression performance of HBR when trained on centralized data (HBR-FULL) versus decentralized model

development using model extension strategy (HBR-EXTENDED). The ridge plots show distributions of correlation, SMSE, and MSLL across 148

cortical areas. As depicted in the scatter plots, HBR-EXTENDED models show very similar RHO (R2 = 0.98), SMSE (R2 = 0.97), and MSLL (R2 = 0.95)

compared to HBR-FULL models trained on full data in one run.

https://doi.org/10.1371/journal.pone.0278776.g009

Fig 10. Comparing the regression performance of the adapted HBR model versus the no-pooling strategy. The ridge plots show distributions of

correlation, SMSE, and MSLL across 148 cortical areas. The adapted HBR model shows a better regression performance compared to no-pooling.

https://doi.org/10.1371/journal.pone.0278776.g010
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sulcus (AUC = 0.58). These results are compatible with previous studies reporting cortical

thinning in the frontal lobe in patients with schizophrenia [67–69]. Fig 13 shows how the corti-

cal thicknesses of patients in these areas are distributed around the normative range. In early

psychosis, only the right middle temporal gyrus (AUC = 0.59) shows significant and stable

Fig 11. Significant and stable AUCs across brain regions for detecting healthy participants from patients in the anomaly detection scenario. In

dementia (DM), the best performances are observed in the occipital and temporal lobes including bilateral occipitotemporal (fusiform) gyrus, right

middle temporal gyrus, right superior/transverse occipital sulcus, right middle occipital gyrus, and left middle temporal gyrus. In schizophrenia (SZ),

the distinctive areas are in the frontal lobe including the right orbital inferior frontal gyrus, right medial orbital sulcus, left superior frontal gyrus, left

middle frontal sulcus, left anterior transverse collateral sulcus, and left inferior frontal sulcus. In early psychosis (EP), only the right middle temporal

gyrus shows significant and stable AUC.

https://doi.org/10.1371/journal.pone.0278776.g011

Fig 12. The norm and the 95% normative range for males and females in the 6 most distinctive cortical regions in dementia. Patients show lower

cortical thickness than the norm of the population (Abbreviations: CNTL-F = healthy female, CNTL-M = healthy male, DM-F = female patient,

DM-M = male patient).

https://doi.org/10.1371/journal.pone.0278776.g012
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results. Cortical thinning in temporal regions has been reported in earlier studies on EP

patients [70–72].

Even though these performances are lower than the state-of-the-art in classifying dementia

and schizophrenia patients from healthy participants, it is important to consider the fact that

our anomaly detection method is, in contrast, an unsupervised approach; in the sense that the

model does not see any patient data during the training phase (i.e., in deriving the normative

range).

Since patterns of sub- and supra-normal deviations can be extracted on an individual basis

[4, 6, 73], our approach can be used as a tool for precision psychiatry by decoding the heteroge-

neity of complex brain disorders at the level of an individual patient [3, 74].

Few-shot learning on small data. Another appealing experimental observation in the

model adaptation setting is the potential of the HBR model in learning reasonable normative

ranges on tiny datasets. Fig 14 shows the normative range for the right middle temporal gyrus

(the most distinctive region for early psychosis) across four different HCPEP acquisition sites.

Only healthy subjects in the training set are depicted in the plots. In all sites, only a few training

subjects are available for estimating the normative model. However, the HBR model can still

find a reasonable estimation of normative ranges even for the extreme cases in the second and

the third sites in which, respectively, 0 and 1 training samples are available.

The key feature of the HBR model that contributes to this performance is its informative

prior that is inherited from the reference normative model. This informative prior is already

learned from thousands of data points and acts as a high-level regularizer that prevents the

model parameters from overfitting to small data. A possible example is the best linear fit for

females (dashed purple line in the top left plot in Fig 14). Without having prior knowledge

about the underlying effect of aging on the cortical thickness, the best linear estimate on the

training data shows ascending trend for cortical thickness with aging. Another example is tiny

training data with one or even zero samples. In these cases, estimating the parameters of the

linear model is impossible; thus, prior knowledge about the problem plays a decisive role in

Fig 13. The norm and the 95% normative range for males and females in the 6 most distinctive cortical regions in schizophrenia. Patients show

lower cortical thickness than the norm of the population (Abbreviations: CNTL-F = healthy female, CNTL-M = healthy male, SZ-F = female patient,

SZ-M = male patient).

https://doi.org/10.1371/journal.pone.0278776.g013
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finding reasonable estimations. We emphasize that this is not only a theoretical problem

because, in practice, multi-site clinical datasets often have sites with few samples.

These results demonstrate the capabilities of the HBR model for few-shot learning [75]

when adapting the reference model to very small local datasets. This feature can play even a

more crucial role when adapting more complex normative models (for example, when fμ and

fσ are parametrized on a neural network) on small data at local clinical centers.

Discussion

Our positive experimental results demonstrate the success of hierarchical Bayesian modeling

in fulfilling the technical demands for closing the life-cycle of normative modeling. In the fol-

lowing, we will discuss the methodological significance and the clinical relevance of our contri-

butions. We further pinpoint the limitations of the proposed method and envisage possible

directions for future enhancements.

The methodological significance

Our HBR approach provides practical solutions to several key problems necessary to close the

loop of normative modeling on realistic population-scale clinical datasets. Our main contribu-

tions are: i) accurately estimating centiles of variation whilst properly accounting for site varia-

tion with ii) manageable computational scaling to massive neuroimaging datasets; iii) a

federated learning life-cycle that performs well on non-IID and unbalanced data and allows

Fig 14. Normative ranges for the right middle temporal gyrus estimated by the adapted HBR model across four sites in the HCPEP dataset. The

data points in the plots show the healthy subjects in the training set. The dashed lines show the best linear fit to the points for each sex. Benefiting from

informative priors, the adapted HBR model provides a reasonable estimate of the normative range even on tiny training data.

https://doi.org/10.1371/journal.pone.0278776.g014
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models to be updated as new datasets become available, without requiring access to the pri-

mary data and iv) enabling the transfer of information from population-level datasets to small

clinical datasets.

We have designed our approach from the ground up with real-world clinical datasets in

mind. The federated and distributed nature of our architecture is very important because it

allows us to use large publicly available datasets for charting variation across the population to

extract maximal value from clinical datasets that are often small and acquired on specific scan-

ners. We consider model portability to be important for clinical applications. It is not feasible

to transfer hundreds of thousands of scans to make predictions at a clinical site and –con-

versely– many clinical datasets are still small and can also be difficult to transfer (e.g., if subjects

contributing data did not provide the necessary consent).

In this work, we have considered only models that are linear in the parameters. More specif-

ically, for most of the experiments, we parameterized the HBR method as linear, allowing the

estimation of a different slope for each scan site. While non-linear effects are seen in some neu-

roimaging derived measures [76]. Our results suggest that the linear model is sufficient for

cortical thickness, and non-linear basis expansions did not explain more variance. However,

for other neuroimaging-derived measures non-linear or heteroscedastic models may be more

appropriate. We emphasize that our approach is fully modular, and such extensions can be

easily integrated by adjusting the parametrization (see for example [77]).

The clinical relevance

In our clinical application, we show that patients deviate significantly more from the estimated

norm than healthy individuals (Figs 12 and 13) with a regional distribution of abnormalities

that is largely consistent with the known pathology of each disorder. This is in line with earlier

publications [4–7, 73], which show that while we observe differences between groups of

patients and controls, those differences are not perfect to the extent of complete group separa-

tion [3]. This has been linked to the heterogeneous nature of these illnesses, which generally

show a unique pattern of sub- and supra-normal deviations in individuals even when diag-

nosed with the same illness.

The ability of our approach to estimating normative models without the requirement to

share sensitive data across different imaging and clinical centers can not be overemphasized in

value as it allows us to map differences between individuals with a complex illness on a previ-

ously unprecedented scale. This is important as complex brain disorders are believed to have a

unique manifestation across individuals [74]. Therefore, it is necessary to map those differ-

ences in large samples. Here, we provide a framework and tool that will allow us to extend this

work in a principled fashion towards multi-center imaging studies such as the ENIGMA con-

sortium [14]. While the present paper has a technical focus, we can already show that our

method is capable to detect significant deviations from a normative process in individuals with

a complex illness. Our contributions pave the way toward incorporating biological measures

into the diagnosis and treatment of mental disorders to hopefully find the right treatment at

the right time for the right patient.

HBR versus data harmonization

In this study, we proposed an application of hierarchical Bayesian regression (HBR) for spe-

cific usage in federated multi-site normative modeling. In a normative modeling setting, we

presented experimental evidence for the effectiveness of our method in deriving more accurate

normative ranges and mitigating site-effects in resulting statistics. We showed how the HBR

can be used as an alternative to data harmonization and fixed-effect modeling by resolving
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their theoretical and practical limitations in multi-site normative modeling on decentralized

data. Nevertheless, we must emphasize that we do not consider HBR to be a data harmoniza-

tion method, per se. Therefore, if the aim is merely data harmonization for other purposes

than normative modeling then the HBR is not an appropriate choice because, whilst the z-sta-

tistics are cleared of site-effects, site-related variance is still present in the HBR predictions (fμ).
One of the important differences with respect to most harmonization techniques is that

HBR enables estimating site-specific mean effects (fμ) and variations (f þ
s

) which are used in the

normative modeling context to derive site-agnostic z-statistics. In contrast to most harmoniza-

tion techniques, which often pool estimates over voxels or regions of interest, HBR pools over

sites. This allows each site to have a different relationship with the covariates (e.g., different

slopes or variances, as illustrated in S2 and S3 Figs in S1 File). This provides several advantages:

first, it preserves differences across the range of the covariates (e.g., increasing variance with

age across the lifespan in scenarios where age is correlated with site-effect), rather than forcing

each site to have the same average variance. Second, it allows transfer learning to new sites,

where the parameters are adjusted according to the characteristics of the new site and regu-

larised by the informative prior distribution learned across the original sites, providing

increased flexibility over (for example) harmonizing the data by applying the parameters

learned on one set of data to a new dataset. This procedure is similar in spirit to meta-analysis

as the second level parameters of the model (θμ and θσ) and z-statistics are estimated for each

site separately (but not independently). On the other hand, it is also similar to mega-analysis

because the first level parameters (the parameters of the prior including mym , sym , mys , and sys)

are estimated jointly across sites (See Fig 2).

In contrast, whilst harmonization provides the possibility to merge the data across different

centers and perform the analysis on pooled data, this process might be harmful in the norma-

tive modeling context in which we are interested in the exploratory analysis of the variation in

data. With this in mind, we do not claim HBR is a complete alternative to harmonization, and

we recommend users choose the optimal approach according to their specific analytical goals.

Limitations and future directions

The current implementation of HBR employs a Gaussian likelihood function, hence, assumes

a Gaussian distribution for residuals. If this is not the case, the estimated centiles and z-scores

might not be well-calibrated. Although this is usually not a big problem, distributions of some

phenotypes are known to be skewed or bounded, and in these situations, this method would

not provide accurate results. However, the presented HBR method is fully capable of accom-

modating non-Gaussian variability in data and we are exploring this in follow up work [78].

This possibility can be easily implemented by changing the likelihood and parameterize it over

location, scale, and shape parameters (instead of mean and variance) [79]. Because we use a

sampling approach for the inference, our method can estimate complex non-trivial posterior

distribution with no closed-form analytical solutions. We are currently working on finalizing

this extension. Another possible direction to solve this problem is to use likelihood warping

[80], in which the data with arbitrary distribution is first warped into a Gaussian distribution

and ordinary methods (with normality assumption) can be applied to derive the centiles of

variation. Then these centiles are transferred back to the original distribution using a reverse

operation.

Another limitation is that models are estimated separately for each brain region without

accounting for correlations between brain regions. While this removes nearly all univariate

site variation, our results in Fig 8 show that in all methods (including fixed-effect pooling,

pooling after ComBat harmonization, and HBR), still, a few considerably above the chance-
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level performances are present in the tables. This is mainly because, in all benchmarked mod-

els, the harmonization and modeling are performed separately for each brain region without

accounting for correlations between brain regions. Hence, only univariate site-effects are

removed, and still, some multivariate site-effect might be present in data. Therefore, machine

learning classifiers could still learn this residual information from the data [81]. One possible

remedy for this problem is to harmonize the covariance structure of multivariate data [82].

Another option is to remove the batch-effects from machine learning predictions [81]. Of

course, the presented anomaly detection method is immune to this deficit because it is sepa-

rately applied to each cortical region. A conceptually straightforward extension to our model is

to model correlations between brain regions that are related to site-effects in data. This exten-

sion can be straightforwardly integrated into the present model, for instance, using Wishart

priors for the covariance between brain regions.

The quality of scans is a crucial factor in the success of developing a reference normative

model. Low-quality noisy scans can impair the inference and result in inaccurate estimation of

variability in data. Therefore, quality control (QC) is of high importance, especially in the nor-

mative modeling setting. While manual QC on massive datasets is costly and not practical,

there is still no bullet-proof automatic QC method available in the field. For this study, based

on recent studies in this area, we used FreeSurfer’s Euler number (that summarizes the topo-

logical complexity of the reconstructed cortical surface) as a criterion for the quality of scans,

which shows a good correspondence with manual ratings of scan quality [55, 56]. Even though

our manual inspection shows its reasonable performance, but we see addressing the open

problem of developing automated QC as a decisive step toward reliable normative modeling,

and we recommend this be given careful attention in future applications.

Conclusions

In this study, we delineated the components involved in the life-cycle of normative modeling.

We further elucidated the essential requirements of the normative modeling life-cycle to over-

come the challenges imposed in the model development and deployment in real-world clinical

applications. Then, we introduced a simple yet effective probabilistic federated learning

approach to satisfy those requirements. The proposed hierarchical Bayesian regression method

is quite flexible and accommodates a full range of parametric/non-parametric and linear/non-

linear functions for modeling the signal mean and homoscedastic/heteroscedastic variance.

On massive experimental data and in realistic scenarios, the HBR showed superior perfor-

mance in deriving normative ranges of cortical thicknesses compared to its alternatives. In the

longer run, we believe our methodological contributions provide a significant step toward

bringing precision medicine to the diagnosis and treatments of complex brain disorders.
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