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Abstract

Cox’s proportional hazards model (PH) is an acceptable model for survival data analysis.

This work investigates PH models’ performance under different efficient sampling

schemes for analyzing time to event data (survival data). We will compare a modified

Extreme, and Double Extreme Ranked Set Sampling (ERSS, and DERSS) schemes with

a simple random sampling scheme. Observations are assumed to be selected based on

an easy-to-evaluate baseline available variable associated with the survival time. Through

intensive simulations, we show that these modified approaches (ERSS and DERSS) pro-

vide more powerful testing procedures and more efficient estimates of hazard ratio than

those based on simple random sampling (SRS). We also showed theoretically that Fish-

er’s information for DERSS is higher than that of ERSS, and ERSS is higher than SRS.

We used the SEER Incidence Data for illustration. Our proposed methods are cost saving

sampling schemes.

Introduction

The survival time of a particular event is called the time-to-event. The time of death and time

to develop a disease are examples of survival data. Statistical methods for survival analysis have

been applied to many vital fields of research. Generally, survival analysis uses data to predict

survival probability and identify risk and/or prognostic factors related to subjects’ survival and

disease progression. An essential aspect of survival data is not usually fully observed in all sub-

jects under study, leading to different censored data types.

Subjects in a study are usually assumed to be selected randomly (interred the study ran-

domly) in the sense of simple random sample (SRS) [1]. Another promising sampling method

in the literature is Ranked set sampling (RSS) introduced by McIntyre [2, 3]. RSS is a useful

cost affected sampling scheme for agriculture and environmental studies. Samawi and Al-

Sagheer [4] applied RSS in a study involving human subjects by collecting data in the study

based on bilirubin’s level in the jaundice premature babies’ blood. Also, recently Jabrah

et al. [5] used RSS in a study involving human subjects, and they selected college students to

analyze a psychological intervention to buttress resilience study. More applications of RSS and

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0278700 April 26, 2023 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Samawi H, Yu L, Yin J (2023) On Cox

proportional hazards model performance under

different sampling schemes. PLoS ONE 18(4):

e0278700. https://doi.org/10.1371/journal.

pone.0278700

Editor: Anoop Kumar, Amity University - Lucknow

Campus, INDIA

Received: September 1, 2022

Accepted: November 22, 2022

Published: April 26, 2023

Copyright: © 2023 Samawi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: EER Research Data

(1973–2015).Surveillance, Epidemiology, and End

Results (SEER) Program (www.seer.cancer.gov)

Research Data (1973–2015), National Cancer

Institute, DCCPS, Surveillance Research Program,

released April 2018, based on the November 2017

submission.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-3817-2249
https://doi.org/10.1371/journal.pone.0278700
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278700&domain=pdf&date_stamp=2023-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278700&domain=pdf&date_stamp=2023-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278700&domain=pdf&date_stamp=2023-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278700&domain=pdf&date_stamp=2023-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278700&domain=pdf&date_stamp=2023-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278700&domain=pdf&date_stamp=2023-04-26
https://doi.org/10.1371/journal.pone.0278700
https://doi.org/10.1371/journal.pone.0278700
http://creativecommons.org/licenses/by/4.0/
http://www.seer.cancer.gov


variations of RSS and their efficiency for estimation population means and other parameters

are presents recently by several authors such as [6–14] among others.

RSS (Balanced) is collected by drawing m2 items randomly from a target population and

then randomly dividing them into m sets of m units. Units from each set of size m then ranked

virtually, or by the mean of the available auxiliary variable (concomitant) that associated with

the variable of interest. Among the first set of m units, we choose the unit with the lowest rank

and measure the unit’s actual value. In the second set unit with the second-lowest ranking is

measured, and so on until the unit with the highest ranking is measured from the last set. It is

essential to point out that the ranking error will reduce RSS’s efficiency compared with SRS in

some inferential procedures. Therefore, it is crucial to choose a ranking method that improves

the ranking precision [15, 16].

Furthermore, when the set size m is large, selecting an RSS sample of size m is susceptible

to ranking errors, so the literature suggested m not to excide 5. However, to overcome size r

of m restriction to reduce ranking errors, several modifications and variations of the RSS are

suggested in the literature. Samawi et al. [17] were the first to introduce the ERSS sampling

scheme, while Al-Odat and Al-Saleh [18] proposed moving Extreme Ranked Set Sampling

(MERSS). Al-Saleh and Samawi [19] and Samawi and Al-Saleh [20] implemented both

MERSSmax and MERSSmin to provide valid odds and more efficient estimates of the odds ratio,

respectively. Samawi et al. [21] investigates the use of MERSSmin (max) to improve the Cox pro-

portional hazards model’s efficiency. This modified sample’s advantage is only the maximum

(or minimum) sets of varied sizes are identified for quantification in this procedure. Therefore,

even for large m, MERSS, or ERSS, can be easily implemented.

As another modification of RSS, is the Double Extreme Ranked Set Sampling (DERSS) sam-

pling scheme was introduced by Samawi [22] for the mean and regression estimators. Helu

et al. [23] improved the AFT survival model’s analysis efficiency using a modified version of

ERSS, namely ERSSmin (ERSSmax). Also, Samawi et al. [24] used the modified MERSS to

improve the logistic regression analyses’ performance. Recently, Samawi et al. [25] further

enhances logistic regression analysis using modified DERSS.

The DERSSmin (DERSSmax) procedure, which is an extension to ERSS procedure, is sug-

gested here. This procedure involves randomly drawing m independent sets each contains m
random samples of size m each (note that each set has m2 sample units). Each sample is drawn

from a large population. We assume that the largest or the smallest sample unit within each

sample with respect to the value of an auxiliary variable Z, which is associated with survival

time, can be identified with no or little cost. From each set of size m2 use ERSS procedure, as

described by Samawi at el. [17] to obtain m ERSSmin (or ERSSmax) samples of size m each

(this completes the first stage). Again apply the same ERSSmin (or ERSSmax) procedure on the

obtained m ERSSmin (or ERSSmax) samples of size m each to obtain a sample of size m, which

will be called the second stage of ERSSmin (or ERSSmax) or Double Extreme Ranked Set Sample

DERSSmin (or DERSSmax). This will complete one cycle. The cycle may be repeated r times to

obtain a DERSS of size n = rm.

This work is the first to discusses the implementation and the performance of the propor-

tional hazards model when the subjects are selected based on the modified ERSS (ERSSmin or

ERSSmax) and DERSS (DERSSmin or DERSSmax) sampling scheme. In this work, we assume

that the ranking of subjects, including in the study, is based on one of the available auxiliary

variables associated with the variable of interest (time–to–event). Also, we are the first to show

theoretically that the proposed sampling schemes improve the Fisher’s information compared

with SRS. This implies that Fisher’s information for DERSS is higher than that of ERSS, and

ERSS is higher than SRS. The rest of the paper is as follows: Section 2 provides basic survival

analysis, definitions, DERSS procedure, and notation. The analysis using the Cox proportional
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hazards model and its properties using DERSS is discussed in section 3. In Section 4, we pro-

vide our simulation study to compare the Cox proportional hazards model’s performance

using the modified DERSS to ERSS and SRS. We illustrate the proposed methods using the

SEER Incidence Data in section 5. Final remarks are provided in Section 6.

Preliminaries and notations

Basic definitions

Let S(t) denote the survival function at time t with hazard rate function denoted by h(t) and f
(t) as p.d.f for a random variable of time to an event T. Furthermore, survival data is usually

not fully observed, and data censoring procedure occurs. The right censoring occurs when the

subject has not experienced the event of interest at a given time, which means that we observe

only the lower bound for the value of t of the censored individuals. On the other hand, type I

censoring occurs when the event is unobserved before some pre-specified time, such as at the

closing of a study. In this work, we focus on type I right censoring.

Likelihood function for type I right censored data

In survival data, we define ti = min(Ti, Ci)Ti the true survival time and Ci the censoring time

for the ith individual. Let δi be an indicator variable, such that

di ¼
1 if T ¼ ti or T � Ci ðuncensoredÞ

0 if T > ti or T > Ci ðright censoredÞ:

(

ð1Þ

The likelihood function for n observations is given by

lðβÞ ¼
Yn

i¼1

f ðtiÞ
di SðtiÞ

1� di ; ð2Þ

where β is the set of parameters of risk factors.

Sample notation and some basic results of the modified ERSS and DERSS

As in Samawi (2002), let fXl
ijk; i ¼ 1; 2 . . . ;m2; j ¼ 1; 2; . . . ;m; l ¼ 1; 2; . . . ;m; k ¼

1; 2; . . . ; rg denotes the m independent sets for the kth cycle, each with sample size m2 from a

p.d.f. f(x) and a distribution function F(x) (absolutely continuous). Using similar notations as

in Samawi et al. [21] for selecting DERSSmin, and hence also ERSSmin, we have, after ranking

the sample units within each sample in each set, visually or by any not costly way, we obtain

ERSSmin as, (X1(1)k, X2(1)k,. . .,Xm(1)k, k = 1,2,. . .,r) of size m.r. Then DERSSmin is obtained as

Y
1ð1Þk ¼ minðX1

1ð1Þk;X
1
2ð1Þk; . . . ;X1

mð1ÞkÞ, Y2ð1Þk ¼ minðX2
1ð1Þk;X

2
2ð1Þk; . . . ;X2

mð1ÞkÞ,. . ..,

Ymð1Þk ¼ minðXm
1ð1Þk;X

m
2ð1Þk; . . . ;Xm

mð1ÞkÞ. Then Y1(1)k, Y2(1)k,. . .,Ym(1)k k = 1, 2,. . ., r, denotes

DERSSmin. However, selecting DERSSmax is similar but selecting the maximum instead of

the minimum. Samawi et al. [25] showed that the p.d.f of the smallest and the largest order sta-

tistics of an i.i.d sample of size m with p.d.f fX(x) are respectively given by: fX(1)(x) = m(1

−FX(x))m−1 fX(x) and fX(m)(x) = m(FX(x))m−1 fX(x) Also, let Yi(1)k have p.d.f g(1)(y) and c.d.f

G(1)(x) and Yi(m)k have p.d.f g(m)(y) and c.d.f G(m)(y) where i = 1,2,. . .,m and k = 1, 2,. . ., r.,

then

1. GYð1ÞðyÞ ¼ 1 � ½1 � FXð1ÞðyÞ�
m
¼ 1 � ½1 � FXðyÞ�

m2

,

2. gYð1Þ ¼ mfXð1ÞðyÞ½1 � FXð1ÞðyÞ�
m� 1
¼ m2 fXðyÞ ½1 � FYðyÞ�

m2 � 1
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3. GYðmÞðyÞ ¼ ½FXðyÞ�
m2

4. gYðmÞ ¼ m2 fXðyÞ ½FXðyÞ�
m2 � 1

Cox proportional hazards model using ERSSmin and DERSSmin

This section investigates the Cox Proportional Hazards Model using ERSSmin and DERSSmin

when the survival time and the ranked auxiliary variable (X) are positively correlated. When

they have a negative correlation, we can use either ERRSmax or DERSSmax, and all consequence

results can be derived in similar manners. We will focus on DERSSmin in our consequence

discussion.

For the kth cycle, k = 1,2,. . .,r, let Y1(1)k,Y2(1)k,. . .,Ym(1)k be the measurements obtained on the

auxiliary variable, using DERSSmin with size n = rm. Moreover, let the vector Vi[1]k = (Xi[1]k. . .,

Xi[1]kp, Yi(1)k)
0, i = 1,2,. . .,m;k = 1,2,. . .,r represent the p+1 explanatory variables’ observations

and one auxiliary variable obtained from the sampled unit in the ith set and kth cycle. Note that

the notation (.) stands for perfect ranking while the notation [.] stands for imperfect ranking.

The partial likelihood is usually used to estimate the model parameters β = (β1, β2,. . .,βp+1)0

in the Cox model. Under SRS assumptions, Cox and Oakes [26] showed that the estimators of

β = (β1, β2,. . .,βp+1)0 from partial likelihood are consistent and asymptotically normal distrib-

uted. However, Cox and Oakes [26] showed a loss of precision in estimation by using partial

likelihood compared to the full likelihood. Also, they indicated that the sample size and the

proportion of censoring observation affect inference precision. When the percentage of cen-

soring increases and the sample size is small, the estimators from partial likelihood lose more

precision. We propose to use DERSS to improve the accuracy of inferences based on the partial

likelihood estimation of Cox model parameters.

Partial likelihood for the Cox model

To estimate the parameter in the Cox proportional hazards model, we order the random sam-

ple of size n individuals according to the rank of their survival times, t1 < t2 <. . .< tn, assum-

ing there are no ties for the observations. Instead of using the full likelihood function in (5),

Cox [27] proposed partial likelihood as follows,

expðvi½1�kβÞ
P

h2Rðti½1�kÞ
expðvhβÞ

: ð3Þ

It is the consequence of the conditional probability that an individual experiences an event

at time ti[1]k, (i = 1,2,. . .,m;k = 1,2,. . .,r) given that the individual in the event’s risk set at ti[1]k,

where R(ti[1]k) be the set of all individuals who have not experienced the event and are uncen-

sored just prior to ti[1]k. Under DERSSmin, and as described by Samawi et al. [21] the partial

likelihood function (PLHF) can be written as

lðβÞ ¼
Ym

i¼1

Yr

k¼1

expðvi½1�kβÞ
X

h2Rðti½1�kÞ

expðvhβÞ

2

6
6
6
4

3

7
7
7
5

di½1�k

: ð4Þ
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When the observation is censored, the product of the conditional probabilities is 1 and

equivalently can be written as

lðβÞ ¼
Ym

i¼1

Yrd

k¼1

expðvi½1�kβÞ
X

h2Rðti½1�kÞ

expðvhβÞ

2

6
6
6
4

3

7
7
7
5
; ð5Þ

where (rd.m) is the number of events (failed subjects) in a sample of size (n = r.m). The log-

likelihood can be written as,

LðβÞ ¼ log½lðβÞ� ¼
Xm

i¼1

Xrd

k¼1

v0i½1�kβ � log
X

h2Rðti½1�kÞ

expðv0hβÞÞ

0

@

1

A

8
<

:

9
=

;
: ð6Þ

Since the partial likelihood function depends on the ordering of survival times and then the

baseline hazard distribution is inherent in ordering the survival times, and no shape is

described. Therefore, the produced partial likelihood is only based on the uncensored observa-

tions, and hence this may result in a large sample size requirement. However, in contrast to

SRS, ERSS and DERSS naturally provide a larger percentage of events, as indicated by Samawi

et al. [21, 25] and may result in requiring a smaller sample size. For estimating the jth parame-

ter (βj), we need to solve the following equation

dLðβÞ
dbj

¼
Pm

i¼1

Prd

k¼1

xi½1�kj �
X

h2Rðti½1�kÞ

xhj ghðyið1Þk;Rðti½1�kÞÞ

8
<

:

9
=

;
¼ 0; ð7Þ

where ghðyið1Þk;Rðti½1�kÞÞ ¼
expðv0hβÞ

P

h2Rðti½1:�kÞ

expðv0hβÞ
is the weight of the hth failed subject because

P

h2Rðti½1�kÞ
ghðyið1Þk;Rðti½1�kÞÞ ¼ 1. Clearly, the MLE (β̂)is the solution of Eq (7).

For the consistency and the asymptotic properties of β̂, see [26].

To show the superiority of using ERSS and DERSS proposed in this paper, we need to

derive the Fisher’s information matrix of β̂, say I(β). To find I(β) we take the second derivative

of L(β):

IðβÞDERSSmin
¼ � EVð1Þ

Et½1� jVð1Þ
@2Lðβ̂Þ
@β̂2

 !

ðPþ1ÞxðPþ1Þ

:

For the jth covariate, we have

�
@2LðβÞ
@b

2

j

 !

¼
Xm

i¼1

Xrd

k¼1

X

h2Rðti½1�kÞ

xhj �
X

h2Rðti½1�kÞ

xhj ghðyð1Þ;Rðti½1�kÞÞ

0

@

1

A

2

4

3

5

2

ghðyð1Þ;Rðti½1�kÞÞ

0

@

1

A; ð8Þ

which is a function of the ranked auxiliary covariate (Y) used to select subjects from the popu-

lation using the DERSSmin scheme randomly and assumed to have some distribution FY(y),

with a continuous density fY(y). As suggested by [21, 25] ranking on this variable induces a

corresponding ordering on the response variable (T), which leads to improved precision.

When using DERSSmin, we have taken the minimum judgment ranking from each set of size

m, and as shown by [25], the density function of Y(1) is gYð1ÞðyÞ ¼ m2 fYðyÞ ½1 � FYðyÞ�
m2 � 1

.
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Then the Fisher information using DERSSmin is given by:

I bj

� �

DERSSmin

¼ � EYð1ÞEt½1� jYð1:Þ

@2LðβÞ
@b

2

j

 !

¼ EYð1Þ
Xm

i¼1

Xrd

k¼1

X

h2Rðti½1�kÞ

xhj �
X

h2Rðt½1:j�iÞ

xhjghðYð1Þ;Rðt½1:j�iÞÞ

0

@

1

A

2

4

3

5

2

ghðYð1Þ;Rðti½1�kÞÞ

0

@

1

A

0

@

1

A

¼ rd
Xm

i¼1

ð

v

X

h2Rðti½1�kÞ

xhj �
X

h2Rðti½1�kÞ

xhjghðYð1Þ;Rðti½1�kÞÞ

0

@

1

A

2

4

3

5

2

ghðYð1Þ;Rðti½1�kÞÞ

0

@

1

AmfYð1Þ ðyÞ 1 � FYð1ÞðyÞ
� �j� 1

dy:

Since we assume that βP+1 > 0, then the number of events and R(ti[1]k) will be increased.

This implies that gh(y(1); R(ti[1]k)) is a decreasing function of y. Also, mð1 � FYð1Þ ðyÞÞ
m� 1

is a

decreasing function of y, thus as in See and Chen [28]

I bj

� �

DERSSmin

� rd
Xm

i¼1

ð

v

X

h2Rðti½1�kÞ

xhj �
X

h2Rðti½1�kÞ

xhjghðYð1Þ;Rðti½1�kÞÞ

0

@

1

A

2

4

3

5

2

ghðYð1Þ;Rðti½1�kÞÞ

0

@

1

AfYð1Þ ðyÞdy

8
<

:

9
=

;

ð

v

mfYð1Þ ðyÞð1 � FYð1Þ ðyÞÞ
m� 1dy

8
<

:

9
=

;

However,

ð

v

mfYð1Þ ðyÞð1 � FYð1Þ ðyÞÞ
m� 1dy ¼ 1, therefore,

I bj

� �

DERSSmin

� rd
Xm

i¼1

ð

v

X

h2Rðti½1�kÞ

xhj �
X

h2Rðti½1�kÞ

xhjghðVð1Þ;Rðti½1�kÞÞ

0

@

1

A

2

4

3

5

2

ghðVð1Þ;Rðti½1�kÞÞ

0

@

1

AfZð1Þ ðvÞdv ¼ I bj

� �

ERSSmin

� I bj

� �

SRS

ð9Þ

Hence, the last inequality in [15] can be argued similarly. These inequalities are still held

when the correlation between the survival time and Y is negative, and DERSSmax is used. The

inequalities in [15] show that using DERSSmin provides more information than ERSS and

ERSS provides more information than SRS, and hence DERSSmin may require a smaller sample

size to achieve similar precision as for ERSS or SRS.

Simulation study and results

For comparison purposes, we used simulation to evaluate the Cox proportional hazards mod-

el’s performance when ERSSmin and DERSSmin are used. We assume that the Ranked Auxil-

iary Covariate is positively correlated with survival time. We compared DERSSmin with both

ERSSmin and SRS. The power of testing the hypothesis of no treatment effect after controlling

for the auxiliary variables is compared. We also studied the performance of estimating the con-

ditional hazard ratios for risk factors and their confidence intervals. We used different condi-

tional hazard ratios and different values of the association between survival time and the

auxiliary variables. Two combinations of sample sizes of m and r are considered used in the
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simulations, i.e., (m = 20, r = 10), and (m = 30, r = 20). We used 5000 simulated samples in our

simulation.

The parameter β1 is the association between T and Y, and β2 is the risk factor parameter.

The simulation results are given in Tables 1–3 for a dichotomous risk factor, while the results

of a continuous risk factor are presented in Tables 4–6. We estimated the empirical nominal

value (α = 0.05) and the tests’ power (see Tables 1 and 4). The estimated conditional hazard

ratios and their MSEs are reported in Tables 2 and 5, while the 95% confidence intervals for

hazard ratios are reported in Tables 3 and 6.

From Table 1, we can conclude that, when the risk factor is dichotomous, testing the

hypothesis of the risk factor’s effect, controlling for the Ranked Auxiliary Covariate Y in the

model, the DERSSmin results in a more powerful test than SRS and ERSSmin. All SRS, ERSSmin,

and DERSSmin achieved the test nominal value (0.05) under the null hypothesis in all cases.

We demonstrated the test’s power increases as the set size m increase and/or the value of β1

increases. However, using DERSSmin in the Cox proportional hazard model provides greater

power than SRS and ERSSmin, in all cases. Similarly, from Tables 2 and 3, DERSSmin has

smaller MSE and narrower confidence intervals in estimating the hazard ratios. Similar results

are concluded from Tables 4–6 when the risk factor is a continuous variable.

Table 1. Evaluating the (α = 0.05) and the power of testing Ho: β2 = 0 vs Ha: β2 6¼ 0 adjusting for (Z) in the model. (Binary risk factor) {Censoring variable = ci = U

(0,1)*1.5}.

Parameters m = 20 and r = 10
β1 β2 DERSSmin ERSSmin SRS

Events % Power of the test Events % Power of the test Events % Power of the test

0.2 0.0 0.730 0.045 0.674 0.057 0.567 0.048

0.2 0.3 0.762 0.416 0.710 0.396 0.608 0.333

0.2 0.5 0.781 0.843 0.732 0.825 0.635 0.786

0.2 0.8 0.805 1.000 0.761 1.000 0.672 0.999

0.5 0.0 0.885 0.048 0.801 0.046 0.566 0.045

0.5 0.3 0.901 0.513 0.825 0.487 0.606 0.366

0.5 0.5 0.908 0.906 0.839 0.888 0.630 0.787

0.5 0.8 0.916 1.000 0.854 1.000 0.662 0.995

1.0 0.0 0.973 0.052 0.913 0.061 0.557 0.059

1.0 0.3 0.976 0.530 0.924 0.507 0.590 0.363

1.0 0.5 0.977 0.921 0.928 0.907 0.612 0.759

1.0 0.8 0.980 1.000 0.935 1.000 0.642 0.991

m = 30 and r = 20

0.2 0.0 0.743 0.046 0.684 0.048 0.566 0.042

0.2 0.3 0.775 0.889 0.721 0.868 0.611 0.811

0.2 0.5 0.791 0.999 0.741 1.000 0.636 0.998

0.2 0.8 0.812 1.000 0.767 1.000 0.671 1.000

0.5 0.0 0.898 0.055 0.816 0.057 0.564 0.054

0.5 0.3 0.911 0.928 0.840 0.921 0.605 0.803

0.5 0.5 0.919 1.000 0.853 1.000 0.630 0.997

0.5 0.8 0.926 1.000 0.867 1.000 0.663 1.000

1.0 0.0 0.978 0.049 0.927 0.047 0.555 0.044

1.0 0.3 0.982 0.947 0.937 0.945 0.589 0.805

1.0 0.5 0.983 1.000 0.941 1.000 0.611 0.998

1.0 0.8 0.984 1.000 0.947 1.000 0.641 1.000

https://doi.org/10.1371/journal.pone.0278700.t001

PLOS ONE On Cox proportional hazards model performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0278700 April 26, 2023 7 / 15

https://doi.org/10.1371/journal.pone.0278700.t001
https://doi.org/10.1371/journal.pone.0278700


Application using the SEER incidents data set

We illustrate the Cox proportional hazards model based on DERSS, ERSS, and SRS using

SEER Incident Data [29]. We selected histologic grade as the primary predictor of interest and

month of life after a breast cancer diagnosis as the outcome. Due to breast cancer, deaths were

considered death and being alive, or Deaths due to other causes deemed to be censored. In the

Cox proportional hazards model, we also include age and tumor marker1 as confounders. The

data included 454,517 individuals, and 233,125 have complete data for a grade (1: well-differ-

entiated; 2: moderately differentiated; 3: poorly differentiated; 4: undifferentiated). Our analy-

sis was based on complete data. Since grade levels 3 and 4 are crossed on the survival plots,

which violates the proportional hazards assumption for the Cox model, we combined grade 3

and grade 4 into one single group as poorly differentiated or undifferentiated and denoted the

new grade variable (1: well-differentiated; 2: moderately differentiated; 3: poorly differentiated

or undifferentiated).

We treated the entire data set of 233,125 observations as a population and randomly

selected ERSS and DERSS samples (with m = 15, r = 20). We selected ERSS and DERSS based

on ranking on the lifetime directly since most of the data set variables are categorical. The only

potential continuous variable for ranking is age, which is only weakly associated with lifetime

Table 2. Estimation of Hazard ratio (HR) estimation and their MSE (Binary risk factor) {Censoring variable = ci = U(0,1)*1.5}.

m = 20 and r = 10

DERSSmin ERSSmin SRS

β1 HR Estimate MSE Estimate MSE Estimate MSE

0.2 1.000 1.009 0.030 1.008 0.033 1.007 0.039

0.2 1.350 1.360 0.052 1.36 0.057 1.359 0.066

0.2 1.649 1.672 0.083 1.679 0.089 1.690 0.108

0.2 2.226 2.258 0.148 2.256 0.152 2.257 0.170

0.5 1.000 1.018 0.023 1.018 0.026 1.023 0.04

0.5 1.350 1.373 0.045 1.376 0.049 1.381 0.073

0.5 1.649 1.683 0.075 1.684 0.081 1.688 0.108

0.5 2.226 2.271 0.143 2.268 0.151 2.289 0.186

1.0 1.000 1.012 0.021 1.012 0.024 1.011 0.038

1.0 1.350 1.373 0.045 1.371 0.047 1.370 0.072

1.0 1.649 1.671 0.067 1.673 0.072 1.681 0.106

1.0 2.226 2.273 0.14 2.277 0.147 2.275 0.200

m = 30 and r = 20

0.2 1.000 1 0.009 1 0.009 1.003 0.012

0.2 1.350 1.353 0.015 1.354 0.016 1.355 0.019

0.2 1.649 1.653 0.023 1.653 0.025 1.653 0.029

0.2 2.226 2.231 0.042 2.232 0.045 2.231 0.051

0.5 1.000 1.006 0.008 1.008 0.009 1.008 0.012

0.5 1.350 1.359 0.016 1.358 0.016 1.359 0.022

0.5 1.649 1.654 0.022 1.655 0.023 1.656 0.031

0.5 2.226 2.241 0.041 2.24 0.043 2.241 0.055

1.0 1.000 1.001 0.007 1.001 0.007 1.004 0.012

1.0 1.350 1.356 0.013 1.357 0.014 1.359 0.021

1.0 1.649 1.66 0.02 1.661 0.02 1.659 0.031

1.0 2.226 2.238 0.044 2.237 0.045 2.238 0.059

https://doi.org/10.1371/journal.pone.0278700.t002
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with hazards ratio close to 1. We performed the hypothesis testing of no difference in survival

time between the patients with a different histologic grade at diagnosis, adjusting for the covar-

iate age. Table 7 represents the survival analysis results for a Cox proportional hazards model

using all available data. The estimation of parameters and the conditional hazard ratios are

treated as actual for comparison purposes in this example.

Table 7 and Fig 1 are the results of the survival analysis based on the entire data. Fig 1 indi-

cates that the proportional hazard assumption of the model is valid. Also, Fig 1 shows that the

survival chance for grade 1 is higher than grade2 and grade 3, and grade 2 is higher than grade

3 of the disease. However, based on the p-values, the test of the effect of grade 3 on survival

time compared with grade 1 and 2 was significant, controlling for age, based on the 500 boot-

strap samples of SRS, ERSS, and DERSS of size n = 300. Both ERSS and DERSS used survival

time for ranking and chose the samples with the minimum survival time. The DERSS samples

give smaller p-values for the majority of the time and coincide with the whole data analysis.

The estimated power out of the 5000 runs was 0.944, 0.930, and 0.856, respectively, under

DERSS, ERSS, and SRS. Therefore, whenever possible, ERSS and/or DERSS are to be recom-

mended for survival analysis.

Table 3. Estimating 95% confidence Interval length and coverage probability (CP) of the Hazard Ratio (HR) (Binary risk factor) {Censoring variable = ci = U(0,1)

*1.5}.

DERSSmin ERSSmin SRS

m = 20 and r = 10

β1 HR length CP length CP Length CP

0.2 1.000 0.677 0.955 0.705 0.943 0.771 0.952

0.2 1.350 0.899 0.959 0.932 0.958 1.008 0.948

0.2 1.649 1.107 0.944 1.147 0.948 1.242 0.944

0.2 2.226 1.514 0.951 1.550 0.953 1.644 0.958

0.5 1.000 0.620 0.952 0.652 0.954 0.783 0.955

0.5 1.350 0.837 0.954 0.875 0.951 1.029 0.947

0.5 1.649 1.038 0.948 1.078 0.943 1.245 0.942

0.5 2.226 1.445 0.945 1.484 0.943 1.685 0.957

1.0 1.000 0.588 0.948 0.608 0.939 0.784 0.941

1.0 1.350 0.804 0.943 0.825 0.946 1.037 0.947

1.0 1.649 0.994 0.953 1.019 0.956 1.261 0.949

1.0 2.226 1.403 0.943 1.431 0.948 1.703 0.939

m = 30 and r = 20
0.2 1.000 0.376 0.954 0.392 0.952 0.432 0.958

0.2 1.350 0.501 0.956 0.519 0.961 0.564 0.963

0.2 1.649 0.612 0.953 0.631 0.946 0.681 0.953

0.2 2.226 0.839 0.956 0.860 0.963 0.914 0.958

0.5 1.000 0.344 0.945 0.361 0.943 0.435 0.946

0.5 1.350 0.465 0.926 0.484 0.935 0.569 0.948

0.5 1.649 0.572 0.953 0.592 0.949 0.686 0.948

0.5 2.226 0.800 0.955 0.820 0.954 0.924 0.949

1.0 1.000 0.328 0.951 0.337 0.953 0.437 0.956

1.0 1.350 0.447 0.952 0.458 0.954 0.578 0.951

1.0 1.649 0.556 0.953 0.567 0.955 0.698 0.950

1.0 2.226 0.778 0.933 0.788 0.937 0.940 0.940

https://doi.org/10.1371/journal.pone.0278700.t003
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Final remarks and conclusion

It is essential in collecting data to have a sampling scheme that is cost-effective and less time-

consuming. ERSS and DERSS, which are RSS modifications, are encouraging sampling tech-

niques that can effectively have more efficient estimators with less cost than SRS. We proposed

a more efficient survival regression analysis method based on Double Extreme Ranked Set

Sampling (DERSS) and Extreme Ranked Set Sampling (ERSS). Subjects are assumed to be

ranked based on an auxiliary variable associated with the response variable. We discussed

parameter estimation based on the maximum likelihood approach and provided an expression

for the estimated variance based on the inverse information matrix. Also, we discussed the

asymptotic behavior of the ML estimators. Our findings conclude that using ERSS and DERSS

can significantly increase power when used in a Cox proportional hazards model. We show

that the test’s power increases as the set size m increases through the simulation studies.

Table 7. Variables in the Equation using all the data (n = 233,125).

Variables B SE Wald Sig. Exp(B)

Age 0.0040 0.0004 10.66 <0.0001 1.0040

Grade 2 vs 1 0.9889 0.0277 35.73 <0.0001 2.6882

Grade (3 or 4) vs 1 1.8042 0.0267 67.55 <0.0001 6.0752

https://doi.org/10.1371/journal.pone.0278700.t007

Fig 1. Survival function for the grades (1: Well-differentiated; 2: Moderately differentiated; 3: Poorly differentiated or undifferentiated) using all

complete data (n = 233,125).

https://doi.org/10.1371/journal.pone.0278700.g001
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Moreover, ERSS and DERSS provide more efficient estimates of the parameters associated

with hazard ratios in smaller MSEs and narrower confidence intervals than those under SRS.
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