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Abstract

Gene expression sample data, which usually contains massive expression profiles of

genes, is commonly used for disease related gene analysis. The selection of relevant genes

from huge amount of genes is always a fundamental process in applications of gene expres-

sion data. As more and more genes have been detected, the size of gene expression data

becomes larger and larger; this challenges the computing efficiency for extracting the rele-

vant and important genes from gene expression data. In this paper, we provide a novel Bi-

dimensional Principal Feature Selection (BPFS) method for efficiently extracting critical

genes from big gene expression data. It applies the principal component analysis (PCA)

method on sample and gene domains successively, aiming at extracting the relevant gene

features and reducing redundancies while losing less information. The experimental results

on four real-world cancer gene expression datasets show that the proposed BPFS method

greatly reduces the data size and achieves a nearly double processing speed compared to

the counterpart methods, while maintaining better accuracy and effectiveness.

Introduction

Gene expression data contains the monitored expression levels of massive genes across differ-

ent samples. With the rapid development of bioinformatics and data analytics, over 60 thou-

sand genes can be identified with their expression profiles, and the use of gene expression data

has been greatly promoted. Typical examples include identifying the genes that are related to a

disease [1, 2] and enhancing the analysis of diseases and organisms at gene level [3], gene regu-

latory network inference [4], disease outcome classification [5], and cancer sub-types classifi-

cation [6]. Due to the high cost of the experiments for obtaining the gene expression data, the

number of patients, n (usually around 1,000), is much less than the number of genes, p (mostly

over tens of thousand). This “n�p” property is called “the curse of dimensionality”, which

challenges the use of gene expression data and the selection of important genes from thou-

sands of detected genes [7]. As more and more genes can be detected and contained in the big

gene expression data, precisely selecting the relevant and informative genes becomes more

challenging as more redundancies are introduced at the same time.

In this paper, we provide a novel Bi-dimensional Principal Feature Selection (BPFS)

method for efficiently extracting critical genes from big gene expression data. It applies the
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principal component analysis (PCA) method on sample and gene domains successively for

extracting the relevant gene features and reducing redundancies, while losing less information.

PCA [8, 9] is one of the most commonly used dimension reduction methods. It can remove

high correlated variables without loss of too much information by performing orthogonal lin-

ear transformation on the feature domain to a new coordinate space with lower dimensions

and independent features (using the principal components), since the top several principal

components can keep the majority variation of the data. Therefore, the redundancy can be

reduced from the highly correlated genes in the feature gene set [10] and the informative

genes/features can be retained. PCA is widely used and studied, since it is a very effective tech-

nique for dimension reduction [11, 12], and the visualized information obtained from PCA

can be used for further analysis on gene relationships.

However, classic PCA has limitation when applied directly to large number of genes/fea-

tures due to the heavy computation of covariance. In [13], PCA is applied on the data matrix

(i.e., genes on rows and samples on columns), but when the number of genes is large, the

computational cost is extremely high due to the calculation of covariance matrix; this limita-

tion is solved in [14] by avoiding the computation of principal components.

Similar to [14], our BPFS method does not use the principal components as new variables

but extract the important original features in the process of constructing principal compo-

nents. However, we keep the fundamentals of PCA and the usefulness of principal components

and apply PCA on both the row domain and the column domain. So, in the BPFS method, our

first PCA is used to reduce the features on columns and accordingly the gene size of the large

gene expression data is reduced; this PCA process is very fast, because the gene expression

dataset has only hundreds of samples and the computational cost of calculating the covariance

is relatively low.

The features/genes with high contribution to the top k principal components are selected in

the first PCA process; this reduces the size of the raw dataset. Then, our second PCA is applied

on the filtered dataset that consists of selected genes and their expressions over the samples.

The second PCA can be applied on genes, as the feature size has been reduced by the first PCA

process. So, the second PCA is actually a classic PCA that can be easily adopted on the fea-

tures/genes directly without exceeding the computational capacity. In the second PCA, the

genes which contribute more to the computation of principal components are further selected.

After the second PCA, the feature domain is filtered, the redundancy in the raw dataset is fur-

ther reduced, and the remaining genes can be regarded as relevant and informative genes.

In contrast with the existing feature selection methods, the major differences and advan-

tages of our BPFS method are threefolds, (i) we use PCA twice and the first on samples domain

and the second on genes domain to overcome the computational capacity problem of classic

PCA when it applies on large feature set; (ii) our method can also be used as a data cleaning

step on the gene expression dataset to remove irrelevant genes and increase accuracy on fea-

ture selection without loss of much information; and (iii) the cleaned dataset can be further

used for downstream analysis at gene level, such as cancerous genes relationship network con-

struction, as this new dataset has less noise and redundancy.

In summary, this paper has the following contributions: (1) we provide a novel BPFS

method for precise (efficient and accurate) gene feature selection, which can process big gene

expression data. (2) we demonstrate on two real world cancer datasets that our BPFS method

greatly reduces the data size and achieves a nearly double processing speed as the counterpart

methods, while maintaining the same or even better accuracy. (3) we also show the effective-

ness of our BPFS method, that is, the top two selected genes by our BPFS method can separate

the normal samples and the samples with cancer very nicely.
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The structure of this paper is as follows. In Section 2, we present the related work. In Sec-

tion 3, we briefly introduce classic PCA and then detail our proposed method. In Section 4, we

report the experimental results with discussion. We conclude our work in Section 5.

Related work

The existing approaches for gene feature selection can be categorized into three types: filter

method, wrapper method and embedded method [15, 16].

Filter method is a kind of method that only relies on the structure of the dataset and is inde-

pendent of models and predictions [17]. For example, Ding et al. [10] proposed a minimum

redundancy maximum relevance (mRMR) method to select feature genes from microarray

datasets based on the relevancy and redundancy between variables or genes (such as minimize

paired Euclidean distance between genes); Le et al. [18] introduced STatistical Inference Relief

(STIR) on the basis of Relief [19], an algorithm developed by Kira and Rendell in 1992, which

uses a statistical method to select features according to the calculated statistical dependency.

Wrapper method uses learning algorithms in the selection process, such as evolutionary

algorithm [20], genetic algorithm [21] and swarm intelligence algorithms [22]. On gene

expression analysis and cancer classification task, the wrapper methods can achieve high accu-

racy but are sensitive to the classifiers and also highly computational cost [23, 24].

Embedded method is a combination of two or more feature selection methods. Kavitha

et al. [13] applied PCA [8, 9] to microarray data to reduce the number of features and used

support vector machine recursive feature elimination (SVM-RFE) [25] to rank the selected

genes. Alomari et al. [26] combined mRMR [10] and bat-inspired swarm intelligence algo-

rithm to select genes. Sun et al. [27] proposed a kernel-based feature selection method for

microarray data. Huang et al. [28] proposed FCSVM-RFE algorithm which combined k-

means clustering and SVM-RFE [25] ranking method to select feature genes from microarray

data. Recently, Al-Rajab et al. [29] proposed a feature selection method for colon cancer classi-

fication using information gain and genetic algorithm; Haque et al. [30] performed a mutual

information based algorithm for feature selection from gene expression data.

Although these methods achieved great success on cancer related gene selection from small

sized gene expression dataset, they do not work well with larger datasets due to computational

capacity and complexity. Kavitha’s method [13] cannot be applied to process our datasets

(containing 60,482 genes), since it cannot handle a large number of genes. FCSVM-RFE [28]

suffers from high computational cost when applying k-means clustering on over 60 thousands

genes. The number of feature genes selected by STIR [18] is usually very large and the selection

process is very time-consuming.

Unlike FCSVM-RFE [28] and STIR [18], our BPFS method avoids direct pair-wise calcula-

tions on the gene domain, by firstly conducting operations on the sample domain to reduce

the size of the gene domain, then conducting the gene domain operations.

Method

In this section, we first introduce the procedure of PCA. Then we present our proposed BPFS

method to select informative genes and reduce data size by reducing the dimensionality.

Preliminary knowledge of PCA

PCA is one of the most commonly used dimension reduction methods [9]. PCA can perform

an orthogonal linear transformation on gene expression data to a new coordinate space with

lower dimensions and features. The new features, which are called principal components (PC),

are independent only if the features in raw data are jointly normally distributed. The first

PLOS ONE Bi-dimensional principal gene feature selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0278583 December 7, 2022 3 / 15

https://doi.org/10.1371/journal.pone.0278583


principal component has the greatest variance, the second PC has the second greatest variance

and so on. PCA creates a new feature domain and reaches the aim of reducing dimensionality

by computing principal components. Steps of PCA are as follows:

Let M be the input matrix. The dimension of M is m × n, m is the number of samples/obser-

vations, n is the number of features/attributes.

• Calculate the mean value of each column of matrix M by Eq (1)

�X ¼
1

m

Xm

i¼1

Xi: ð1Þ

Xi is the vector of observation values for sample i with dimension 1 × n.

• Subtract the mean values �X from the input matrix M and compute the covariance matrix C
of the modified data by Eq (2)

C ¼
1

m � 1

Xm

i¼1

ðXi �
�XÞTðXi �

�XÞ: ð2Þ

�X is the vector of mean values calculated in (1).

• Calculate the eigenvalues λn and the eigenvectors vn of the covariance matrix C by solving Eq

(3)

Cvn ¼ lnvn: ð3Þ

• Rank the eigenvalues from high to low.

• Pick the top k eigenvalues and the corresponding eigenvectors. The number of eigenvalues is

selected based on the cumulative proportion of variance (PPV). PPV and the cumulative

PPV, i.e., cPPV, are calculated by Eqs (4) and (5) respectively,

PPVi ¼
liPn
j¼1
lj
; ð4Þ

cPPVi ¼
Xi

j¼1

PPVj: ð5Þ

• Generate the new dataset by projecting each row of matrix M to a k-dimensional space cre-

ated by the k eigenvectors, where k< n and k = min{i|cPPVi> = α}, α is a predefined thresh-

old. The selected k eigenvectors are also called principal components (PCs).

We can use many existing open-source functions to implement PCA on a dataset, such as

the prcomp function in R [31], which is based on Singular Value Decomposition (SVD) [32] of

the data matrix.

The proposed Bi-dimensional principal feature selection (BPFS) method

Our method is inspired by Kavitha’s method [13]. Although Kavitha’s method [13] can suc-

cessfully reduce the dimension of small-size datasets (less than 10,000 genes), it barely works
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on large-size datasets due to the computational cost of classic PCA. To overcome this problem,

we propose a novel BPFS method. The details of BPFS are stated in Algorithm 1.

Algorithm 1 BPFS feature selection approach.
Input: The gene expression data matrix, A, with m samples and n genes;
the threshold, α, for selecting PCs; the percentile threshold, β, for
the loading score; the percentile threshold, τ, for the contribution
score;
Output: The smaller gene expression data matrix, C, with m samples and
k genes, k < n;
1: Perform PCA on matrix A;
2: Select top α PCs;
3: Choose the genes with top β absolute loading scores on the selected
PCs;
4: Filter the raw matrix A based on the selected genes and denote the
filtered matrix as B0;
5: Transform matrix B0 with genes on rows and samples on columns and
denote it as B;
6: Perform PCA on matrix B;
7: Select top α PCs;
8: Choose the genes with top τ contribution scores for each selected
PC;
9: Filter matrix B based on the selected genes and denote the filtered
matrix as C0, transform C0 with samples on rows and genes on columns and
denote this transformed matrix as C;
10: return matrix C;

The input matrix for our method is a gene expression dataset, A, with m samples and n
genes. The first four lines in Algorithm 1 belong to the first phase of our method. In line 1, we

performed PCA on matrix A with samples on rows and genes on columns. The PCs are ranked

based on their PPV and the top α will be selected, where α is a predefined threshold. The pro-

jection of each sample on PCi, denoted as PPCi
in Eq (6), can be written as a linear combination

of column variables (genes for gene expression data) [12], where Aj is the column vector of

input matrix A, γi is a row vector of (γi,1, γi,2, . . ., γi,n). γi is called loading scores for PCi and

can be calculated by Eq (7)

PPCi
¼ AgTi ¼

Xn

j¼1

gi;j � Aj; ð6Þ

gTi ¼ vi �
ffiffiffiffi
li

p
; ð7Þ

where λi is the eigenvalue for PCi, vi is the corresponding eigenvector. For instance, γi,1 is the

loading score of gene 1 on PCi.

A larger loading score means the corresponding variable (gene) has a stronger impact on

the computation of the specific PC. We rank the loading scores with the corresponding genes

for each selected PC and choose the top β genes. Then, we take the union of the selected genes

from each selected PC as a feature (gene) subset obtained from the first phase of our approach.

Now we get a matrix with less genes from the original matrix, by filtering out those genes

that are not in the gene subset generated from the first phase, as well as their corresponding

expression values/columns in the original matrix, A. Then, we enter into the second phase of

our method. Lines 5 to 9 in Algorithm 1 are for this phase. This time we conduct PCA on the

columns (genes) domain. To do this, we transform the filtered matrix, B0, into the matrix with

genes on rows and samples on columns and denote this transformed matrix as B. The PCs are

selected based on the cPPV and the threshold, α, following the same process as in first phase.
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Then, we use the contribution score, ctribg,i, of gene g on the selected, PCi [33], to further filter

the genes and reduce the dimensionality which is given by

ctribg;i ¼
f 2
g;i

P
g f 2

g;i

¼
f 2
g;i

li
; ð8Þ

where fg,i is the factor score calculated by SVD [32] of the input matrix, and λi is the eigenvalue

of PCi.

Specifically, let B be the input matrix with m samples and y genes. B is a y ×m matrix and

has a SVD,

B ¼ USVT; ð9Þ

where U is the y × y matrix containing the left singular vectors of B, V is the m ×m matrix con-

taining the right singular vectors of B, S is the y ×m rectangular diagonal matrix with non-neg-

ative values, which are called the singular values of B. The values of S are the square roots of

the positive eigenvalues of BBT (BBT can be considered proportional to the empirical sample

covariance matrix of the dataset, B [34]). The factor score matrix, F, is defined by F = US,

which is a y ×m matrix. fg,i is the (g, i) entry of F.

We keep the genes with the top τ contribution scores for each selected PC and take the

union of genes from each PC. After lines 1 to 9, the feature (gene) domain is filtered twice

while the number of samples is unchanged, and the final matrix with selected feature genes is

denoted as C.

Experiments

In this section, we evaluate our method through experiments conducted on real-world gene

expression datasets. We first introduce the experimental setup, including datasets, the counter-

part methods and the evaluation metrics. We then evaluate the proposed method for cancer

classification in terms of efficiency, accuracy and effectiveness.

Experimental setup

Datasets. We test our approach on four representative cancer gene expression datasets

from TCGA project [35]: Papillary Thyroid Carcinoma (THCA), Kidney Renal Clear Cell Car-

cinoma (KIRC), Primary Prostate Cancer (PRAD), and Lung Squamous Cell Carcinoma

(LUSC). The datasets are publicly available and include ground truth labels (with or without

cancer) for evaluation purpose.

The datasets are summarized in Table 1, including the number of detected genes, normal

samples and samples with cancer. The gene expression levels in the datasets are normalized by

TPM (transcripts per million) which is one of the most popular gene expression level normali-

zation methods [36].

Table 1. Experimental datasets.

Dataset Genes Normal Samples Samples with Cancer

THCA 56309 59 512

KIRC 56909 72 541

PRAD 56467 52 501

LUSC 56795 49 502

https://doi.org/10.1371/journal.pone.0278583.t001
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The counterpart methods. We compare our proposed method with the following state-

of-the-art methods: FCSVM-RFE [28] and STIR [18], based on the performance on the cancer

classification task.

• FCSVM-RFE [28] is an embedded method combining the clustering algorithm and

SVM-RFE [25] feature ranking method. It first clusters the genes/features into groups and

then selects the representative gene/feature for each group. Finally, it ranks the representa-

tive genes/features by SVM-RFE [25].

• STIR [18] is a filter method that based on the Relief family [19] but adding statistical signifi-

cance to the features as thresholds to select the most important features.

Fig 1 shows the different mechanism of FCSVM-RFE [28], STIR [18] and our method on

feature selection. FCSVM-RFE [28] takes the transformed gene expression data matrix (with

genes on rows and samples on columns) as input. Then it applies clustering method to cluster

the genes into several groups. In [28], it runs parameter setting experiments on Leukemia data-

set (with 72 samples and 7129 genes), the best number of clusters is 80, which is approximately

1% of the number of genes. From each cluster, the top 5 genes which are closest to the center

of the cluster are chosen as representative genes. Then it applies a feature ranking algorithm to

the chosen representative genes. The final selected gene domain is made up of the top ranked

genes. STIR [18] takes the raw gene expression data matrix as input. It first defines the neigh-

bourhood, the hit and miss sets for each sample. For example, the hit set for sample_1 contains

the samples with the same label as sample_1, while the miss set contains the samples with dif-

ferent label as sample_1. Then it calculates the distance between sample_1 and the other sam-

ples in hit and miss set. Finally, a weight matrix is obtained from the calculated distance

matrices, which leads to the final gene domain selection.

The mechanism of BPFS has been explained in detail in the Method Section. In brief, BPFS

takes the raw gene expression data matrix as input. It applies PCA to the sample domain first,

and chooses the genes with high contribution (based on the loading score) to the top PCs. As

shown in Fig 1—PCA of Samples (i.e., the first PCA), the samples are clustered in the space of

the selected top PCs (says, top 3), and the chosen genes are those with higher contribution

(i.e., larger coefficient in the linear combination representation of the selected PCs), so they

can better represent the selected PCs and can be used to distinguish cancerous and normal

samples/patients. Additionally, by doing operations on the sample domain first, BPFS can

Fig 1. Different mechanisms on feature selection among FCSVM-RFE, STIR and our BPFS.

https://doi.org/10.1371/journal.pone.0278583.g001
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reduce the computation time by avoiding heavy pair-wise calculations on the gene domain.

Then, BPFS applies PCA to the filtered gene domain, and further select the genes with high

contribution (based on the contribution score) to the top PCs. From the second phase of

BPFS, as shown in Fig 1—PCA of Genes (i.e., the second PCA), the genes are clustered based

on their expressions in the samples in the space of selected PCs (says, top 2 PCs). By looking at

the contribution score of each gene at the top PCs, the selected genes (with higher contribution

scores) are more important to decide the PCs. In the other words, the selected genes from the

second phase can better distinguish the genes themselves. To summarize, as show in Fig 1, the

first PCA keeps np genes (for example, Gene_1 and Gene_3) out of n genes from the input

gene expression data, and the second PCA further selects genes (for example, Gene_20) from

the gene set obtained from the first PCA and get the final selected gene set GeneBPFS. By choos-

ing genes with high contribution to decide the top PCs, BPFS keeps the major information

from the raw data.

Evaluation metrics. We divided the raw data into training set and testing set. The training

set contains 80% of the total number of rows of the raw data, while the testing set contains the

rest 20% of the total rows. Then we applied BPFS, FCSVM-RFE [28] and STIR [18] separately

on the training set to get the feature gene set and performed SVM classification on the filtered

training set with selected genes. Finally we tested the performance on the testing set in terms

of accuracy, sensitivity, specificity, precision, balanced accuracy and F1-score.

In the cancer classification task using SVM, we denote the patient with cancer as positive.

Let P and N be the total number of positive cases and negative cases, respectively. Let TP and

FN represent the number of correct and incorrect prediction for patients with cancer, respec-

tively. TN and FP are similarly defined for patients without cancer. We focus on evaluating

how correctly the patients are predicted and how correctly the patients with cancer can be

identified, which are represented by accuracy and sensitivity, respectively,

Accuracy ¼
TP þ TN
P þ N

; ð10Þ

Sensitivity ¼
TP
P
: ð11Þ

In addition to accuracy and sensitivity, we also included metrics of specificity, precision,

balanced accuracy and F1-score in our comparison evaluations.

Specificity ¼
TN
N
; ð12Þ

Precision ¼
TP

TP þ FP
; ð13Þ

BalancedAccuracy ¼
Sensitivityþ Specificity

2
; ð14Þ

F1 ¼
2TP

2TPþ FPþ FN
: ð15Þ

The values of the evaluation metrics are ranged from 0 to 1 and the higher value represents

the better performance.
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Performance evaluation

Optimal parameter setting. In our algorithm, we have three parameters, which are α β
and τ. Firstly, we set α = 1, which means the first principal component will be selected in both

first PCA and second PCA, as the first PC represents the maximum variance direction of the

data and best approximates the data in the least squares sense. To determine the values for β
and τ, we start with setting τ = 1%, the performances in accuracy on THCA dataset with differ-

ent values of β are compared. As shown in Fig 2(a), the best accuracy (0.9825) occurs when β =

8%. Then we set β = 8% and compare the performances in accuracy on THCA dataset with dif-

ferent values of τ. As shown in Fig 2(b), the best accuracy (0.9825) occurs when τ = 1%. Addi-

tionally, Fig 2(c) shows the performances with different number of PCs selected with fixed β =

8% and τ = 1%.

In the following experiments, we will keep α = 1, β = 8% and τ = 1%, and the associated best

number of gene selected is 45. The parameters for FCSVM-RFE [28] and STIR [18] are set

based on their original papers.

Accuracy. In Tables 2 to 5, we report the classification results of the counterparts and our

proposed method on four cancer datasets: THCA, KIRC, PRAD, and LUSC. We bold the

results of our method if it is not worse than any counterparts.

Fig 2. Accuracy vs different parameter values on THCA datasets.

https://doi.org/10.1371/journal.pone.0278583.g002

Table 2. Classification effectiveness analysis on the THCA cancer dataset.

Accuracy Sensitivity Specificity Precision Balanced Accuracy F1-score

FCSVM-RFE [28] 0.9737 0.8333 0.9902 0.9091 0.9118 0.8696

STIR [18] 0.9737 0.75 1 1 0.875 0.8571

BPFS (proposed) 0.9825 0.8333 1 1 0.9167 0.9091

https://doi.org/10.1371/journal.pone.0278583.t002
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For THCA, as shown in Table 2, all three methods have good performance, while BPFS per-

forms the best (0.9825, 0.8333, 1, 1, 0.9167, 0.091 for six evaluation metrics respectively). For

KIRC and LUSC datasets, as shown in Tables 3 and 5, BPFS achieves 100% for all six evalua-

tion metrics, which means that the gene subsets obtained by our method can be used to cor-

rectly classify the normal samples and samples with cancer. STIR [18] performs slightly worse

than BPFS in both datasets, while FCSVM-RFE [28] performs slightly worse than BPFS on

KIRC and same on LUSC. For PRAD data, as shown in Table 4, BPFS achieves the best perfor-

mance (0.9727, 0.6667, 1, 1, 0.8333, 0.8 for six evaluation metrics respectively), which is 3%

better than STIR [18] and 4% better than FCSVM-RFE [28] in accuracy.

Overall, our method achieves the best result on all four datasets, as firstly, BPFS keeps the

first principal component in the first phase PCA, which ensure we do not lose much informa-

tion during the PCA process.

Efficiency. Fig 3 shows the runtime of FCSVM-RFE [28], STIR [18] and BPFS in seconds.

For THCA data, as shown in Fig 3(a), FCSVM-RFE [28] takes 47 seconds, STIR [18] takes 66

seconds and BPFS needs 34 seconds, which is 25% faster than FCSVM-RFE [28] and nearly

doubles STIR’s speed. For KIRC data, as shown in Fig 3(b), FCSVM-RFE [28] takes 47 sec-

onds, STIR [18] takes 1 minute and BPFS takes 40 seconds. For PRAD data, as shown in Fig 3

(c), FCSVM-RFE [28] takes 52 seconds, STIR [18] takes 57 seconds and BPFS takes 32 seconds.

For LUSC data, as shown in Fig 3(d), FCSVM-RFE [28] takes 71 seconds, STIR [18] takes 43

seconds and BPFS only takes 32 seconds. For all four datasets, our method has the fastest

computational speed, as the first phase PCA does not require pair-wise calculation of the gene

domain but reduces the size of genes for the second phase gene domain PCA, which poten-

tially reduces the computational time.

Effectiveness. In Table 6, we report the number of genes selected by BPFS, FCSVM-RFE

[28], STIR [18]. From the data size perspective, Table 6 and the previous exprimental results

show that BPFS can successfully reduce the gene domain size from over 50,000 to 45.

Table 3. Classification effectiveness analysis on the KIRC cancer dataset.

Accuracy Sensitivity Specificity Precision Balanced Accuracy F1-score

FCSVM-RFE [28] 0.9918 1 0.9907 0.9333 0.9954 0.9655

STIR [18] 0.9836 0.9286 0.9907 0.9286 0.9597 0.9296

BPFS (proposed) 1 1 1 1 1 1

https://doi.org/10.1371/journal.pone.0278583.t003

Table 4. Classification effectiveness analysis on the PRAD cancer dataset.

Accuracy Sensitivity Specificity Precision Balanced Accuracy F1-score

FCSVM-RFE [28] 0.9364 0.2222 1 1 0.6111 0.3636

STIR [18] 0.9455 0.44444 0.9901 0.8 0.7173 0.5714

BPFS (proposed) 0.9727 0.6667 1 1 0.8333 0.8

https://doi.org/10.1371/journal.pone.0278583.t004

Table 5. Classification effectiveness analysis on the LUSC cancer dataset.

Accuracy Sensitivity Specificity Precision Balanced Accuracy F1-score

FCSVM-RFE [28] 1 1 1 1 1 1

STIR [18] 0.9909 1 0.9904 0.8571 0.9952 0.9231

BPFS (proposed) 1 1 1 1 1 1

https://doi.org/10.1371/journal.pone.0278583.t005
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Ablation study. In this part, we will show the importance of the second phase of PCA by

comparing the performance of BPFS with the method which only has the first PCA on the

sample domain and select genes with a smaller β.

As shown in Fig 4, with less genes selected, the classification accuracy on THCA data using

the selected gene gets worse, especially when the number of selected gene is less than 73 (i.e., β
< 0.13%). Comparing to Fig 2, with the same or even less number of selected genes, BPFS can

achieve better performance and increase the accuracy nearly 10% when the selected gene num-

ber is less than 73. In terms of running time, Fig 5 shows the running time comparison

between using first phase PCA only (31 seconds) and BPFS (34 seconds) on THCA dataset.

Therefore, the goal of the first phase of PCA is to initially filter the gene domain by choosing

the genes that play an important role in the top PCs (by looking at the loading score, i.e., the

coefficients), while the second phase of PCA focuses on gene itself, and the goal is to further fil-

ter the gene domain by selecting those that can decide the PCs that can cluster genes using the

contribution scores calculated from SVD.

In summary, comparing to our counterparts, BPFS achieves the best performance in all six

evaluation metrics with double computational speed and less number of selected genes; com-

paring to the simpler method using only the first phase PCA of BPFS with smaller value of β in

gene selection, BPFS also outperforms it in terms of classification accuracy with only a few sec-

onds extra, which shows the importance and necessity of the second phase PCA.

Fig 3. Runtime comparisons on four datasets.

https://doi.org/10.1371/journal.pone.0278583.g003
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Discussion

The gene subset obtained by our proposed BPFS method can always achieve the best classifica-

tion result while spending far less runtime, compared to the counterpart methods.

We discuss some conditions for using our BPFS method as below.

• Our proposed method uses classic PCA as fundamental rule for feature selection that may

not directly reveal the complex relationship between genes. Our method can be enhanced by

incorporating with other forms of PCA, such as Kernal PCA [27] or local PCA.

• In our method, we used contribution scores to filter the data in the second phase in order to

further extract important genes and remove redundancy. The contribution score just works

as a reference to the importance/contribution of each gene/feature when transforming the

basis, it does not necessarily represent the biological correlation between genes and samples.

• Our method is more suitable for the datasets like gene expression data, which suffers from

the “curse of dimensionality”, the number of genes is much more than the number of sam-

ples. Our method takes the advantage of the small number of samples and PCA to select rele-

vant genes. Our method can perform well if both sample and feature sizes are no more than

60,000.

Table 6. Number of genes selected.

THCA KIRC PRAD LUSC

No. of genes selected by BPFS 45 45 45 45

No. of genes selected by FCSVM-RFE 80 80 80 80

No. of genes selected by STIR 11915 8681 9648 6079

https://doi.org/10.1371/journal.pone.0278583.t006

Fig 4. Accuracy vs different β values of first phase PCA on THCA datasets.

https://doi.org/10.1371/journal.pone.0278583.g004
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Conclusion

Identifying the informative genes and removing the redundancy from the gene expression

data is a fundamental task for gene expression data analysis. It has wide applications, such as

disease-gene association analysis and gene regulatory network construction. As the gene

expression data size getting larger and larger, it becomes more challenging to extract/identify

important genes. In this paper, we proposed the BPFS method to select the informative genes,

and reduce the feature size and redundancy effectively from the original dataset. The proposed

BPFS method overcomes the computational capacity problem of classic PCA in feature selec-

tion from gene expression data by adopting PCA first on the samples domain and then on the

gene domain for extracting important genes in the process of constructing principal compo-

nent. We evaluated our method by comparing our BPFS with four state-of-the-art feature

selection algorithms on the cancer classification task. The experiments on four cancer gene

expression datasets demonstrate the efficiency, accuracy and effectiveness of our proposed

method in extracting the informative features and eliminating redundancies.
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