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Abstract

During the course of this research, we came up with a brand new distribution that is superior;
we then presented and analysed the mathematical properties of this distribution; finally, we
assessed its fuzzy reliability function. Because the novel distribution provides a number of
advantages, like the reality that its cumulative distribution function and probability density
function both have a closed form, it is very useful in a wide range of disciplines that are
related to data science. One of these fields is machine learning, which is a sub field of data
science. We used both traditional methods and Bayesian methodologies in order to gener-
ate a large number of different estimates. A test setup might have been carried out to assess
the effectiveness of both the classical and the Bayesian estimators. At last, three different
sets of Covid-19 death analysis were done so that the effectiveness of the new model could
be demonstrated.

1 Introduction

Covid-19 viruses, which have received a lot of attention over the last two years, are only one
example of the massive waves of viruses we confront today. To play our part as statisticians in
understanding and modelling the Covid-19 infections, It was necessary for us to devise a statisti-
cal model that could be used to fit and model the Covid-19 infections, despite the fact that these
infections could be either continuous or discrete random variables. For the purpose of this
study, we exerted a considerable amount of effort to select a model that offers a more satisfactory
fit for the Covid-19 infections that were observed in a number of different countries. We com-
promised by introducing a new superior distribution as a blend of existing distributions in
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order to remedy the deficiencies of the standard distribution. In other words, we blended exist-
ing distributions together to create the new distribution. For more information, see [1-9]. One
of the primary objectives of statistics is to develop applicable statistical models for occurrences
in the real world that can be modelled using already existing probability distributions. This is
one of the more important goals of statistics. In situations where the probabilities are being used
to represent an event in life that could be harmful or unpredictable.

Multiple probability distributions have been developed as a result of the complexity and dif-
ficulty of simulating real-life occurrences using standard distributions. This difficulty is a
direct result of the fact that standard distributions are used. There are many different applica-
tions for these distributions to be used in. There are times when the probability distributions
that are already known and easily accessible are unable to accurately reflect and describe the
data for particular natural occurrences. This is due to the fact that these distributions are still
in the process of developing. The generalised probability distributions end up being modified
and expanded as a direct consequence of the changes and expansions brought about by this
research. These modifications and expansions were brought about by this research.

The accuracy with which well-known probability distributions portray the tail shape of a
distribution was improved by adding a few new or additional parameters to the models. This
also improved the models’ applicability to the data of real occurrences.

To show the dispersion of particles in thermal equilibrium, Maxwell (M) [10] developed a
mathematical version of the Maxwell distribution. It has uni-modal and leptokurtic curves
which makes it has the fact that not all molecules travel at the same speed. The Maxwell model,
which has an impact on kinetic energy, explains many fundamental features of gases. It’s also
known as the momenta model, velocity model, degree of momenta model, and particle energy
model, and it’s used in astronomy, chemistry, and engineering. It was used as a lifetime distri-
bution for the first time in [11], and Bayesian estimation for its parameter was provided. Cha-
turvedi and Rani [12] added new parameters to M model and derived Bayesian and non-
Bayesian estimators. In recent research, several generalizations based on the M distribution
have been presented and statistically verified. Its cumulative-distribution-function (CDF), and
probability-density-function (PDF) are defined as follows

24/ oxe )

F(x) = erf(y/ox) BRI (1)

and

where erf(z) = %ﬁf e dt.

Weighted distribution theory offers a comprehensive solution to model formulation and
data interpretation issues. Weighted distributions are commonly used in investigations includ-
ing dependability, survival analysis, family data analysis, biology, ecology, and a variety of
other topics. For more details about weighted distributions, see [13-16].

The following constitutes the presentation of this article: In Section 2, we introduce the
proposed distribution Weighted power Maxwell, along with its PDF, and CDF functions, also
the graphical plot of the PDF and hazard rate function (HRF) are included in this section.

We presented its fuzzy reliability function in section 3. Some statistical properties for the

Weighted power Maxwell distributions are established in Section 4. In Section 5, conventional
estimating techniques were discussed. In section 6, we applied Bayesian estimating. The simu-
lation investigation and its associated numerical findings were completed in Section 7. Here is

PLOS ONE | https://doi.org/10.1371/journal.pone.0278659 January 3, 2023 2/26


https://doi.org/10.1371/journal.pone.0278659

PLOS ONE

Weighted power maxwell distribution: Statistical inference and COVID-19 applications

where Section 8’s data analysis begins. Last but not least, Section 9 contains the final observa-
tions that were extracted from this research paper.

2 Weighted power Maxwell distribution

To present the concept of a weighted distribution, suppose that X is a non-negative random
variable with its PDF f(x), then the PDF of the weight random variable X,, is given by

w(x)f (x)
E(w(x)) ’

where w(x) is a non-negative weight function and E(w(x)) = f x W)f(x)dx.
Yadav et al. [17] derived the power Maxwell (PM) distribution with PDF defined as follows

fulx) = x>0, (3)

4312 ﬁx.‘i/}—l efaxz/‘

= 4
8(x) 7 : (4)
and its CDF is given by
20(3/2x3”E7%(x25a) (5)
Gx)=1—— "7 7
(x) 7 ,
where E, (z) = [[" £ dt, a > 0 s a scale parameter and 8 > 0 is a shape parameter.
The ¢ moments of PM distribution is given by
c
“9p~(1(c
2 ~(Z
20 ﬁr<2 <ﬁ+3>> (6)

E(x) = [ x°g(x)dx = NG

Let w(x) = x°, by using Eqs 3, 4 and 6, we have the PDF and CDF of WPM distribution as
the following

1/c
o) o
2Ba2 ﬁ x3ﬁ+c—1e—azx /

)

s Gs)
F(x) =1- : (8)
ol
2\p
respectively, where I' B (ch + 3) X rx} is upper incomplete gamma function.

Plots of PDF of the WPM distribution are shown in Fig 1. The WPM distribution has a very
flexible density that can be symmetric, negative skewed, positive skewed, and reversed ]
shaped.

Plots of HRF of the WPM distribution are shown in Fig 2. The HRF of the WPM distribu-
tion can be bathtub, increasing and decreasing shaped. The shape of the HRF shows that the
WPM distribution is a flexible model for data modelling.

f(x) = .o, B,oc>0, (7)
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Fig 1. Plots of WPM PDF for different parametric values.
https://doi.org/10.1371/journal.pone.0278659.9001

3 Fuzzy and Non-Fuzzy reliability
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In Non-Fuzzy reliability analysis, the survival function (SF), and HRF of WPM distribution

provided by

1C , )
2\p
Qﬁe*“xzﬁ
h(x) = —F————,
() XE_crp(x?Par) (10)
2
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Fig 2. Plots of WPM HREF for different parametric values.
https://doi.org/10.1371/journal.pone.0278659.9002

respectively, where E, (z) = [
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The concepts of dependability and hazard rate function are probabilities that define the life-
time (a random variable) from the beginning of a failings to the point where we must modify
the production procedure. The life-time is measured from the beginning of a failings to the
point where we must modify the production procedure. The terms dependability function and
hazard rate function are used to refer to these probabilities, respectively. As a result of the
incorporation of fuzzy factors into these functions, the scope of application for dependability
and hazard rate functions has been broadened, which has resulted in a wider variety of applica-
tions that can make use of these functions. The fact that the colour red was chosen for the text
indicates that traditional reliability models take into account true values, which means that
they take into account the lifetime probability of the system component. However, in the real
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world, this system lifespan accuracy is not accurate at all. This is due to the fact that the values
of the system parameters obtained through experimentation, incorrect measurement are all
susceptible to some degree of ambiguity. To put it another way, the accuracy of this statement
is not accurate.

For the purposes of fuzzy reliability analysis, let T be a continuous random variable that
reflects a system failure time (component). Calculating the fuzzy dependability requires only
the fuzzy probability, which can be found in the formula [18].

00

S:(t)=P(T>t)= /,u(x) Jop()dx,0 < t < x < 00, (11)

t

where the membership function y(x) indicates the extent to which each component of a given
universe belongs to a fuzzy set. Assume now that p(x) is

—t
L where t, <x<t, t >0 (12)

It is possible to compute the lifespan of the fuzzy numbers function y(x), which corresponds to
a specific value, and this computation yields the result of 6 — Cut, 0 € [0, 1], can be obtained
as:pu(x) =0 — = =0, then

x(0) =t +0(t, —t,), where 0<0<1 (13)
As a result, the values of fuzzy reliability could be calculated for all 6 values. The fuzzy

dependability of the WPM distribution is determined by the fuzzy reliability definition. Thus,
the fuzzy reliability values of the WPM distribution can be obtained for all values of 0 as

x(0)
SF(t)0<9<1 - /f(x) dx7

4 Mathematical properties
4.1 Mode

By differentiating the logarithm of the PDF (7) concerning x and equating to zero, we get the
mode of WPM distribution as the following

1
1 il
X, = 22[3(3[32%1>2ﬁ, c+3p>1,

and if ¢ + 38 < 1, then WPM distribution has no mode.
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Fig 3. Plots of the mean, variance, skewness, and kurtosis of the HTLL model with g = 2.
https://doi.org/10.1371/journal.pone.0278659.g003

4.2 Moments and moment generating function
The " moments of the WPM distribution is given by

’
o fctr+3p
o ﬁl"<72ﬁ )

1/c
r-(-+3
HAS
Fig 3 shows the plots for the mean, variance, skewness, and kurtosis of the WPM model for

various parametric values of & and c. It is concluded from Fig 3 that as ¢ increases, the mean

and variance decrease, skewness and kurtosis increase. Also, as « increases, the mean and vari-
ance decrease, but skewness and kurtosis keep constant.

The 7" incomplete moments of the WPM distribution is given by

1= E(X') = [ 2f(x)dx =

’
“2pp c+r+38 4
o (72/3 et

Gl
where F(M

5 /33/’ , t2ﬂa> is lower incomplete gamma function.

L(t) = EC) = [} wf(x)dx =
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The moment generating function of the WPM distribution is given by

k
v o (ctk+3p
o ﬂr<—2ﬁ )

M(t):i 1/c
<)

2\p

We can replace t with if to get the characteristics function.

4.3 Mean residual life and mean inactivity time
The mean residual life (MRL) of WPM distribution is defined as the following

1
oG] S

TG R G)

where I(t) is first incomplete moments and I B (fi + 3) , t2/’<x} is upper incomplete gamma

function.

The mean inactivity time (MIT) is defined as the waiting time elapsed since the failure of an
item on the condition that this failure had occurred in (0, t). The MIT of WPM distribution is
defined as the following

1

"o (ct3f+1
o ﬁr<72ﬂ )

GG

where I B (ﬁ + 3) , t?/foc] is the upper incomplete gamma function.

4.4 Order statistics
The ith order statistic’s PDF and CDF for the WPM distribution are shown.
_ n! i—1 n—i _ 1(ey3 3f+c—1 —ax?h 1/c h
ful®) = (ECEnT [F(x)]™[1 = F))" 'f(x) = 2nlod(549) 391 AV

(5 3)’,-#,}4 U] b))

Irr(—i+n+1) ’

X

JFiqli—mnyi+1;1—
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1ic, <
where ,F,{1,i —n;i+1;1— M} is a hypergeometric function and
F[E(ﬁ+3),x /x]

r [% (; + 3) N oc} is upper incomplete gamma function.
see [19] for more reading.

: 1
lim P(W, <dpx) =1—exp(~x¥), x>0, d,=F" <‘>

n—-+00 n

00 , 0<x¥ <1,

lim P(Z, < byx)={ e*"  x¥=1

) )
n—-+00

0 , x> 1,

where b, = F'(1 —1).

4.5 Inequality curves

The Lorenz curve is the most extensively used and well-known of the inequality curves, and it
has applications in a wide range of domains.
It is defined for the WPM distribution as follows:

r 7C+3ﬂ+1,ocx23
1 2p ’

Lp) = —~=1- F(c+3[3+1> )
2p

where F(x,) = p, I;(#) is first incomplete moments, x,, is the quantile function and

r (% ! ) upper incomplete gamma function.

Also, we can determine Bonferroni and Zenga inequality curves according to their relation-
ship with the Lorenz curve as the following (for more details see [20])
(p) Lip) —p

Be) == 20 = o )

4.6 Entropies

This subsection contains different types of entropies for our proposed model such as Rényi,
Tsallis, and Shannon entropies, for more details see [21-23]. The Rényi, Kx(r), and Tsallis,
Lx(r) entropies of order r, where r > 0, r # 1 of our proposed distribution are given, respec-
tively, by

1 (o]
K.(r) = - rlog 15 (x)dx, r>0,r#1
x=0
1 br(5+3 LG ] r(c+3p—1)+1
. l 2 o2 (5 )(ocr) o7 {F[%(fs”)] } F{ 7 }
r—1 °8 p
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and

L) = ijff(x)dx _ 1]

. r(3fte—1)+1
2r71a%‘f(/—}+3) ) 5 1—~|:r(c+3‘/}—1)+1:|
) G d

-1

The Shannon entropy of WPM distribution is determined as follows

lim Ky (r)

r—1

log() — 38 + B log (4) + 2B log(B) + (38 +c — ”‘p(c ;ﬁgﬁ) 2 IOg(r [C ;/? ﬂ]) -

2B ’

where @(z) = £1og[I"(z)].

4.7 Stress-strength reliability

Assume that X and Y are two independent random variables drawn from the WPM distribu-
tion with parameters (¢, B, c;) and (@, B, c,), respectively. Then by using CDF 8 and PDF 7, we
have stress-strength reliability of WPM distribution as follows

R =PX>Y)=[" F,(x)fi(x)dx

i) ( 3)

~ 3f+c1—1 jo(—x2F) d
GGyt

1(%2

where A = y(% (% + 3) ) (xxw) = < 4(#3) et dt. From Wikipedia (https://en.wikipedia.

org/wiki/Incomplete_gamma_function), we have

n

= X
Hayx) = e (@ =
; T(a+n+1)
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Then we have
¢+, +2p(n+3)
oo 2 o0 . N
R =3 22 a1 o)) =) (4 ) +20n
1/c 1/c
— 1 2 0
(o (2+3))T(5(2+3) +n+1
2\p 2\p
cy+eo+2f(n+4) ey .
1At (s
&l 2 7 od(F+3) r 2 +3)f+¢ +c,
o Z 1/c 1/c 2B
— 1 2
SO (243) )T (5 (243) +n+1
2\p 2\p

Fig 4 show Stress-strength reliability of WPM model has different values by using different

values of parameters.

5 Maximum likelihood estimation
Let x;, x5, . . ., X,, be a random sample of size n from the PDF of the WPM model, then the like-
lihood function takes the form

no op

_ Qnﬁnag(#&i)e*a Zi:l ; H:l:1 x?/Hc—l
:| n

L(®) = : )
1/¢c (15)

where © is the parameter vector (¢, 3, ¢). Then the log-likelihood function takes the form

U®) =n ln(2)+ln(ﬁ)+% %+3 In() —In{ T % %+3 —oczn:xfﬁ—l—(?;ﬁ—i—c—I)Zn:ln(xi).(m)

We have estimators of the parameters a,  and ¢ of the proposed model via the MLE by
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differentiating Eq (16) with regard to ¢, § and c, respectively, and equating to zero.

"o n@ ). > 1)
.11 /¢
%E)) = % - g/;, In(or) — nm - 2a§x§ﬁ In(x,) + 321n(x,»), (18)
and
aeé(f) _ Q_nﬁln(oc) - ”W n iln(x,-). (19)

, . AT [L( &+ oo (e _
where I' (x) = [[*#'e ' In(t)dt then T, %(72 + 3)] ) < i) gt In(t)dt,

and f,} [% (ﬁ + 3)} _ RG] _ e e AlH3) -1t In(t)dt.

—

P 262 Jo
As it seems, from (17), (18) and (19), analytic solutions of MLEs of ¢,  and ¢ are not avail-
able. Therefore, the “maxLik” package can be used numerically to perform an iterative New-
ton-Raphson (NR) approach in order to achieve the appropriate MLEs &, f3, and ¢ for any
given data sets. Once the maximum likelihood estimates of o, § and c calculated, the MLEs of
the non-fuzzy reliability and fuzzy reliability indices S(¢) (9) at any mission time £ > 0 can be

easily derived using the invariance property of MLEs &, f and ¢ as

and

5.1 Asymptotic confidence intervals

To build the two-sided 100(1-)% AClIs for the unknown parameters o, §, and ¢, or any func-
tion of them such as S(¢) and Sx(¢), say © = (&, 5, ¢, S(1), Sg(t)), the Fisher’s information matrix
L,(0) = E[—(0°(0]x))/007 ], i,j = 1,2. Since the exact solutions of the Fisher’s expectation

is tedious to obtain, hence the asymptotic variance-covariance (V-C) matrix of the MLEs &, B
and ¢ can be obtained by inverting I(¢) and dropping E with replacing &, 8 and ¢ by their
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MLEs &, ff and ¢, respectively, see [24]. Also, [25] stated that the MLE ® and MPSE © are

asymptotically analogous, in fact, ® = © + o(n /).
However, by differentiating (16) partially with respect to ¢, # and c, locally at their MLEs

&, B and ¢, the approximate V-C matrix, I"' (&, i¢), is given by

1 N ~ ~
=4, =ty Os Osp Os
172D A ~ A~ ~
I @ap,c)= |~y —Ly —Lyy =% Opp Opp |- (20)
=yl Uyl e O O O

To construct the ACIs of S(¢) and Sx(f), one needs to obtain the corresponding estimated
variances. Practically, the most statistically efficient method used to construct confidence
intervals is called the delta approach. This approach is useful and easy to utilize compared to
the empirically-driven bootstrap approach due to the latter should be taken as a second-choice
alternative when the Taylor series approximation is empirically incorrect, see [26]. However,
based on the asymptotic normality of the MLEs of the reliability parameters of life S(¢) and
S(t), we have S(t) ~ N(S(t), 6§<t)) and S, (t) ~ N(S,(t), agp(t)). According to the delta
method, from (20), the ACIs for S(t) and Sg(f) can be constructed using the corresponding
normality, respectively as

(}E(t) = [Aso)rl(“’57C)A§(t>]|(0,e>a and ‘ATEN) = [Ah(t)lil((hﬁaC)Agp(t)H(()‘i)?

where Ag(; and ASF(,) are the gradient of S() and Sx(¢) obtained at &, ﬁ and ¢ as

_ [9Se(t) OSk(t) OS.(t) _ [08e(t) 9Sp(t) OSg(t)
o= \"ay o e | Aso = |Toy g e ||

Hence, using the concept of large sample theory for MLEs @ of ©, the 100(1 — 7)% two-
sided AClISs for the unknown parameter o, 3, ¢, S(t) and Sg(t) is given by

©F %5/ \ 62)’

where 67 is the estimated variance of 0, and 2,2 is the percentile of the standard normal dis-

tribution with upper probability (y/2) — th.

6 Bayesian estimators

The Bayesian paradigm has become the most common technique in several sectors in recent
years, including but not limited to different applications. Its capacity to use prior information
in the analysis makes it particularly valuable in dependability studies, where one of the major
obstacles is data availability. The Bayes estimates and associated credible interval of the model
parameters @, §, and c, as well as the fuzzy and non-fuzzy reliability parameters S(t) and Sg(#),
are discussed in this section.

6.1 Prior distribution and loss function

Because the gamma prior distribution can take on a variety of shapes depending on its parame-
ter values, using separate gamma priors is a relatively simple process that can lead to discover-
ies with more explicit posterior density expressions. As a result, we evaluated gamma density
priors, which are more adjustable in terms of altering support for the WPM distribution
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parameters than other difficult prior distributions. Thus, the WPM parameters a, 3, and c are
assumed to have independent gamma PDFs as Gamma(q,, wy), Gamma(q,, w,) and Gamma
(g3» w3), respectively. Then, the joint prior density of ¢, 5, and ¢ becomes

TE(‘“’ B7 C) X Occ“71B‘12*1Cq37167(w1z+w2[f+W3C)7 &, ﬁ) c> 07 (21)

where the hyperparameters gq,, w;, i = 1, 2, 3, are chosen to reflect prior knowledge about the
unknown parameters o, f and ¢, and they assumed to be known and non-negative, we deter-
mined the hyperparameters by eliciting hyper-parameters as El-Sherpieny et al. [27].

In literature, the choice of symmetric and asymmetric loss functions are an important issue
in Bayesian analysis. So in this study for estimating the considered unknown quantities, the
most widely-used symmetric loss function is the SEL function, £(-), which is defined as

L£(©,0)= (0 -0), (22)

where © being an estimate of ©. Under (22), objective estimate © is given by the posterior
mean of ©. However, any other loss function can be easily incorporated.

The entropy loss function (ELF) is a good asymmetric loss function, according to Calabria
and Pulcini [28]. The entropy loss function of the form is considered as

L,(0,0) x (%) —bln <%> -1, (23)

whose minimum occurs at @ = ©. Then the Bayes estimator of © under entropy loss function
is

6, = [EG) (@b)] b, (24)

6.2 Posterior analysis

The joint posterior density function, 7;(-) of @, f and c is given by
m, (e, B, clx) = Ky 'm(, B, ) L(2, B, clx), (25)

where K, = [\~ [ 7, (o, B, c|x)doddc is the normalizing constant.

Substituting (15) and (21) into (25), the joint posterior PDF of , f and ¢ becomes

., nooap
2nﬁn+qulcq371a§(%+d) +q; —167(3W2+5W3)e—a(w1+21:1 x; ) Hn x3[i+c—1

ey

Under SELF (22) and ELF (24), the Bayesian estimator for any function of ¢, f and ¢, say ©,
is the posterior expectation of ©. Therefore, it is necessary to acquire the marginal posterior
distributions for each parameter of ¢, 3, and c in order to develop these estimations, because
(26) implicit mathematical expressions. It is quite evident that obtaining explicit forms for the
marginal PDFs for each unknown parameter is not even remotely conceivable. In light of this,
our intention is to use certain simulation techniques, such as the MCMC approaches, in order
to generate the Bayesian estimates and the credible intervals that correspond to them.

EL(OC, ﬁ,C|§) = Kfl
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First, from (26), we obtain the conditional posterior distributions of the supplied data for e,
B, and c as follows:

26

7, (2|, ¢, x) x a%(fé*‘)*ql*le*“(WﬁZLXI )7 (27)

ﬁwﬂzfle—ﬁ“’?(f2 Z; X;M H?:l x?ﬂ ( )
e g 7 28
G}

431y 3F o=ows TT" =1
B ofem s T, x;

Gians

From (27), (28) and (29), it is plainly clear that no known distribution can be analytically
reduced to the conditional posterior distributions of parameters, and as a result, they cannot
be sampled directly using the techniques that are generally accepted. Therefore, in order to
mimic samples from (27), (28) and (29), the Metropolis-Hasting (MH) method using normal
proposal distributions.

The MH technique is a very useful MCMC strategy since it can generate random samples
from a posterior density distribution with an independent proposal distribution, as well as cal-
culate Bayes estimates and generate HPD credible intervals. Furthermore, this technique pro-
vides an easy-to-apply chain form of the Bayesian estimate from a practical standpoint.

7, (Blo, ¢, X)

and

7, (clo, f,X)

7 Simulations study and its numerical results

This section is devoted to exploring the performance of the introduced estimation methods for
estimating the parameters of the proposed model using detailed simulation results. Several
sample sizes, n = {50, 150}, and several values of the parameters, a = {0.25, 1.5}, = {0.3, 1.3}
and ¢ ={0.6, 2}, are considered to generate N = 5000 random samples from the proposed distri-
bution based on Eq (8). The average biases (Bias), and mean square errors (MSEs) are calcu-
lated. using the following equations

1 1
. _ A _ _ = A o 2
Bias=1> |0 — @], MSE=-3 (0 —0)

i=1 i=1

where © = ¢, f, c. The simulation results of the suggested model parameters using the nine
estimation methodologies are shown in Tables 1-4.

It is concluded from the Tables 1-4 that all of the suggested distribution’s parameter esti-
mates are extremely reliable and very close to their true values, with minimal biases, and MSEs
in all circumstances. For all scenarios analysed, the proposed estimators are consistent, with
the bias and MSE decreasing as n grows. The MLE and Bayesian estimate approaches based on
symmetric and asymmetric loss functions perform admirably in estimating the proposed
model parameters.

8 Modeling real data with analysis

In this section, we focus on three real data analyses which are relevant to Covid-19. The first
data is taken from [29] and represents the United Kingdom transformed Covid-19 data and
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Table 1. Bayesian ad non-Bayesian estimation for parameters of WPM distribution:A.

a=15,p=13 MLE SELF ELFd=-0.5 ELFd=1.5
c n Bias MSE L.CI L.BP LBT Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI
0.6 | 50 o -0.1325 | 0.9573 | 3.8020 | 0.1266 | 0.1267 0.0162 | 0.0237 | 0.5757 0.0103 | 0.0234 | 0.5759 | -0.0134 | 0.0230 | 0.5820
B 0.1117 | 0.6226 | 3.0636 | 0.0942 | 0.0946 0.0257 | 0.0223 | 0.5537 0.0198 | 0.0219 | 0.5561 | -0.0042 | 0.0210 | 0.5485
c 0.0180 | 0.0480 | 0.8566 | 0.0266 | 0.0267 0.0255 | 0.0465 | 0.7895 | -0.0041 | 0.0433 | 0.7890 | -0.1625 | 0.0426 | 0.6907
S(1) 0.1315 | 0.0805 | 0.9863 | 0.0311 | 0.0310 | -0.0010 | 0.0021 | 0.1768 | -0.0025 | 0.0021 | 0.1774 | -0.0140 | 0.0026 | 0.1905
S(1.5) 0.1485 | 0.0731 | 0.8864 | 0.0285 | 0.0286 | -0.0006 | 0.0005 | 0.0803 0.0002 | 0.0005 | 0.0811 0.0024 | 0.0005 | 0.0829
Sp(6=0.25) | -0.0437 | 0.0048 | 0.2105 | 0.0064 | 0.0064 0.0020 | 0.0003 | 0.0610 0.0008 | 0.0003 | 0.0607 | -0.0048 | 0.0003 | 0.0614
Sp(6=0.55) | -0.0562 | 0.0189 | 0.4917 | 0.0162 | 0.0163 0.0024 | 0.0009 | 0.1142 0.0003 | 0.0009 | 0.1143 | -0.0109 | 0.0010 | 0.1179
S =0.9) | -0.0277 | 0.0447 | 0.8219 | 0.0244 | 0.0245 0.0003 | 0.0014 | 0.1455 | -0.0020 | 0.0015 | 0.1466 | -0.0158 | 0.0018 | 0.1537
150 o 0.0363 | 0.5669 | 2.9495 | 0.0982 | 0.0989 0.0034 | 0.0109 | 0.4035 0.0019 | 0.0109 | 0.4012 | -0.0039 | 0.0109 | 0.4016
B 0.0200 | 0.1894 | 1.7052 | 0.0571 | 0.0562 0.0049 | 0.0082 | 0.3460 0.0036 | 0.0082 | 0.3453 | -0.0020 | 0.0082 | 0.3496
c 0.0304 | 0.0456 | 0.8286 | 0.0274 | 0.0271 | -0.0104 | 0.0254 | 0.5995 | -0.0173 | 0.0267 | 0.6207 | -0.0479 | 0.0357 | 0.7175
S(1) 0.03979 | 0.03984 | 0.76711 | 0.02401 | 0.02435 | -0.00150 | 0.00098 | 0.12170 | -0.00184 | 0.00099 | 0.12141 | -0.00361 | 0.00107 | 0.12387
S(1.5) 0.04436 | 0.01090 | 0.37057 | 0.01165 | 0.01164 | 0.00060 | 0.00022 | 0.05672 | 0.00081 | 0.00022 | 0.05689 | 0.00158 | 0.00023 | 0.05783
Sp(6 =0.25) | -0.02000 | 0.00187 | 0.15023 | 0.00487 | 0.00483 | -0.00021 | 0.00009 | 0.03771 | -0.00048 | 0.00009 | 0.03779 | -0.00167 | 0.00010 | 0.03806
Sk(6 =0.55) | -0.02400 | 0.00926 | 0.36555 | 0.01188 | 0.01177 | -0.00088 | 0.00035 | 0.07342 | -0.00139 | 0.00035 | 0.07361 | -0.00364 | 0.00038 | 0.07568
Sp(6=0.9) | -0.00963 | 0.02335 | 0.59817 | 0.01830 | 0.01832 | -0.00189 | 0.00061 | 0.09624 | -0.00246 | 0.00061 | 0.09668 | -0.00504 | 0.00067 | 0.09981
2 | 50 a -0.2009 | 0.9134 | 3.6646 | 0.1190 | 0.1155 0.0181 | 0.0288 | 0.6376 0.0117 | 0.0285 | 0.6369 | -0.0140 | 0.0282 | 0.6345
B 0.0992 | 0.6536 | 3.1467 | 0.0993 | 0.1001 0.0246 | 0.0229 | 0.5703 0.0195 | 0.0226 | 0.5696 | -0.0013 | 0.0217 | 0.5642
c 0.2127 | 1.1643 | 4.1489 | 0.1340 | 0.1343 0.0105 | 0.0872 | 1.1325 0.0005 | 0.0874 | 1.1316 | -0.0402 | 0.0911 | 1.1451
S(1) 0.15613 | 0.05591 | 0.69649 | 0.02265 | 0.02245 | -0.00581 | 0.00192 | 0.16974 | -0.00398 | 0.00191 | 0.17042 | 0.00340 | 0.00196 | 0.17061
S(1.5) 0.26355 | 0.16286 | 1.19859 | 0.03819 | 0.03890 | -0.00422 | 0.00109 | 0.12639 | -0.00172 | 0.00111 | 0.12911 | 0.00901 | 0.00137 | 0.13775
Sp(6 =0.25) | -0.06501 | 0.00804 | 0.24221 | 0.00759 | 0.00761 | 0.00244 | 0.00026 | 0.05993 | 0.00140 | 0.00025 | 0.05926 | -0.00284 | 0.00025 | 0.05994
Sp(6 =0.55) | -0.11464 | 0.03052 | 0.51705 | 0.01584 | 0.01580 | 0.00319 | 0.00099 | 0.11770 | 0.00159 | 0.00098 | 0.11714 | -0.00515 | 0.00100 | 0.11659
Sp(6=0.9) | -0.11562 | 0.05515 | 0.80167 | 0.02591 | 0.02557 | -0.00021 | 0.00151 | 0.15062 | -0.00121 | 0.00151 | 0.15096 | -0.00584 | 0.00157 | 0.15349
150 o 0.0007 | 0.6245 | 3.0994 | 0.1006 | 0.1008 0.0057 | 0.0126 | 0.4274 0.0042 | 0.0125 | 0.4271 | -0.0017 | 0.0126 | 0.4286
B 0.0220 | 0.2335 | 1.8932 | 0.0591 | 0.0594 0.0060 | 0.0071 | 0.3155 0.0049 | 0.0070 | 0.3158 0.0001 | 0.0070 | 0.3167
c 0.2048 | 1.1116 | 4.0562 | 0.1324 | 0.1322 | -0.0074 | 0.0249 | 0.6126 | -0.0092 | 0.0250 | 0.6138 | -0.0162 | 0.0256 | 0.6161
S(1) 0.07105 | 0.02651 | 0.57452 | 0.01867 | 0.01875 | -0.00252 | 0.00082 | 0.10827 | -0.00203 | 0.00082 | 0.10893 | -0.00009 | 0.00083 | 0.11014
S(1.5) 0.10817 | 0.04484 | 0.71400 | 0.02326 | 0.02318 | -0.00088 | 0.00043 | 0.07965 | -0.00026 | 0.00043 | 0.07979 | 0.00228 | 0.00045 | 0.08024
Sp(6=0.25) | -0.03092 | 0.00281 | 0.16906 | 0.00544 | 0.00544 | 0.00037 | 0.00008 | 0.03392 | 0.00013 | 0.00008 | 0.03386 | -0.00084 | 0.00008 | 0.03410
Sp(6 =0.55) | -0.05106 | 0.00975 | 0.33155 | 0.01033 | 0.01045 | 0.00012 | 0.00031 | 0.06822 | -0.00025 | 0.00031 | 0.06826 | -0.00174 | 0.00031 | 0.06797
Sp(6=0.9) | -0.04357 | 0.01708 | 0.48326 | 0.01574 | 0.01592 | -0.00120 | 0.00053 | 0.08903 | -0.00142 | 0.00053 | 0.08933 | -0.00233 | 0.00054 | 0.08857

https://doi.org/10.1371/journal.pone.0278659.t001

spans 82 days, from May 1, 2021 to July 16, 2021. For the first dataset, the transformation was
performed by [29] according to the following procedure:

X

~ND
" CC - CD,

i

x 1000,

where ND is daily new deaths, CC is daily cumulative cases, CD is daily cumulative deaths and
x; is the transformed data. The first data is given as folllows: 0.0023, 0.0023, 0.0023, 0.0046,
0.0065, 0.0067, 0.0069, 0.0069, 0.0091, 0.0093, 0.0093, 0.0093, 0.0111, 0.0115, 0.0116, 0.0116,
0.0119, 0.0133, 0.0136, 0.0138, 0.0138, 0.0159, 0.0161, 0.0162, 0.0162, 0.0162, 0.0163, 0.0180,
0.0187, 0.0202, 0.0207, 0.0208, 0.0225, 0.0230, 0.0230, 0.0239, 0.0245, 0.0251, 0.0255, 0.0255,
0.0271, 0.0275, 0.0295, 0.0297, 0.0300, 0.0302, 0.0312, 0.0314, 0.0326, 0.0346, 0.0349, 0.0350,
0.0355, 0.0379, 0.0384, 0.0394, 0.0394, 0.0412, 0.0419, 0.0425, 0.0461, 0.0464, 0.0468, 0.0471,
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Table 2. Bayesian ad non-Bayesian estimation for parameters of WPM distribution:B.

a=0.25p4=13
c n
0.6 | 50 a
B
c
S(1)
S(1.5)
Sk(6 =0.25)
Sk(6 =0.55)
S(6=10.9)
150 o
B
c
S(1)
S(1.5)
Sr(6 =0.25)
Sr(6 =0.55)
Sr(6=10.9)
2 | 50 a
B
c
S(1)
S(1.5)
SK(6=0.25)
SK(8 =0.55)
SH8=0.9)
150 o
B
c
S(1)
S(1.5)
Sk(6 =0.25)
Sk(6 =0.55)
Sp(6=10.9)

Bias
-0.0614
0.1675
0.0456
0.01883
0.11022
-0.01468
-0.03961
-0.07857
-0.0400
0.0612
0.0312
0.01176
0.07171
-0.00968
-0.02616
-0.05167
-0.0635
0.1555
0.1899
0.00843
0.07063
-0.00787
-0.02333
-0.05179
-0.0443
0.0578
0.1060
0.00601
0.04998
-0.00563
-0.01662
-0.03668

MSE
0.0273
0.6440
0.0607
0.00177
0.02658
0.00050
0.00330
0.01185
0.0194
0.2024
0.0520
0.00129
0.01666
0.00033
0.00210
0.00717
0.0280
0.6910
1.0743
0.00015
0.00784
0.00010
0.00087
0.00412
0.0208
0.2492
1.0569
0.00009
0.00495
0.00006
0.00055
0.00262

MLE SELF ELFd =-0.5 ELFd=1.5

L.CI L.BP LBT Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI
0.6017 | 0.0184 | 0.0183 0.0286 | 0.0075 | 0.2973 0.0210 | 0.0068 | 0.2894 | -0.0079 | 0.0054 | 0.2657
3.0781 | 0.0965 | 0.0973 | -0.0019 | 0.0212 | 0.5390 | -0.0074 | 0.0212 | 0.5382 | -0.0297 | 0.0218 | 0.5398
0.9492 | 0.0295 | 0.0291 0.0297 | 0.0567 | 0.8963 0.0022 | 0.0528 | 0.8697 | -0.1396 | 0.5108 | 0.8981
0.14744 | 0.00458 | 0.00463 | -0.00727 | 0.00044 | 0.07285 | -0.00606 | 0.00041 | 0.07252 | -0.00326 | 0.00041 | 0.07391
0.47117 | 0.01532 | 0.01538 | -0.01980 | 0.00254 | 0.17563 | -0.01248 | 0.00224 | 0.17154 | 0.01103 | 0.00245 | 0.18374
0.06636 | 0.00203 | 0.00203 | 0.00280 | 0.00006 | 0.02743 | 0.00180 | 0.00005 | 0.02648 | -0.00132 | 0.00005 | 0.02699
0.16315 | 0.00533 | 0.00535 | 0.00659 | 0.00031 | 0.06204 | 0.00390 | 0.00027 | 0.06047 | -0.00483 | 0.00029 | 0.06212
0.29554 | 0.00961 | 0.00963 | 0.01124 | 0.00082 | 0.10224 | 0.00595 | 0.00070 | 0.09889 | -0.01179 | 0.00088 | 0.10538
0.5228 | 0.0160 | 0.0159 0.0052 | 0.0021 | 0.1759 0.0035 | 0.0020 | 0.1757 | -0.0033 | 0.0019 | 0.1726
1.7480 | 0.0553 | 0.0555 0.0040 | 0.0080 | 0.3447 0.0027 | 0.0080 | 0.3449 | -0.0022 | 0.0080 | 0.3475
0.8861 | 0.0292 | 0.0282 | -0.0078 | 0.0249 | 0.6187 |-0.0141 | 0.0259 | 0.6330 | -0.0410 | 0.0322 | 0.6753
0.13334 | 0.00417 | 0.00406 | -0.00217 | 0.00015 | 0.04593 | -0.00190 | 0.00015 | 0.04599 | -0.00092 | 0.00015 | 0.04615
0.42097 | 0.01355 | 0.01354 | -0.00496 | 0.00084 | 0.10919 | -0.00328 | 0.00083 | 0.10989 | 0.00315 | 0.00087 | 0.11274
0.06041 | 0.00189 | 0.00183 | 0.00068 | 0.00002 | 0.01709 | 0.00046 | 0.00002 | 0.01701 | -0.00041 | 0.00002 | 0.01694
0.14743 | 0.00468 | 0.00464 | 0.00154 | 0.00010 | 0.03821 | 0.00092 | 0.00010 | 0.03803 | -0.00144 | 0.00011 | 0.03898
0.26313 | 0.00840 | 0.00836 | 0.00252 | 0.00026 | 0.06082 | 0.00130 | 0.00026 | 0.06084 | -0.00339 | 0.00028 | 0.06258
0.6075 | 0.0189 | 0.0190 0.0404 | 0.0118 | 0.3739 0.0312 | 0.0105 | 0.3600 | -0.0039 | 0.0076 | 0.3245
3.2027 | 0.1063 | 0.1045 | -0.0056 | 0.0255 | 0.6331 | -0.0110 | 0.0255 | 0.6338 | -0.0328 | 0.0261 | 0.6328
3.9961 | 0.1268 | 0.1269 0.0096 | 0.0875 | 1.1290 0.0012 | 0.0874 | 1.1243 | -0.0327 | 0.0891 | 1.1325
0.03537 | 0.00115 | 0.00114 | -0.00461 | 0.00011 | 0.03293 | -0.00339 | 0.00008 | 0.02987 | 0.00077 | 0.00005 | 0.02415
0.20945 | 0.00661 | 0.00654 | -0.02081 | 0.00170 | 0.13484 | -0.01241 | 0.00128 | 0.12537 | 0.01678 | 0.00118 | 0.11355
0.02515 | 0.00081 | 0.00080 | 0.00283 | 0.00004 | 0.02000 | 0.00182 | 0.00003 | 0.01810 | -0.00163 | 0.00002 | 0.01549
0.07041 | 0.00216 | 0.00217 | 0.00738 | 0.00023 | 0.05043 | 0.00450 | 0.00017 | 0.04624 | -0.00540 | 0.00014 | 0.04064
0.14874 | 0.00464 | 0.00461 | 0.01408 | 0.00077 | 0.09084 | 0.00800 | 0.00057 | 0.08575 | -0.01308 | 0.00059 | 0.07894
0.5383 | 0.0163 | 0.0163 0.0104 | 0.0030 | 0.2037 0.0082 | 0.0029 | 0.2036 | -0.0003 | 0.0026 | 0.2002
1.9448 | 0.0620 | 0.0606 | -0.0014 | 0.0086 | 0.3516 | -0.0026 | 0.0086 | 0.3511 | -0.0076 | 0.0086 | 0.3530
4.0106 | 0.1223 | 0.1194 0.0032 | 0.0240 | 0.5814 0.0016 | 0.0240 | 0.5828 | -0.0047 | 0.0243 | 0.5867
0.02843 | 0.00095 | 0.00095 | -0.00113 | 0.00002 | 0.01652 | -0.00086 | 0.00002 | 0.01626 | 0.00015 | 0.00002 | 0.01542
0.19409 | 0.00612 | 0.00610 | -0.00469 | 0.00039 | 0.07358 | -0.00274 | 0.00036 | 0.07215 | 0.00478 | 0.00036 | 0.07167
0.02253 | 0.00070 | 0.00070 | 0.00066 | 0.00001 | 0.01050 | 0.00043 | 0.00001 | 0.01028 | -0.00045 | 0.00001 | 0.01017
0.06474 | 0.00208 | 0.00206 | 0.00168 | 0.00005 | 0.02726 | 0.00101 | 0.00005 | 0.02658 | -0.00154 | 0.00005 | 0.02625
0.14000 | 0.00452 | 0.00457 | 0.00312 | 0.00018 | 0.04952 | 0.00169 | 0.00017 | 0.04935 | -0.00378 | 0.00017 | 0.04927

https://doi.org/10.1371/journal.pone.0278659.t1002

0.0495, 0.0501, 0.0521, 0.0571, 0.0588, 0.0597, 0.0628, 0.0679, 0.0685, 0.0715, 0.0766, 0.0780,
0.0942, 0.0960, 0.0988, 0.1223, 0.1343, and 0.1781. The second data representing the drought
mortality rate from COVID-19 owned by Canada for 36 days, April 10, 2020 to May 15, 2020,
see link https://covid19.who.int/ or [30]. The second data is given as follows: 3.1091, 3.3825,
3.1444, 3.2135, 2.4946, 3.5146, 4.9274, 3.3769, 6.8686, 3.0914, 4.9378, 3.1091, 3.2823, 3.8594,
4.0480, 4.1685, 3.6426, 3.2110, 2.8636, 3.2218, 2.9078, 3.6346, 2.7957, 4.2781, 4.2202, 1.5157,
2.6029, 3.3592, 2.8349, 3.1348, 2.5261, 1.5806, 2.7704, 2.1901, 2.4141 and 1.9048.

The third data represents the COVID-19 data of Saudi Arabia for a period of 283 days from
April 20, 2020, to January 17, 2021, which represents the number of deaths per day and is
derived from [8]. Third data is given as follows: 0.0831716, 0.125439, 0.15873, 0.123077,
0.15083, 0.103645, 0.063482, 0.0566653, 0.0610724, 0.0539374, 0.0577645, 0.0520472,
0.0394851, 0.0506659, 0.0400507, 0.0556517, 0.0172553, 0.0267781, 0.0401345, 0.0235294,
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Table 3. Bayesian ad non-Bayesian estimation for parameters of WPM distribution:C.

a=15,=03 MLE SELF ELFd =-0.5 ELFd=1.5
c n Bias MSE L.CI L.BP LBT Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI
0.6 | 50 o -0.2148 | 0.9269 | 3.6808 | 0.1133 | 0.1130 | -0.0145 | 0.0376 | 0.7236 | -0.0218 | 0.0378 | 0.7217 | -0.0516 | 0.0397 | 0.7223
B 0.0232 | 0.0329 | 0.7055 | 0.0219 | 0.0216 0.0075 | 0.0010 | 0.1146 0.0062 | 0.0010 | 0.1142 0.0009 | 0.0009 | 0.1115
c 0.0520 | 0.1103 | 1.2864 | 0.0411 | 0.0415 | -0.0097 | 0.0267 | 0.6311 | -0.0247 | 0.0275 | 0.6391 | -0.0990 | 0.0434 | 0.7312
S(2) 0.23272 | 0.10312 | 0.86783 | 0.02741 | 0.02725 | -0.00745 | 0.00282 | 0.20940 | -0.00899 | 0.00287 | 0.20780 | -0.02224 | 0.00417 | 0.23302
S(10) 0.24366 | 0.17708 | 1.34554 | 0.04307 | 0.04318 | -0.00059 | 0.00032 | 0.06534 | 0.00022 | 0.00033 | 0.06573 | 0.00269 | 0.00037 | 0.07103

Sp(6 =0.25) | -0.05652 | 0.01340 | 0.39629 | 0.01218 | 0.01235 | -0.00018 | 0.00055 | 0.09190 | -0.00223 | 0.00056 | 0.09306 | -0.01310 | 0.00082 | 0.10291
Sp(6 =0.55) | -0.04476 | 0.03346 | 0.69556 | 0.02158 | 0.02150 | -0.00348 | 0.00127 | 0.14128 | -0.00609 | 0.00130 | 0.14011 | -0.02132 | 0.00208 | 0.16122
Sk =0.9) | -0.01740 | 0.05347 | 0.90433 | 0.02831 | 0.02799 | -0.00635 | 0.00185 | 0.16838 | -0.00879 | 0.00190 | 0.16944 | -0.02461 | 0.00302 | 0.19327

150 a -0.0390 | 0.6496 | 3.1572 | 0.1046 | 0.1043 | -0.0094 | 0.0177 | 0.5138 |-0.0111 | 0.0178 | 0.5159 |-0.0179 | 0.0183 | 0.5253
B 0.0053 | 0.0131 | 0.4481 | 0.0141 | 0.0140 0.0033 | 0.0004 | 0.0789 0.0029 | 0.0004 | 0.0790 0.0014 | 0.0004 | 0.0785
c 0.0301 | 0.1034 | 1.2558 | 0.0422 | 0.0424 | -0.0041 | 0.0110 | 0.3982 | -0.0075 | 0.0111 | 0.4000 | -0.0215 | 0.0123 | 0.4126

S(2) 0.11989 | 0.04708 | 0.70928 | 0.02340 | 0.02379 | -0.00178 | 0.00117 | 0.12896 | -0.00197 | 0.00118 | 0.12936 | -0.00291 | 0.00125 | 0.13368

S(10) 0.11197 | 0.05931 | 0.84818 | 0.02586 | 0.02589 | -0.00021 | 0.00012 | 0.04293 | 0.00006 | 0.00013 | 0.04305 | 0.00117 | 0.00013 | 0.04384

Sk(6 =0.25) | -0.02575 | 0.00523 | 0.26500 | 0.00798 | 0.00797 | 0.00036 | 0.00025 | 0.06178 | -0.00015 | 0.00026 | 0.06176 | -0.00225 | 0.00027 | 0.06176
Sk(6=0.55) | -0.01534 | 0.01285 | 0.44043 | 0.01419 | 0.01417 | -0.00047 | 0.00059 | 0.09382 | -0.00106 | 0.00060 | 0.09397 | -0.00358 | 0.00064 | 0.09584
Sp(6=0.9) | 0.00332 | 0.02041 | 0.56013 | 0.01809 | 0.01821 | -0.00139 | 0.00083 | 0.10827 | -0.00188 | 0.00084 | 0.10844 | -0.00406 | 0.00090 | 0.11195

2 | 50 a -0.4102 | 0.9557 | 3.4802 | 0.1039 | 0.1045 | -0.0092 | 0.0408 | 0.7662 |-0.0156 | 0.0410 | 0.7697 | -0.0413 | 0.0430 | 0.7771
B 0.0376 | 0.0414 | 0.7846 | 0.0244 | 0.0244 0.0031 | 0.0005 | 0.0915 0.0026 | 0.0005 | 0.0914 0.0005 | 0.0005 | 0.0900
c 0.3306 | 2.3587 | 5.8822 | 0.1774 | 0.1807 | -0.0156 | 0.0615 | 0.9624 | -0.0214 | 0.0618 | 0.9641 | -0.0445 | 0.0641 | 0.9645

S(2) 0.04931 | 0.00513 | 0.20366 | 0.00638 | 0.00636 | -0.00537 | 0.00067 | 0.09699 | -0.00422 | 0.00065 | 0.09710 | 0.00024 | 0.00062 | 0.09555

S(10) 0.36604 | 0.25682 | 1.37459 | 0.04155 | 0.04160 | -0.00691 | 0.00242 | 0.18872 | -0.00244 | 0.00238 | 0.19140 | 0.01620 | 0.00285 | 0.19747

Sp(6 =0.25) | -0.10692 | 0.02050 | 0.37352 | 0.01175 | 0.01172 | 0.00338 | 0.00057 | 0.09197 | 0.00129 | 0.00055 | 0.09140 | -0.00708 | 0.00061 | 0.09037
Sp(6 =0.55) | -0.21901 | 0.08807 | 0.78539 | 0.02583 | 0.02577 | 0.00412 | 0.00141 | 0.14646 | 0.00068 | 0.00138 | 0.14651 | -0.01342 | 0.00161 | 0.14554
Sp(6=0.9) | -0.30153 | 0.17258 | 1.12077 | 0.03627 | 0.03629 | 0.00229 | 0.00171 | 0.16092 | -0.00119 | 0.00170 | 0.16031 | -0.01592 | 0.00206 | 0.16161

150 o -0.2385 | 0.6946 | 3.1321 | 0.0996 | 0.0985 | -0.0095 | 0.0180 | 0.5203 | -0.0111 | 0.0181 | 0.5191 | -0.0175 | 0.0185 | 0.5187
B 0.0104 | 0.0172 | 0.5130 | 0.0159 | 0.0160 0.0017 | 0.0002 | 0.0580 0.0016 | 0.0002 | 0.0579 0.0010 | 0.0002 | 0.0580
c 0.0445 | 1.2818 | 4.4368 | 0.1330 | 0.1333 | -0.0080 | 0.0165 | 0.4952 | -0.0091 | 0.0166 | 0.4941 | -0.0137 | 0.0168 | 0.4983

S(2) 0.03056 | 0.00318 | 0.18585 | 0.00615 | 0.00610 | -0.00133 | 0.00019 | 0.05321 | -0.00099 | 0.00019 | 0.05330 | 0.00033 | 0.00019 | 0.05338

S(10) 0.23925 | 0.17037 | 1.31914 | 0.04123 | 0.04135 | -0.00192 | 0.00082 | 0.10897 | -0.00066 | 0.00081 | 0.10963 | 0.00443 | 0.00085 | 0.10990

Sp(6=0.25) | -0.06890 | 0.01296 | 0.35540 | 0.01123 | 0.01126 | 0.00085 | 0.00018 | 0.05038 | 0.00026 | 0.00018 | 0.05045 | -0.00208 | 0.00018 | 0.05114
Sp(6=0.55) | -0.14184 | 0.05662 | 0.74932 | 0.02400 | 0.02466 | 0.00117 | 0.00048 | 0.08378 | 0.00022 | 0.00047 | 0.08423 | -0.00365 | 0.00049 | 0.08466
S =0.9) | -0.19768 | 0.11423 | 1.07514 | 0.03302 | 0.03364 | 0.00079 | 0.00062 | 0.09341 | -0.00018 | 0.00061 | 0.09298 | -0.00412 | 0.00063 | 0.09544

https://doi.org/10.1371/journal.pone.0278659.t003

0.0221278, 0.0292459, 0.0276789, 0.0298118, 0.0245856, 0.0299401, 0.0283572, 0.0298312,
0.0283986, 0.0270951, 0.0180371, 0.0220761, 0.0210921, 0.0201948, 0.0214611, 0.0184075,
0.0193334, 0.0183655, 0.014027, 0.0151174, 0.016073, 0.0185363, 0.019297, 0.0214909,
0.0152395, 0.012096, 0.0157218, 0.0179189, 0.0200602, 0.0209038, 0.0265297, 0.0271287,
0.0253927, 0.0271229, 0.0331005, 0.0345654, 0.0325846, 0.0346137, 0.0355598, 0.0325138,
0.0343149, 0.0322855, 0.0329855, 0.0302305, 0.0318588, 0.0315933, 0.0297537, 0.0303021,
0.027821, 0.0331263, 0.0301704, 0.0300557, 0.02366, 0.025041, 0.0239503, 0.0247106,
0.0242242, 0.0265667, 0.0209004, 0.0221016, 0.0259621, 0.0264237, 0.0254445, 0.0275637,
0.0249939, 0.0274339, 0.0279315, 0.0245515, 0.0227759, 0.0192548, 0.0185296, 0.0227287,
0.0131967, 0.0182547, 0.00858782, 0.0169808, 0.0176329, 0.0186789, 0.0151963, 0.0162596,
0.0156959, 0.0147491, 0.0134227, 0.0172145, 0.0131889, 0.0142233, 0.0118185, 0.0113534,
0.0101427, 0.010818, 0.0100074, 0.00957985, 0.00878918, 0.00764715, 0.0108716, 0.011545,
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Table 4. Bayesian ad Non-Bayesian estimation for parameters of WPM distribution:D.

a=0.25,=0.3
c n
0.6 | 50 a
B
c
S(2)
S(50)
Sk(6 =0.25)
Sk(6 =0.55)
S(6=10.9)
150 o
B
c
S(2)
S(50)
Sr(6 =0.25)
Sr(6 =0.55)
Sr(6=10.9)
2 | 50 a
B
c
S(20)
S(150)
SK(6=0.25)
SK(8 =0.55)
SH8=0.9)
150 o
B
c
S(20)
S(150)
Sk(6 =0.25)
Sk(6 =0.55)
Sp(6=10.9)

Bias
-0.0701
0.0439
0.0549
0.01265
0.32303
-0.11810
-0.22417
-0.29696
-0.0484
0.0138
0.0208
0.00853
0.22359
-0.08276
-0.15616
-0.20587
-0.0753
0.0308
0.4762
0.00933
0.27211
-0.06427
-0.15744
-0.24366
-0.0623
0.0142
0.1870
0.00634
0.21429
-0.04850
-0.12192
-0.19207

MSE
0.0291
0.0357
0.1053
0.00029
0.17017
0.02146
0.07883
0.14279
0.0207
0.0130
0.1015
0.00019
0.11177
0.01429
0.05182
0.09360
0.0281
0.0249
2.8890
0.00036
0.15999
0.00837
0.05032
0.12528
0.0219
0.0129
1.6674
0.00025
0.12553
0.00627
0.03862
0.09798

MLE SELF ELFd =-0.5 ELFd=1.5

L.CI L.BP LBT Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI
0.6098 | 0.0201 | 0.0200 0.0290 | 0.0167 | 0.4479 0.0159 | 0.0152 | 0.4353 | -0.0385 | 0.0128 | 0.3579
0.7205 | 0.0222 | 0.0226 0.0090 | 0.0017 | 0.1551 0.0073 | 0.0016 | 0.1543 0.0005 | 0.0015 | 0.1475
1.2541 | 0.0416 | 0.0415 | -0.0086 | 0.0426 | 0.7584 | -0.0246 | 0.0446 | 0.7705 | -0.1015 | 0.0673 | 0.8542
0.04444 | 0.00139 | 0.00138 | -0.00682 | 0.00022 | 0.04705 | -0.00509 | 0.00018 | 0.04587 | -0.00020 | 0.00020 | 0.04664
1.00620 | 0.03187 | 0.03193 | -0.06376 | 0.00752 | 0.23452 | -0.03079 | 0.00401 | 0.22014 | 0.11459 | 0.02153 | 0.35526
0.34001 | 0.01066 | 0.01060 | 0.03379 | 0.00273 | 0.15564 | 0.01660 | 0.00168 | 0.14779 | -0.04365 | 0.00404 | 0.17644
0.66304 | 0.02045 | 0.02062 | 0.05275 | 0.00556 | 0.21130 | 0.02439 | 0.00296 | 0.19342 | -0.08601 | 0.01228 | 0.26886
0.91648 | 0.03060 | 0.02988 | 0.05750 | 0.00635 | 0.21915 | 0.02605 | 0.00328 | 0.20274 | -0.11107 | 0.01893 | 0.31606
0.5318 | 0.0170 | 0.0173 0.0052 | 0.0050 | 0.2645 0.0014 | 0.0049 | 0.2632 | -0.0140 | 0.0049 | 0.2629
0.4432 | 0.0139 | 0.0138 0.0045 | 0.0007 | 0.0990 0.0040 | 0.0007 | 0.0983 0.0019 | 0.0006 | 0.0959
1.2468 | 0.0396 | 0.0398 | -0.0127 | 0.0131 | 0.4231 |-0.0162 | 0.0135 | 0.4288 | -0.0306 | 0.0156 | 0.4569
0.04332 | 0.00140 | 0.00140 | -0.00210 | 0.00005 | 0.02469 | -0.00152 | 0.00005 | 0.02493 | 0.00070 | 0.00004 | 0.02503
0.97483 | 0.03174 | 0.03149 | -0.01947 | 0.00153 | 0.12620 | -0.00863 | 0.00114 | 0.12543 | 0.03700 | 0.00319 | 0.16321
0.33827 | 0.01080 | 0.01066 | 0.00977 | 0.00060 | 0.08836 | 0.00444 | 0.00050 | 0.08703 | -0.01632 | 0.00089 | 0.10072
0.64958 | 0.02018 | 0.02018 | 0.01548 | 0.00112 | 0.11477 | 0.00653 | 0.00086 | 0.11207 | -0.02957 | 0.00215 | 0.14080
0.88763 | 0.02811 | 0.02817 | 0.01739 | 0.00129 | 0.11719 | 0.00716 | 0.00096 | 0.11396 | -0.03572 | 0.00280 | 0.14801
0.5879 | 0.0181 | 0.0184 0.0255 | 0.0154 | 0.4354 0.0118 | 0.0144 | 0.4246 | -0.0468 | 0.0146 | 0.3932
0.6074 | 0.0194 | 0.0195 0.0100 | 0.0015 | 0.1461 0.0085 | 0.0014 | 0.1437 0.0032 | 0.0013 | 0.1367
6.3991 | 0.2088 | 0.2074 | -0.0149 | 0.0504 | 0.8568 | -0.0187 | 0.0507 | 0.8568 | -0.0342 | 0.0524 | 0.8648
0.06531 | 0.00202 | 0.00202 | -0.01355 | 0.00041 | 0.05551 | -0.00559 | 0.00016 | 0.04235 | 0.01316 | 0.00024 | 0.02570
1.14978 | 0.03689 | 0.03696 | -0.10071 | 0.01544 | 0.28527 | -0.04346 | 0.00541 | 0.23669 | 0.23508 | 0.07166 | 0.48916
0.25547 | 0.00830 | 0.00839 | 0.04654 | 0.00367 | 0.14560 | 0.01789 | 0.00112 | 0.10867 | -0.06834 | 0.00577 | 0.11841
0.62663 | 0.01880 | 0.01935 | 0.08290 | 0.01089 | 0.24663 | 0.03344 | 0.00341 | 0.18946 | -0.15323 | 0.02929 | 0.28325
1.00688 | 0.03202 | 0.03226 | 0.08970 | 0.01253 | 0.26308 | 0.03839 | 0.00447 | 0.21455 | -0.21281 | 0.05825 | 0.43457
0.5258 | 0.0160 | 0.0158 0.0110 | 0.0063 | 0.2858 0.0070 | 0.0062 | 0.2861 | -0.0096 | 0.0061 | 0.2853
0.4414 | 0.0138 | 0.0138 0.0030 | 0.0006 | 0.0941 0.0026 | 0.0006 | 0.0939 0.0011 | 0.0006 | 0.0934
5.0110 |0.1581 | 0.1555 | -0.0032 | 0.0124 | 0.4311 | -0.0040 | 0.0124 | 0.4315 | -0.0072 | 0.0125 | 0.4345
0.05657 | 0.00179 | 0.00180 | -0.00338 | 0.00006 | 0.02600 | -0.00155 | 0.00005 | 0.02479 | 0.00469 | 0.00006 | 0.02444
1.10657 | 0.03458 | 0.03457 | -0.02865 | 0.00213 | 0.14234 | -0.01103 | 0.00114 | 0.12597 | 0.06568 | 0.00768 | 0.21947
0.24559 | 0.00782 | 0.00781 | 0.01168 | 0.00043 | 0.06791 | 0.00429 | 0.00027 | 0.05983 | -0.02311 | 0.00102 | 0.08487
0.60445 | 0.01942 | 0.01933 | 0.02199 | 0.00131 | 0.11475 | 0.00804 | 0.00072 | 0.10131 | -0.04779 | 0.00406 | 0.16192
0.96932 | 0.03035 | 0.02997 | 0.02550 | 0.00175 | 0.12775 | 0.00952 | 0.00093 | 0.11167 | -0.06016 | 0.00636 | 0.19831

https://doi.org/10.1371/journal.pone.0278659.1004

0.012567, 0.0128645, 0.0124464, 0.01344, 0.0130204, 0.012957, 0.0111584, 0.0117945,

0.0124222,0.0116738, 0.0119618, 0.010545, 0.0132126, 0.00944332, 0.0114137, 0.0120314,
0.0139782, 0.0106087, 0.0128802, 0.00987297, 0.0137703, 0.0101282, 0.0107452, 0.0097371,
0.00905741, 0.00870692, 0.00964689, 0.00865657, 0.0102311, 0.00861087, 0.00827069,
0.0104709, 0.0107623, 0.0101061, 0.0081922, 0.00943011, 0.00878087, 0.00751044, 0.00749489,
0.00841549, 0.00871159, 0.011491, 0.0102286, 0.0095912, 0.00926569, 0.00955843, 0.0086196,
0.00830013, 0.00828828, 0.00919439, 0.0082615, 0.00916624, 0.00793336, 0.00914174,
0.00852261, 0.00881553, 0.00819486, 0.00879145, 0.00787094, 0.00876705, 0.00815281,
0.00754064, 0.00692999, 0.0075223, 0.0072118, 0.00750334, 0.00719496, 0.00658785,
0.00747945, 0.00747223, 0.00567129, 0.00625926, 0.00565554, 0.00505399, 0.00623682,
0.00593407, 0.00474217, 0.00473699, 0.00532299, 0.0044308, 0.00413093, 0.00501049,
0.00441704, 0.00500094, 0.00470149, 0.00557646, 0.0043971, 0.00585622, 0.0055572,
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0.00525925, 0.00496181, 0.00553818, 0.00436707, 0.00523385, 0.00493708, 0.00551167,
0.00434698, 0.00550017, 0.00491477, 0.00404305, 0.00432813, 0.00576376, 0.00460664,
0.00460281, 0.00546136, 0.00459451, 0.00516476, 0.00544698, 0.00458342, 0.00458073,
0.00543638, 0.00457523, 0.00428639, 0.00399708, 0.00427882, 0.00484536, 0.00370313,
0.00398567, 0.00341417, 0.00312743, 0.00340943, 0.00312338, 0.00283764, 0.00397066,
0.00311828, 0.00339985, 0.0033981, 0.00367975, 0.00282955, 0.00311111, 0.00367516,
0.00339125, 0.00310765, 0.00282409, 0.00310501, 0.00310352, 0.00282009, 0.0031008,
0.00281771, 0.00253481, 0.00225207, 0.00253238, 0.00309356, 0.00252991, 0.00224784,
0.00252778, 0.00308855, 0.00224535, 0.00280586, 0.00252435, 0.00196268, 0.00252278,
0.00196176, 0.00280183, 0.00252099, 0.00196017, 0.00167967, 0.00111949, 0.00111916,
0.00139851, 0.00111839, 0.00139742, 0.00111741, 0.00167534, 0.00083728, 0.00139493,
0.00139427.

For the comparison, it is considered Maxwell (M), PM, inverse Maxwell (IM) [31],
weighted Maxwell-Boltzmann (WMB) [32], length-biased Maxwell (LBM) [33], generalized
Maxwell failure (GMF) [12] and Weibull (W) distributions. The all PDFs of these distributions
are presented in Table 5. Table 5 gives information about the parameters of the distributions
reported in Tables 6 and 7. The MLEs of parameters, standard (SE) of MLEs, log-likelihood
value (¢), Akaike’s information criteria (AIC), Bayesian information criterion (BIC), consistent
AIC (CAIC), Hannan-Quinn information criterion (HQIC), Kolmogorov-Smirnov statistics
(KS), Anderson-Darling statistics (AD), Cramér von Mises statistic (CvM) and related p-values
(KS p-value, AD p-value and CvM p-value) are obtained and given in Tables 6-8.

According to results in Tables 6-8, it is seen that the WPM has minimum KS, AD and CvM
and has the highest £ values. Hence, it can be concluded that the WPM can be a good alterna-
tive to modeling Covid-19 data sets.

As can be easily seen from the fitted and empirical CDF in Figs 5-7, the WPM distribution
has the best fit for both real datasets. This is an important indicator that the WPM distribution
is a good alternative to the distributions in the literature and can be used in data modeling.

9 Conclusion

In this work, We Propose a Novel Weighted Power Maxwell Distribution Generalization. The
linear representations of the PDF and CDF, moments, moment generating function, and fuzzy

Table 5. List of the distributions to modelling three real data.
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4 B ap, y , ,
Sou(P1:P2) = %ﬁPiPzX"“ ‘exp(—p,x*?) pup2>0
f(p)) = \/%exp(— ﬁ)p;%ﬁ ; p1>0
nts . 0
o7 e (01 > Pup2>
Sums (1 p2) = Tw
)
: > >0
éexp<7§> J4
fLBM(Pl) = Tl
1
2x2P1~Lexp —% s pp2> 0
fGMF(pl7p2) = Wgﬂ')
M -1 S\ , , >0
fw(phpQ) = ;;_i <P_z) exp(—(};) > Pr P2

https://doi.org/10.1371/journal.pone.0278659.t005
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Table 6. Data analysis results for first real data.

WPM M PM M WHB LBM GMF w
¢ 196.4810 139.8092 195.6106 60.0548 139.8092 100.7565 190.5852 194.5410
AIC|  -386.9620 ~277.6185 -387.2212 ~118.1096 -275.6185 ~199.5130 ~377.1703 ~385.0819
BIC|  -379.7418 -275.2118 -382.4077 ~115.7029 -270.8051 ~197.1063 ~372.3569 ~380.2685
CAIC| -386.6543 ~277.5685 -387.0693 ~118.0596 ~275.4666 ~199.4630 ~377.0184 ~384.9300
HQIC| -384.0632 -276.6522 ~385.2887 ~117.1433 ~273.6860 ~198.5467 -375.2378 -383.1494
KS 0.0385 0.3205 0.0467 05233 03205 03725 0.1015 0.0572
AD 0.1255 27.1815 0.2543 78.5654 27.1815 435924 1.3417 0.4293
M 0.0135 3.4200 0.0334 9.4755 3.4200 45314 0.2426 0.0591
KS p-value 0.9997 0.0000 0.9939 0.0000 0.0000 0.0000 0.3673 0.9512
AD p-value 0.9997 0.0000 0.9680 0.0000 0.0000 0.0000 0.2192 0.8188
CVM p-value 0.9999 0.0000 0.9645 0.0000 0.0000 0.0000 0.1982 0.8207
m 31.3388 668.7853 42,3337 59.8615 1337.5706 0.0237 0.5011 1.2518
pa 0.2731 05013 0.0000 0.0045 0.0386
ps 1.7379
SE p, 5.1689 60.3029 11.1025 2.6988 225.1756 0.0009 0.0597 0.1028
SE p, 0.1659 0.0408 0.4265 0.0007 0.0036
SE ps 1.8862

https://doi.org/10.1371/journal.pone.0278659.1006

reliability function have been successfully identified as a result of our investigation into its sta-
tistical features and determination of a linear representation for its PDF. For the purpose of
obtaining point estimates for the unknown Weighted power Maxwell parameters ¢, 3, and 6,
several Bayesian and classical estimation approaches were taken into consideration. An R soft-
ware was used to conduct a simulation study, which allowed for the comparison of the effec-
tiveness of a number of different estimating strategies. To achieve this goal, the MCMC

Table 7. Data analysis results for second real data.

WPM M PM M WHB LBM GMF w
¢ -48.1547 -53.3111 ~50.3062 -53.9296 -49.1169 -50.7361 -49.1169 ~51.4743
AIC 102.3094 108.6223 104.6123 109.8592 102.2338 103.4721 102.2338 106.9485
BIC 107.0600 110.2058 107.7793 111.4428 105.4008 105.0556 105.4008 110.1156
CAIC 103.0594 108.7399 104.9759 109.9769 102.5974 103.5897 102.5974 107.3122
HQIC|  103.9675 109.1750 105.7177 110.4119 103.3392 104.0248 103.3392 108.0539
KS 0.1071 0.2042 0.1437 0.1993 0.1359 0.1537 0.1359 0.1500
AD 0.5429 2.2009 0.9102 22135 0.6487 1.3162 0.6487 1.1423
CvM 0.0918 0.4049 0.1601 0.3964 0.1142 0.2364 0.1142 0.1979
KS p-value 0.8034 0.0994 0.4469 0.1146 0.5188 0.3629 0.5188 0.3929
AD p-value 0.7023 0.0718 0.4073 0.0707 0.6020 0.2270 0.6020 0.2902
CVM p-value 0.6293 0.0696 0.3615 0.0733 0.5218 0.2070 0.5218 0.2723
P 37.5957 0.1278 0.0472 0.2012 0.5232 1.7131 3.0709 33136
P2 0.2166 1.3679 3.1417 3.8224 3.6370
ps 26.3258
SE p, 65.5064 0.0174 0.0215 0.0137 0.1274 0.1009 0.6881 0.3789
SE p, 0.1508 0.1564 1.3762 0.9305 0.1941
SE ps 19.6732

https://doi.org/10.1371/journal.pone.0278659.t007
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Table 8. Data analysis results for second third data.

WPM M PM M WHB LBM GMF w
¢ 909.9188 470.2825 893.3490 565.6476 470.2825 243.7173 843.6761 885.7773
AIC| -1813.8376 ~938.5649 ~1782.6981 ~1129.2952 ~936.5649 ~485.4346 ~1683.3523 ~1767.5547
BIC| -1802.9012 -934.9195 ~1775.4072 ~1125.6497 ~929.2740 ~481.7892 ~1676.0614 ~1760.2638
CAIC| -1813.7515 -938.5507 ~1782.6552 ~1129.2809 -936.5221 -485.4204 ~1683.3094 -1767.5118
HQIC | -1809.4525 -937.1032 -1779.7747 ~1127.8335 -933.6415 -483.9729 ~1680.4289 ~1764.6313
KS 0.0453 0.4829 0.0648 0.4528 0.4829 05333 0.1469 0.0801
AD 0.6695 - 24784 187.8935 - - 13,5133 3.5806
M 0.0976 - 0.3148 20.8777 25.4993 - 23170 0.4565
KS p-value 0.6077 0.0000 0.1856 0.0000 0.0000 0.0000 0.0000 0.0529
AD p-value 0.5847 - 0.0509 0.0000 0.0000 - 0.0000 0.0140
CVM p-value 0.5973 - 0.1207 0.0000 0.0000 - 0.0000 0.0514
P 181.6447 22447609 49.3818 135.5863 4489.5218 0.0129 0.3246 1.0157
P2 0.0470 0.4147 0.0000 0.0022 0.0162
s 10.9789
SE p, 32.4799 108.9430 6.9767 3.2904 405.4450 0.0003 0.0186 0.0427
SE p, 0.0049 0.0174 0.2290 0.0001 0.0010
SE ps 1.4407

https://doi.org/10.1371/journal.pone.0278659.t008

CDF

Fig 5. Fitted and empirical CDF plots for first real data.
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Fig 6. Fitted and empirical CDF plots for second real data.
https://doi.org/10.1371/journal.pone.0278659.9006

technique was used, and the results led us to the conclusion that the Bayesian approach is supe-
rior to all the traditional methods that were taken into consideration. We utilised a data collec-
tion called Covid-19 that was compiled in the United Kingdom. It was discovered that the
Weighted power Maxwell distribution suited the data better than the majority of the other dis-
tributions that were being considered.

10 Future work

In the near future author we will make a full study on the vaccination of the patients and mea-
sure the rate of mortality after performing the vaccination an d we will try to make regression
analysis to the future infection using new model.
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Fig 7. Fitted and empirical CDF plots for third real data.
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