

RESEARCH ARTICLE

A systematic review verified by bioinformatic analysis based on TCGA reveals week prognosis power of CAIX in renal cancer

Zikuan Zhang *, Bo Wu*, Yuan Shao, Yongquan Chen, Dongwen Wang*

Basic Medicine of Shanxi Medical University, Taiyuan, China

* These authors contributed equally to this work.

* Urology2007@126.com

Abstract

Background

Carbonic anhydrase IX (CAIX) protein has been correlated with progression and survival in patients with some tumors such as head and neck carcinoma. But renal cell carcinoma is an exception. The prognostic value of CAIX in RCC used to be associated with patients' survival according to published works. This study aimed to rectify the former conclusion.

Methods

This study was registered in PROSPERO (CRD42020160181). A literature search of the PubMed, Embase, Cochrane library and Web of Science databases was performed to retrieve original studies until April of 2022. Twenty-seven studies, including a total of 5462 patients with renal cell carcinoma, were reviewed. Standard meta-analysis methods were used to evaluate the prognostic impact of CAIX expression on patient prognosis. The hazard ratio and its 95% confidence interval were recorded for the relationship between CAIX expression and survival, and the data were analyzed using Stata 11.0. Then we verify the meta-analysis resort to bioinformatics (TCGA).

Results

Our initial search resulted in 908 articles in total. From PubMed, Embase, Web of Science electronic and Cochrane library databases, 493, 318 and 97 potentially relevant articles were discovered, respectively. We took the analysis between CA9 and disease-specific survival ($HR = 1.18$, 95% CI: 0.82–1.70, $I^2 = 79.3\%$, $P < 0.05$), a subgroup then was performed to enhance the result ($HR = 1.63$, 95% CI: 1.30–2.03, $I^2 = 26.3\%$, $P = 0.228$); overall survival was also parallel with the former ($HR = 1.13$, 95% CI: 0.82–1.56, $I^2 = 79.8\%$, $P < 0.05$), then a subgroup also be performed ($HR = 0.90$, 95% CI: 0.75–1.07, $I^2 = 23.1\%$, $P = 0.246$) to verify the result; the analysis between CAIX and progression-free survival got the similar result ($HR = 1.73$, 95% CI: 0.97–3.09, $I^2 = 82.4\%$, $P < 0.05$), we also verify the result by subgroup analysis ($HR = 1.04$, 95% CI: 0.79–1.36, $I^2 = 0.0\%$, $P = 0.465$); at last the relationship between CAIX and recurrence-free survival got the same result, too ($HR = 0.99$, 95% CI:

OPEN ACCESS

Citation: Zhang Z, Wu B, Shao Y, Chen Y, Wang D (2022) A systematic review verified by bioinformatic analysis based on TCGA reveals week prognosis power of CAIX in renal cancer. PLoS ONE 17(12): e0278556. <https://doi.org/10.1371/journal.pone.0278556>

Editor: Lucia Magnelli, University of Florence, ITALY

Received: November 19, 2020

Accepted: November 21, 2022

Published: December 21, 2022

Copyright: © 2022 Zhang et al. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All TCGA bioinformatic analysis files are available from the TCGA database (<https://portal.gdc.cancer.gov/>). The data can be accessed here: <https://tinyurl.com/bdd9arww>.

Funding: This work was supported by a Natural Science Foundation of China grant (81970662) [<http://www.nsfc.gov.cn/>]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work was also supported by

Basic Research Program of Shanxi Province (20210302123242) [<https://kjt.shanxi.gov.cn/>]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

$0.95\text{--}1.02, I^2 = 57.8\%, P = 0.050$), the subgroup's result was also parallel with the former ($HR = 1.01, 95\%CI: 0.91\text{--}1.03, I^2 = 0.00\%, P = 0.704$). To validate our meta-analysis, we took a bioinformatic analysis based on TCGA database, survival curve between low and high CAIX expression in four endpoints (DSS, OS, PFI, DFI) have corresponding P value (DSS: $P = 0.23$, OS: $P = 0.77$, PFI: $P = 0.25$, DFI: $P = 0.78$).

Conclusions

CAIX expression in patients with RCC is an exception to predict tumor survival. Both low CAIX expression and high expression are not associated with survivals in RCC patients.

Introduction

Renal neoplasms are one of the most common solid cancers with fast increasing incidence [1]. In 2020, there were 73,750 new renal tumor cases and 14,830 deaths as a result of renal tumors in the United States [2]. In renal tumor, hypoxic state and necrosis often occur, hypoxia is an independent prognostic factor of poor outcome in patients [3] and weakens the efficacy of standard treatment modalities, such as surgery, chemotherapy, and radiotherapy [4–6]. Therefore, many strategies were investigated to measure or quantize tumor hypoxia to predict treatment outcome and to overcome or target tumor hypoxia with newly designed treatments [7–10].

The identification of tissue-based renal cell carcinoma (RCC) biomarkers may assist in predicting post-operative disease progression and response to adjuvant therapy [11]. Carbonic anhydrase IX (CAIX or CA9), also known as MN protein, has been investigated as a prognostic biomarker in pre and post-operative RCCs [12]. CAIX is expressed at high level in RCC compared to normal kidney tissues [13], and is thought to be a good candidate tissue-based biomarker. Its main function is to maintain the balance between intracellular and extracellular pH by the reaction: $\text{CO}_2 + \text{H}_2\text{O} = \text{HCO}_3^- + \text{H}^+$, thereby generating an acidic extracellular micro-environment [14, 15]. As a hypoxia-related protein, high CAIX expression relates to corresponding hypoxic status in other tumors such as head and neck carcinoma [16]. Hypoxic areas have stronger CAIX expression because of hypoxia inducible factor (HIF) stabilization [14]. Numerous studies have evaluated CAIX as a biomarker of prognosis in RCC with mixed conclusions. High CAIX expression has been reported to be associated with good prognosis [17–26], and higher objective response rates in IL-2-treated patients [27]. Other studies reported no correlation between CAIX expression and RCC prognosis [28, 29]. In several studies of ovarian cancer [30–33], treatment-refractory tumors display expression of the hypoxia-induced CAIX and are associated with cancer progression and poor clinical outcome.

Due to these conflicting results, we performed the meta-analysis to determine whether CAIX can be used as a prognostic marker in RCC.

Materials and methods

Literature search, eligibility criteria and data extraction

A literature search of original articles on the prognostic role of CAIX in RCC was conducted on the PubMed, Embase, Cochrane library and Web of Science databases using keywords: renal or kidney, cancer or carcinoma or tumor or neoplasm, “Carbonic anhydrase IX” or “CAIX” or “CA9”, and prognosis or survival. Articles published until April 2022 were included

in the search. Inclusion criteria were used for the analysis: (1) diagnosis of RCC confirmed by histopathology and (2) CAIX level detected by immunohistochemistry (IHC) on primary RCC tissue. The number of patients in a given study was not an exclusion criterion. The report with the largest number of patients was included in this study when the same group based on a similar patient cohort were reported by multiple papers.

The data, extracted by SY and WB, included the basic information of the study (first author, publication year, country and case number), tumor characteristics (tumor stage and grade), CAIX cut-off value (CAIX was divided into high expression group and low expression group according to a certain value), and survival outcome (CAIX expression-related survival).

Quality assessment

Two independent reviewers assessed the quality of all included studies using the Newcastle-Ottawa Quality Assessment Scale for cohort studies (available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp) (S1 Table). The quality assessment score is based on two independent reviewers' careful reading, with a third reviewer introduced if the assessment score is different. The study quality evaluation was divided into three categories: (1) cohort selection, (2) cohort comparability, and (3) outcome determination. A total of eight components included. The study received one point if the selection and outcome categories had high quality characteristics. The entire points were then totaled together, with higher scores indicating higher methodological quality.

Publication bias

For analyzing and measuring publication bias, funnel plots, Egger's test, and Begg's test were in use respectively.

Statistical analysis

Hazard ratios (HRs) with 95% confidence intervals (CIs) were employed to depict the impact of CAIX expression on kinds of survivals. Due to the fact that most of the data in the included studies were in the form of hazard ratio, we did the same for our study as well. Compared to odds ratios, hazard ratios are more accurate because they account for time. It is also simple to interpret HR value: When $HR > 1$, factors with high expression pose a risk, otherwise it acts as a protective factor ($HR < 1$). As long as HRs and 95% CIs appeared in the studies, this data were extracted directly for analysis. If the data was absent, the HRs and 95% CIs from the Kaplan-Meier survival curves could be calculated through the Engauge Digitizer program (version 4.1), then the survival rate was extracted from the curves to get the HR (SE) [34]. The data was imported into STATA 11.0 software for analysis. In addition, adopted Q tests and I^2 metrics to appraise the heterogeneity of the studies. The significant heterogeneity of the analyzed data necessitated the use of a random-effects model [35]. A fixed-effects model was performed when no heterogeneity was shown among the studies. The fixed effect model should be exercised on the premise of small heterogeneity between studies. Statistical tests (all bilateral identified) considered $P < 0.05$ as significant difference.

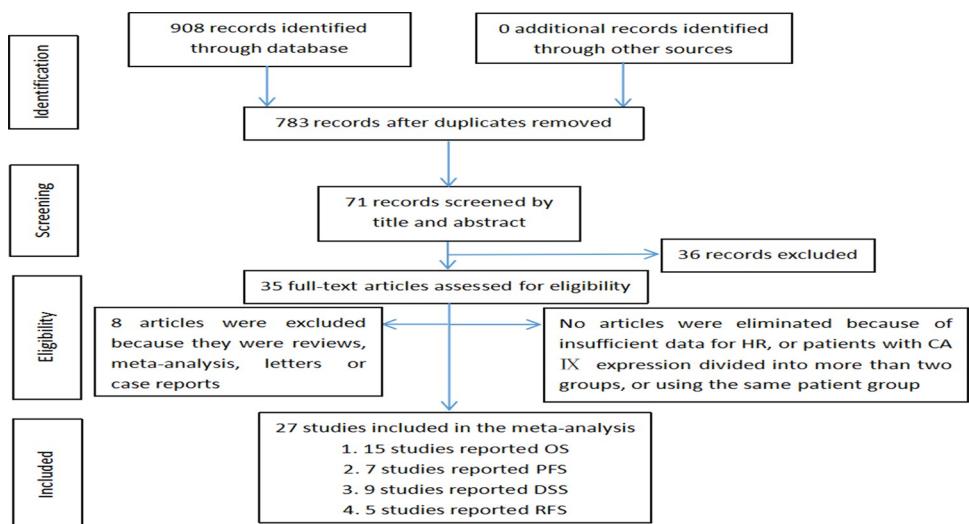
TCGA dataset

Clinical information for RCC was sourced from The Cancer Genome Atlas (TCGA) data portal. 588 cases with the available clinical information were included.

Results

Study selection and characteristics

Our initial search resulted in 908 articles in total. From PubMed, Embase, Web of Science electronic and Cochrane databases, 493, 318 and 97 potentially relevant articles were discovered, respectively. Clicked the "Remove duplication" option in Endnote software to exclude 125 duplicate papers. Based on the titles and abstracts identified, 71 papers considered eligible for the assessment of the prognostic value of CAIX status in patients with RCC. Our study examined 27 research [17–26, 36–52], 12 of which [37–47, 52] were new articles that published in the previous eight years (after 2014) to assess the connection between CAIX expression and prognosis in RCC patients. [Fig 1](#). depicted the selecting procedure.


Our meta-analysis involved 5,462 patients. Of these studies, 9 were evaluated through multivariate analysis and the other assessed with univariate analysis. Disease-specific survival (DSS) was reported in 9 studies, while in 15, 7, and 6 investigations, overall survival (OS), progression-free survival (PFS), and recurrence-free survival (RFS) were mentioned, respectively. [Table 1](#) illustrated the assessed quality and clinical characteristics of each of those studies, and [S2 Table](#) revealed the quality assessment results of each included study in detail.

CAIX expression level was not related to DSS in RCC

First, we conducted an analysis that included all trials and discovered that CAIX expression was not linked to DSS (HR = 1.18, 95% CI: 0.82–1.70, $I^2 = 79.3\%$, $P < 0.05$, [Fig 2A](#)). However, enormous heterogeneity prompted us to take a subgroup to re-verify the conclusion. Subgroup analysis of high-quality literature showed that high expression of CAIX was associated with longer survival. (HR = 1.63, 95%CI: 1.30–2.03, $I^2 = 26.3\%$, $P = 0.228$, [Fig 2B](#)). At last we had subgroup which only including new studies (HR = 0.95, 95%CI: 0.51–1.78, $I^2 = 1.1\%$, $P = 0.364$, [Fig 2C](#)), the result did not associate to DSS as before.

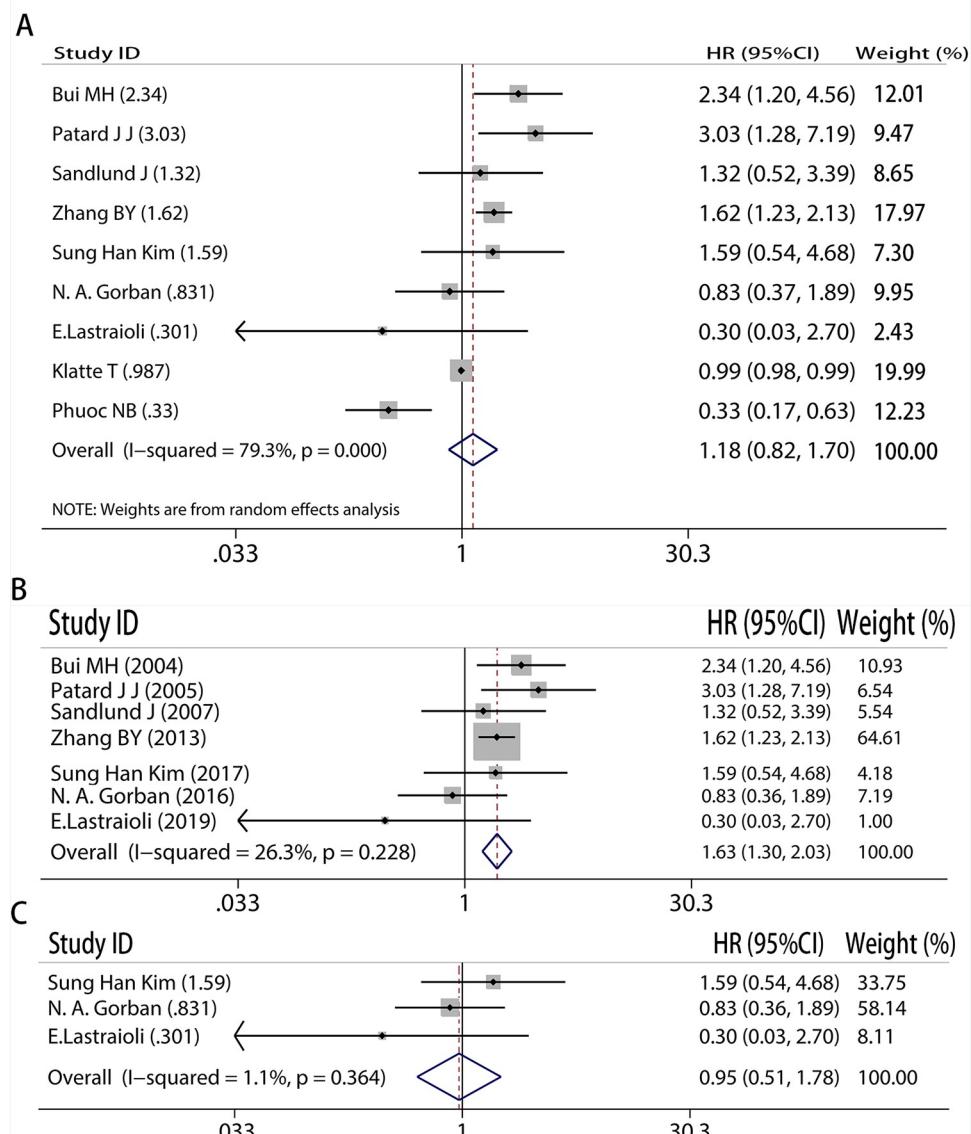
CAIX expression level can not predict OS in RCC

In a similar manner, additional analyses were carried out for the relationship between CAIX expression and OS, with fifteen papers included. The researchers concluded that CAIX

Fig 1. Flow chart of study selection.

<https://doi.org/10.1371/journal.pone.0278556.g001>

Table 1. Basic characteristics of included studies and quality assessment.


First author	Year	Country	Case	Cut-off value	Survival outcome	Survival analysis	Quality assessment
Grant D. Stewart	2014	UK	45	N/A	OS	Multivariate	7
Inkeun Park	2015	Korea	120	0.475	OS, PFS	Multivariate	6
N.A. Gorban	2016	Russia	60	0.85	DSS	Univariate	7
E.Jason Abel	2014	USA	216	0.45	RFS	Univariate	8
Sung Han Kim	2017	Korea	350	H score	RFS, OS, DSS	Univariate	8
E. Lastraioli	2019	Italy	30	N/A	CSS, RFS	Univariate	8
Bulent Cetin	2015	Turkey	45	N/A	OS, PFS	Univariate	7
A. Ingels	2016	Netherlands	143	N/A	RFS	Univariate	7
Franziska	2018	German	890	N/A	OS, RFS	Univariate	7
S. Chow	2016	UK	100	N/A	OS	Univariate	6
Wenjuan Yu	2017	China	42	N/A	OS	Univariate	7
Karim Chamie	2015	USA	813	0.85	OS	Multivariate	8
Atkins M	2005	USA	66	0.85	OS	Univariate	6
Biswas S	2012	UK	112	N/A	OS	Multivariate	7
Bui MH	2003	USA	321	0.85	DSS	Univariate	6
Choueiri TK	2012	USA	133	0.85	PFS	Univariate	6
Dornbusch J	2013	Germany	42	N/A	OS, PFS	Multivariate	6
Dudek AZ	2010	USA	47	0.85	OS, PFS	Univariate	7
Kim HS	2011	Korea	56	0.85	PFS	Univariate	8
Klatte T	2007	USA	357	N/A	DSS	Multivariate	7
Muriel LC	2012	Spain	135	0.85	PFS, OS	Univariate	6
Patard JJ	2005	France, USA	100	0.85	DSS	Multivariate	7
Phuoc NB	2008	Japan	122	Score 4	DSS	Multivariate	6
Sandlund J	2007	Sweden	228	0.1	DSS	Multivariate	7
Soyupak B	2005	Turkey	67	0.5	OS	Univariate	6
Zerati M	2013	Brazil	95	N/A	OS	Univariate	7
Zhang BY	2013	USA	730	0.85	DSS	Univariate	6

<https://doi.org/10.1371/journal.pone.0278556.t001>

expression was not linked to OS (HR = 1.13, 95%CI: 0.82–1.56, $I^2 = 79.8\%$, $P < 0.05$, [Fig 3A](#)). And notable heterogeneity made us have subgroup like [Fig 2B](#). After removing low-quality research, the findings maintained the same (HR = 0.90, 95%CI: 0.75–1.07, $I^2 = 23.1\%$, $P = 0.246$, [Fig 3B](#)). As expected, the data supported that CAIX expression had no correlation with OS. The new study subgroup came to the same result (HR = 0.94, 95%CI: 0.63–1.40, $I^2 = 80.9\%$, $P < 0.05$, [Fig 4A](#)). However, because substantial heterogeneity emerged, we carried an additional analysis in which low-quality papers (quality score ≤ 6) were excluded in order to minimize heterogeneity. This led to a result which was consistent with the previous conclusion (HR = 0.83, 95%CI: 0.68–1.01, $I^2 = 33.1\%$, $P = 0.201$, [Fig 4B](#)).

CAIX expression level was not associated to PFS in RCC

Due to the dearth of new research (just two), the analysis between CAIX and PFS was simplified. We only launched an analysis that included all trials and excluded low-quality studies. Took a total of 7 studies into consideration in the analysis (HR = 1.73, 95%CI: 0.97–3.09, $I^2 = 82.4\%$, $P < 0.05$, [Fig 5A](#)), then the result indicated that CAIX expression was not associated with PFS. Then we need a subgroup to reduce heterogeneity, after excluding low-quality research, the conclusion held constant (HR = 1.04, 95%CI: 0.79–1.36, $I^2 = 0.0\%$, $P = 0.465$, [Fig 5B](#)).

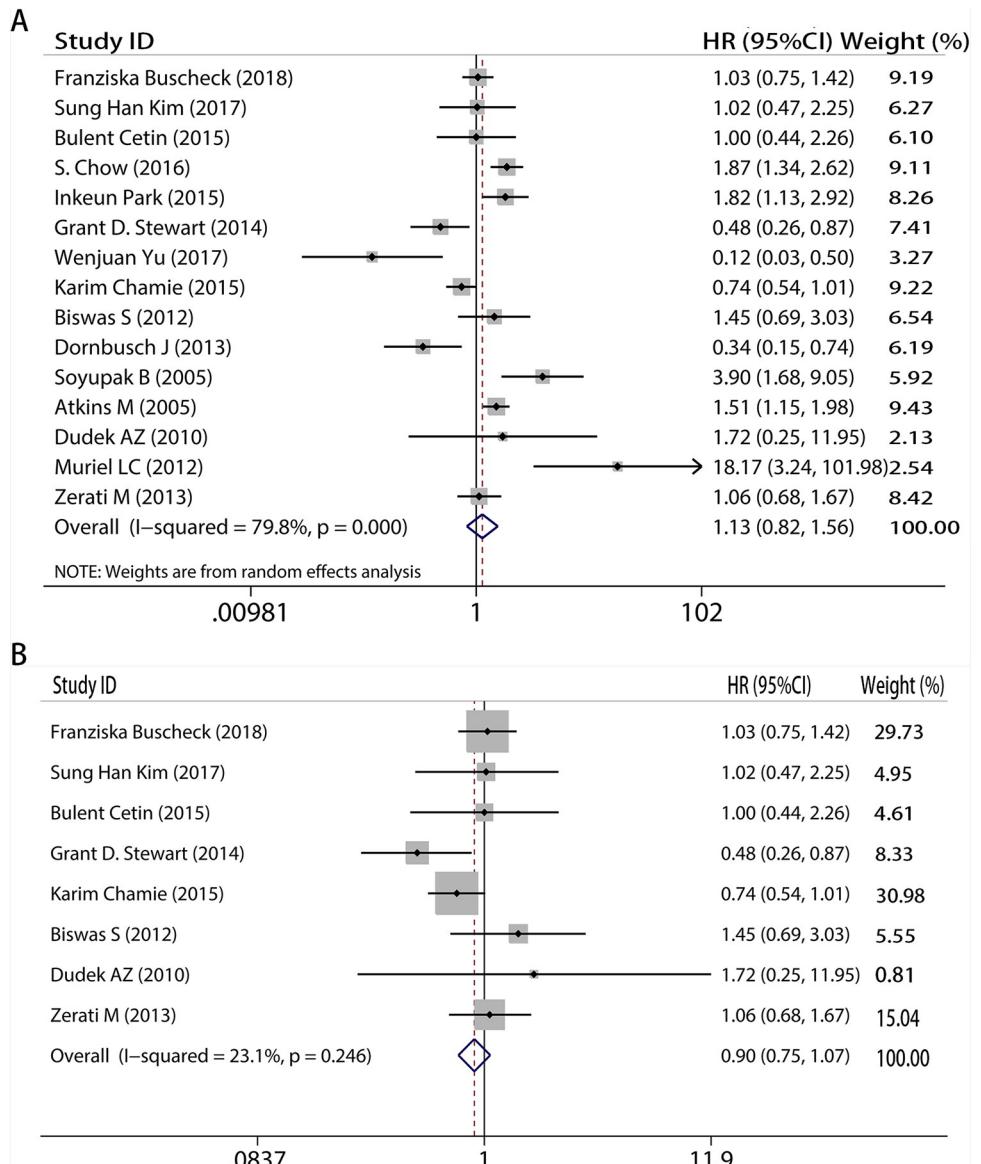
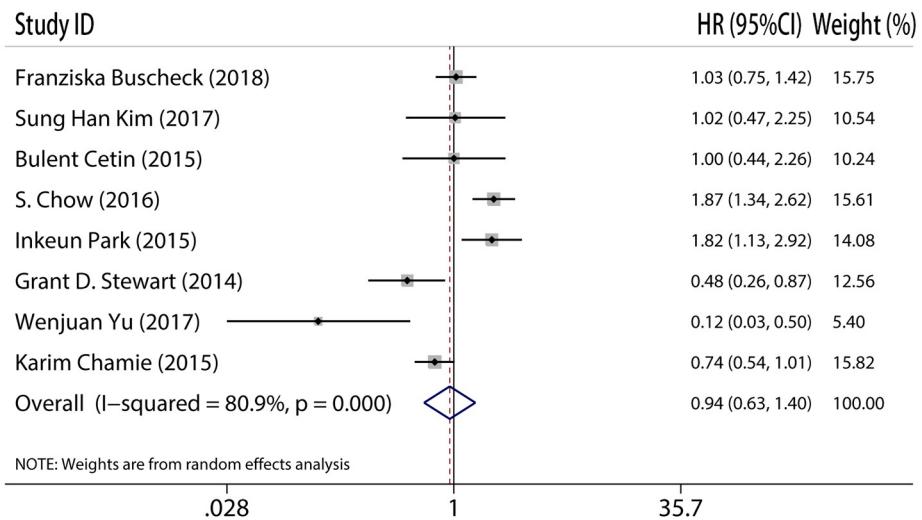


Fig 2. Meta-analysis of CAIX expression and disease-specific survival on A, all inclusion studies; B, by excluding the low quality score studies (quality score ≤ 6); C, only including new studies.

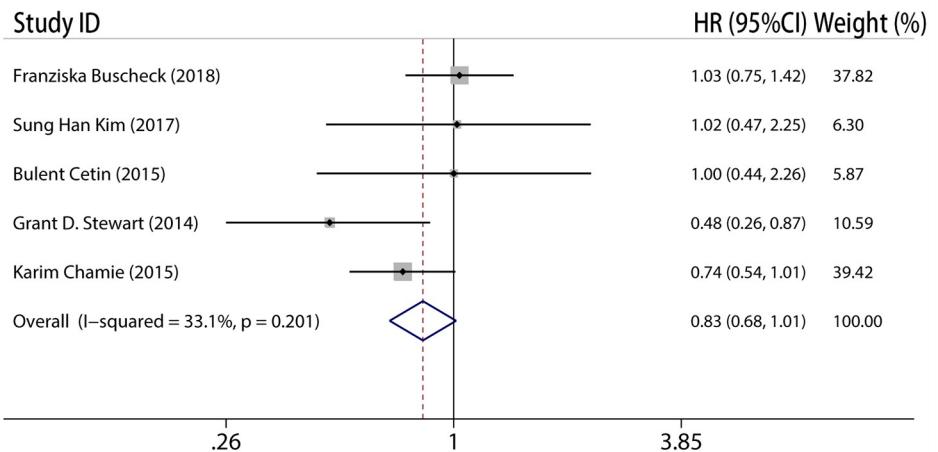
<https://doi.org/10.1371/journal.pone.0278556.g002>

No relationships found between CAIX expression level and RFS in RCC

We also compared the relationship between CAIX and RFS. Also like other analysis, we detected no connection between CAIX and RFS. Because only new studies included had pertinent data, as a result, we discussed the impact that included all of the nascent research ($HR = 0.99$, 95%CI: $0.95-1.02$, $I^2 = 57.8\%$, $P = 0.050$, [Fig 6A](#)). The heterogeneity still remained noteworthy; all of the studies captured more than 6 points, with five acquiring 8 points, and one receiving 7 points. As a result, a subgroup survey was applied, deleting the research with the lowest quality ($HR = 1.01$, 95%CI: $0.99-1.03$, $I^2 = 0.00\%$, $P = 0.704$, [Fig 6B](#)). Whether [Fig 6A](#) or [Fig 6B](#), the hypothesis that CAIX expression has no relationship with RFS stayed consistent.


Fig 3. Meta-analysis of CAIX expression and overall survival on A, all inclusion studies; B, by excluding the low quality score studies (quality score≤6).

<https://doi.org/10.1371/journal.pone.0278556.g003>


Publication bias

Publication bias was assessed for DSS, OS, PFS, and RFS respectively. For OS, the funnel plot of HR indicated some publication bias (Fig 7A). Publication bias was detected with a statistical test (Egger's test = 0.04, Begg's test = 0.921). After excluding low quality studies, publication bias reduced markedly (Fig 7B, Egger's test = 0.160, Begg's test = 0.902). The funnel plot of OS which only including new studies also revealed publication bias (Fig 8A, Egger's test = 0.328, Begg's test = 0.536) which smaller than Fig 7. And then we calculated publication bias of the subgroup which excluding low quality studies in all new research (Fig 8B, Egger's test = 0.844, Begg's test = 1.000). As for PFS, the funnel plot of HR also demonstrated a little publication

A

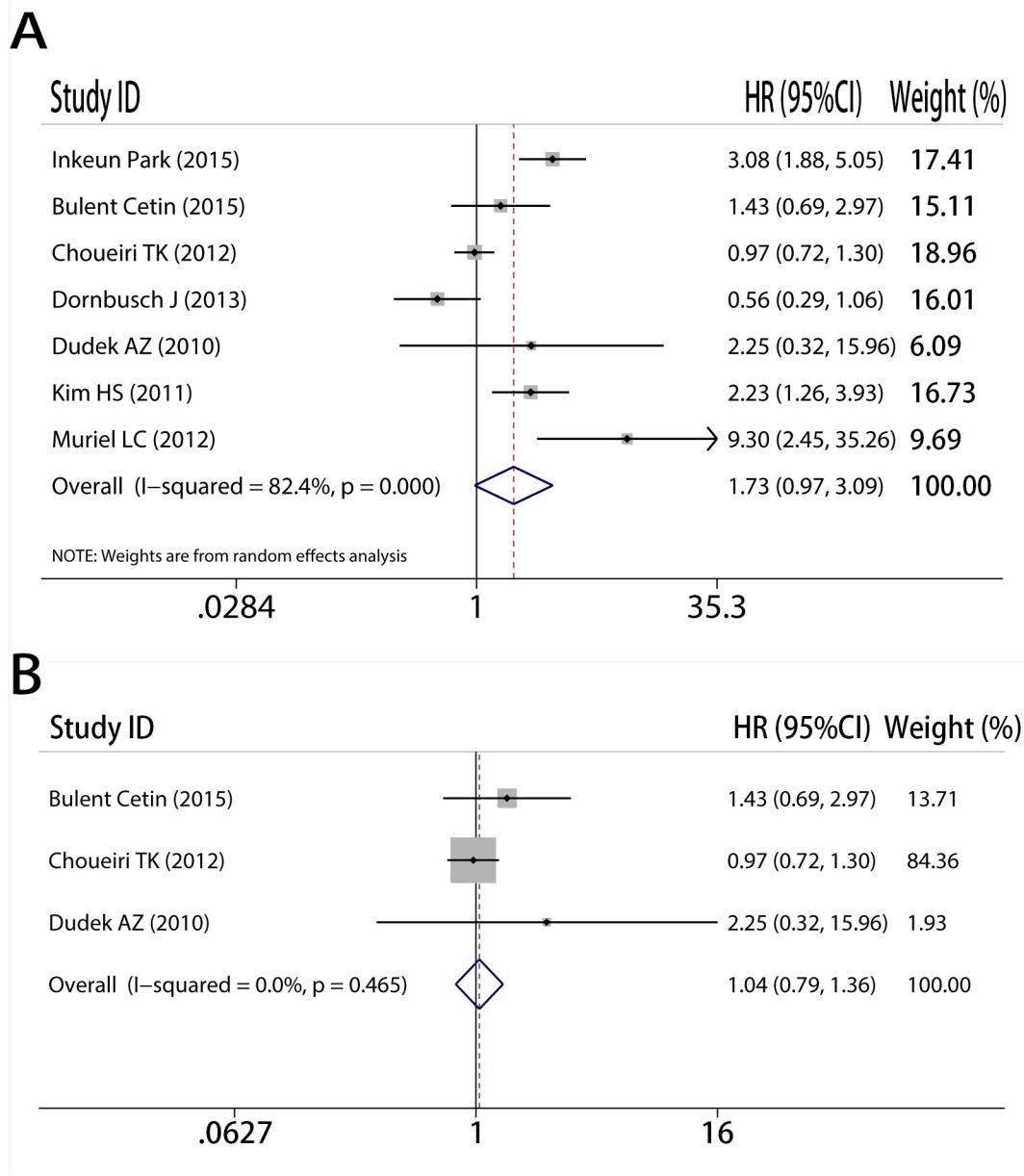

B

Fig 4. Meta-analysis of CAIX expression and overall survival on A, all new inclusion studies; B, by excluding the low quality score studies (quality score \leq 6).

<https://doi.org/10.1371/journal.pone.0278556.g004>

bias (Fig 9A). Publication bias was consequently computed (Egger's test = 0.308, Begg's test = 0.764). Since the low-quality studies were eliminated, publication bias got accepted, just as it had before (Fig 9B, Egger's test = 0.183, Begg's test = 1.000). The funnel plot of RFS showed publication bias (Fig 10A), and the Egger's test = 0.225, Begg's test = 0.462. In the same way, there was a reduction in publication bias following the elimination of low quality studies (Fig 10B, Egger's test = 0.710, Begg's test = 1.000). Funnel plot of DSS indicated some bias (Fig 11A, Egger's test = 0.771, Begg's test = 0.466), then both the subgroup excluding low quality studies (Fig 11B, Egger's test = 0.262, Begg's test = 0.548) and the other which only including new studies (Fig 11C, Egger's test = 0.666, Begg's test = 1.000) had little publication bias. In summary, the publication bias in different endpoints can be accepted.

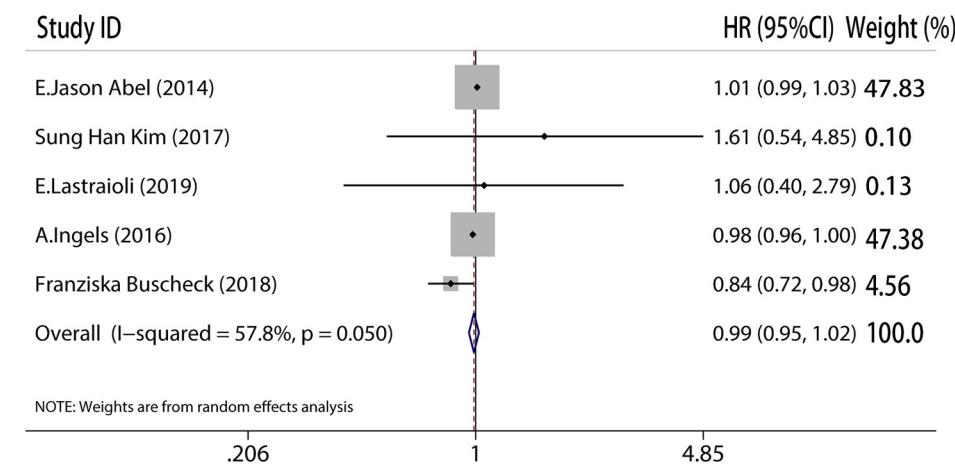
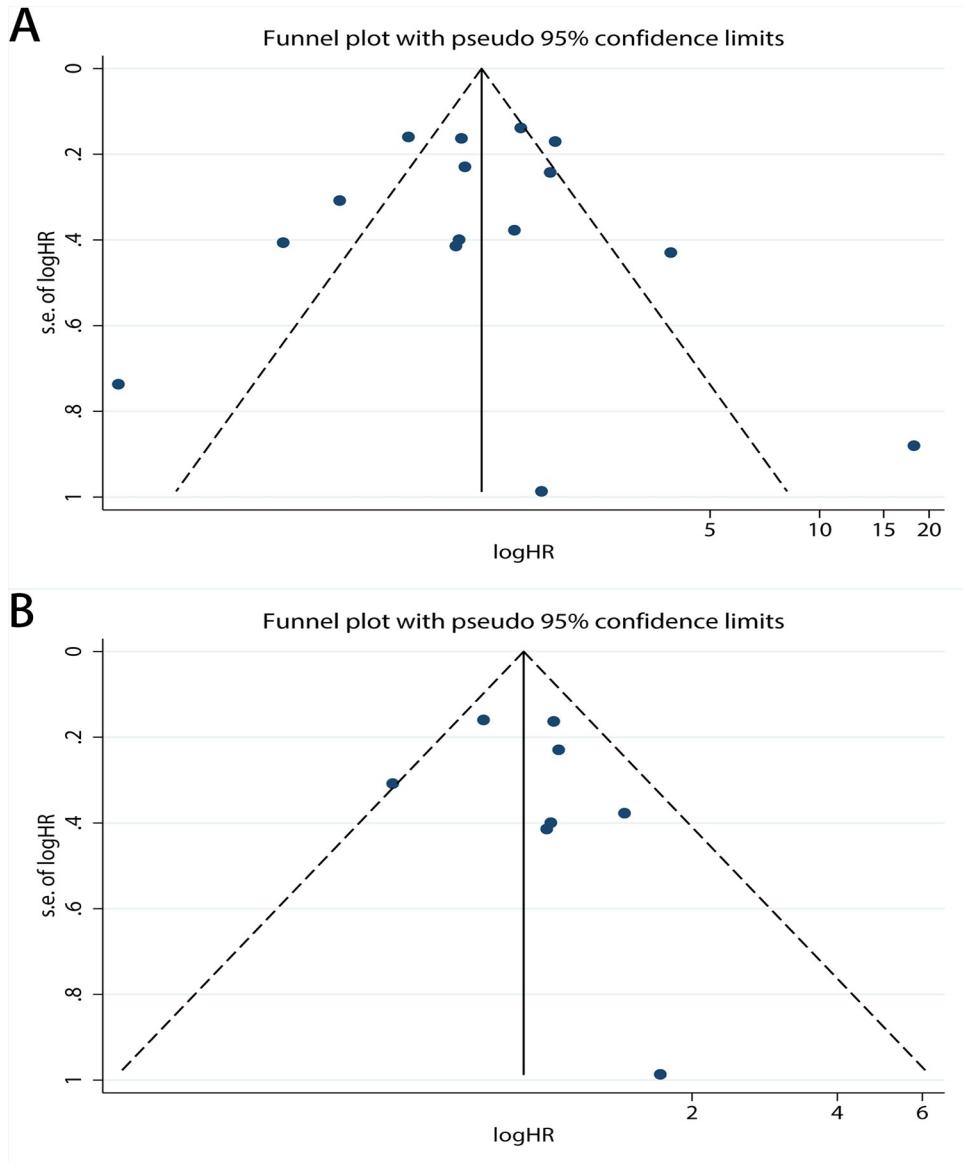


Fig 5. Meta-analysis of CAIX expression and progression-free survival on A, all inclusion studies; B, by excluding the low quality score studies (quality score ≤ 6).

<https://doi.org/10.1371/journal.pone.0278556.g005>

TCGA data

As a way to confirm the results above, we conducted a bioinformatic analysis of CAIX expression for survivals. These results matched those of a meta-analysis. [Fig 12A–12D](#) showed that all the endpoints had the same result, neither low nor high CAIX expression affected survival. Based on Kaplan-Meier analysis, CAIX expression did not associate with Overall survival ($P = 0.77$) ([Fig 12A](#)), disease-specific survival ($P = 0.23$) ([Fig 12B](#)), progression-free interval ($P = 0.25$) ([Fig 12C](#)) and disease-free interval ($P = 0.78$) ([Fig 12D](#)).


Fig 6. Meta-analysis of CAIX expression and recurrence-free survival on A, all inclusion studies; B, by excluding the low quality score studies (quality score ≤ 7).

<https://doi.org/10.1371/journal.pone.0278556.g006>

Discussion

Clinical studies have explored the relationship between CAIX expression and treatment outcomes, which had multiple applications in tumor diagnosis, treatment and the prediction of clinical outcome. Some diseases, such as breast cancer can be effectively doped out by checking HER2 expression after radical surgery [53]. A lot of studies were searching for similar biomarkers to predict patients' survival with RCC.

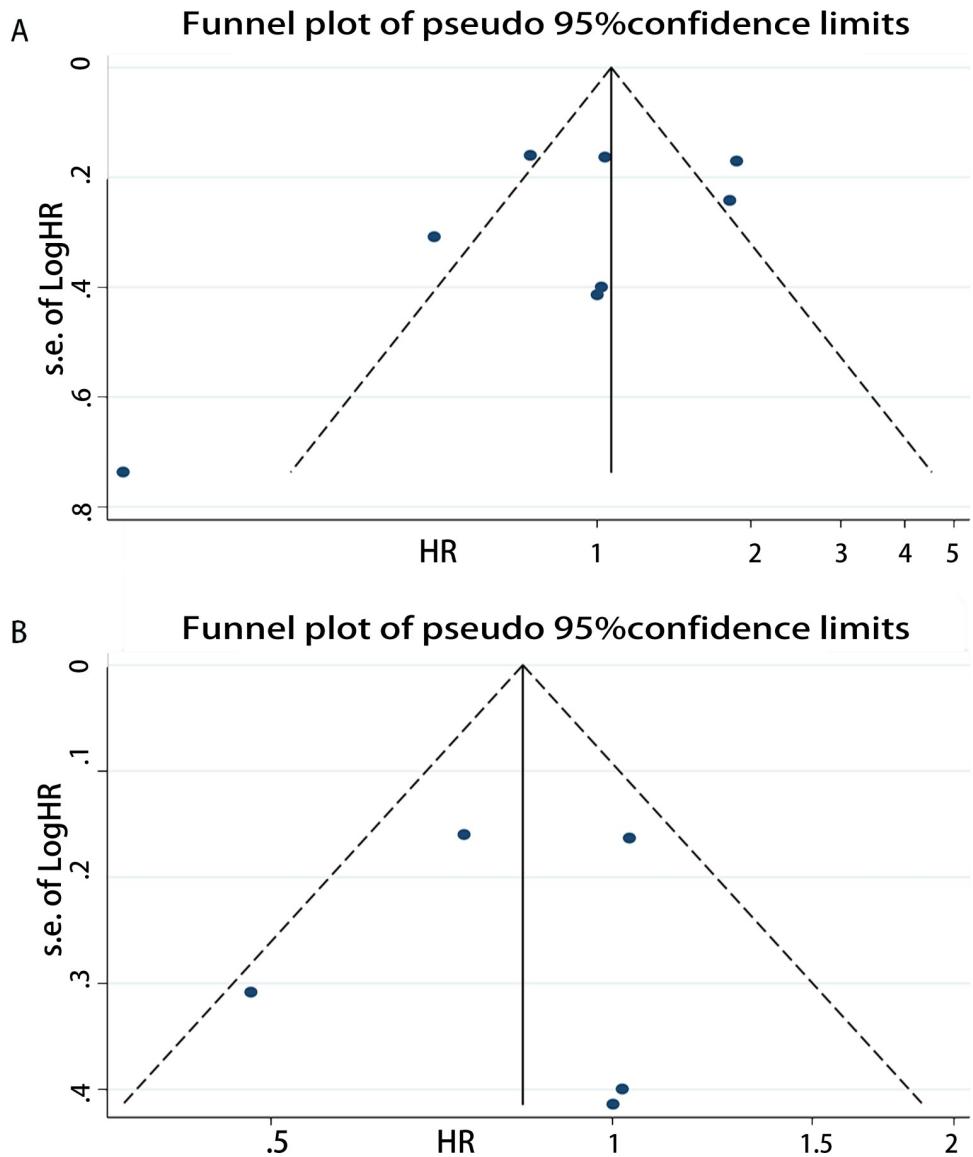

Our meta-analysis suggested that both low CAIX expression and high were not associated with survivals irrespectively of the endpoint evaluated. Association of CAIX expression on other tumors with patient prognosis has been validated. Among the many tumors in which CAIX was expressed are head and neck cancers [16], breast cancers [54–60], esophageal

Fig 7. Funnel plot of CAIX expression and overall survival on A, all inclusion studies; B, by excluding the low quality score studies (quality score ≤ 6).

<https://doi.org/10.1371/journal.pone.0278556.g007>

cancers [61, 62], pancreatic cancers [63–65], and soft tissue tumors [66, 67], whose worse prognosis was associated with the presence of CAIX. These results demonstrated the necessity of exploring the relationship between CAIX and RCC, and both their relatedness and lack of relationship. In addition to VHL genes and their associated proteins control CAIX expression, it has also been reported that PI3K and unfolded protein responses also regulated [68–70]. And this increased the CAIX expression and the uncertainty of prognosis with RCC. RCC was not the only cancer where CAIX level did not correlate with patient prognosis, as research on ovary cancer [30, 31, 33], bladder cancer [71], and cervical cancer [72–74] followed the similar result. CAIX correlated with the survival of some tumors, but not all. Like brain cancer, the results of studies varied; 9 papers concluded that CAIX was linked with OS [75–83], while 3 papers [84–86] around PFS found it not to be. Contradictory results may be due to different

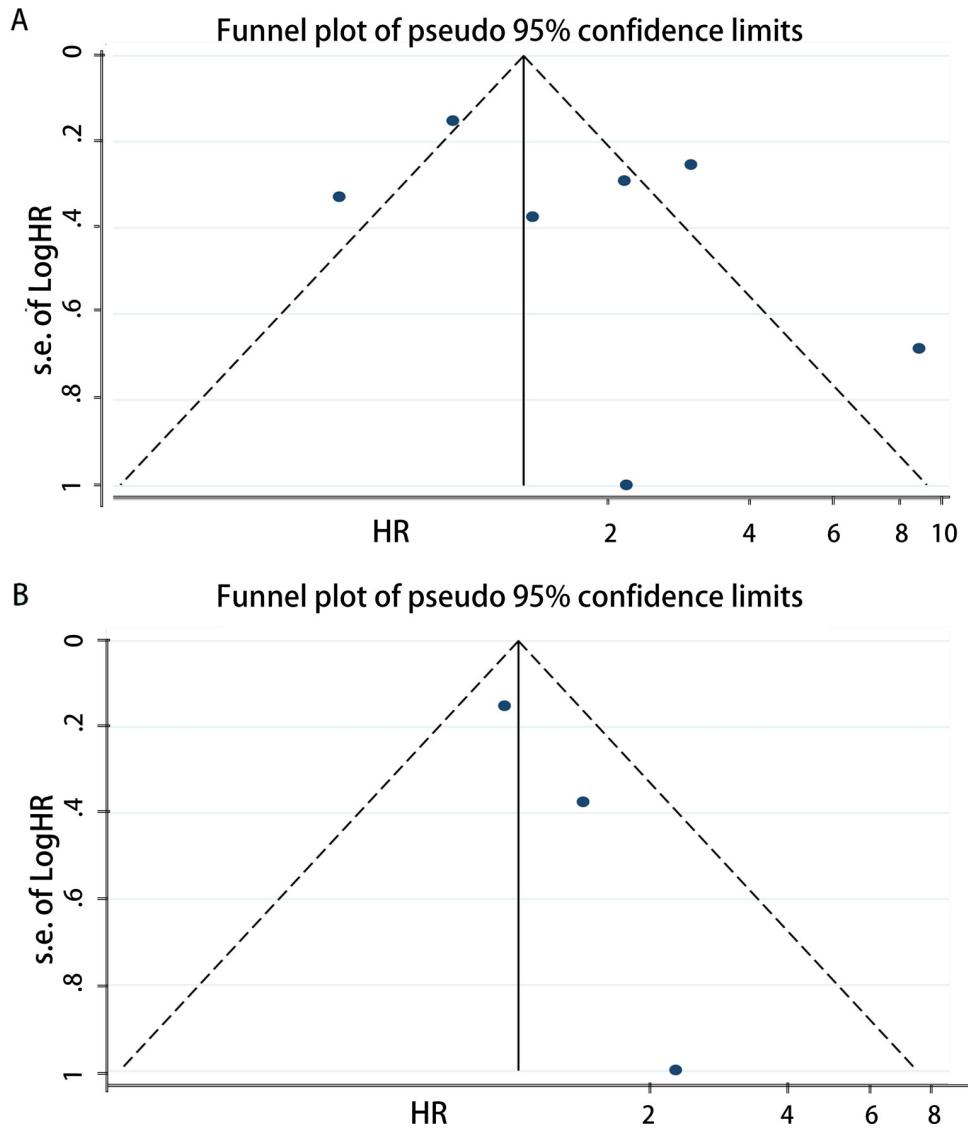


Fig 8. Funnel plot of CAIX expression and overall survival on A, all new inclusion studies; B, by excluding the low quality score studies (quality score ≤ 6).

<https://doi.org/10.1371/journal.pone.0278556.g008>

cut-off values and different manufacturers' reagents were used in immunohistochemical staining.

To further explain our results, we examined the upstream genes and related regulators of CAIX expression in RCC. RCC was distinguished from other cancers by a somatic mutation of the VHL gene which occurred frequently [87, 88], in most RCC especially clear cell subtype (ccRCC). Our results may have been affected by this factor in contrast with other tumors expressed CAIX. When tumor is in hypoxic conditions, HIF-1 α (HIF has two parts, a constitutive β -subunit and an oxygen-sensitive α subunit [15]) can not be hydroxylated by prolyl hydroxylase domain proteins and bounded by pVHL [89] because of Von Hippel-Lindau (VHL) gene mutation, then HIF-1 α can not be in subsequent degradation by 26S proteasome [90–93]. This position leads to the durative accumulation and activation of HIF-1 α [94]. In

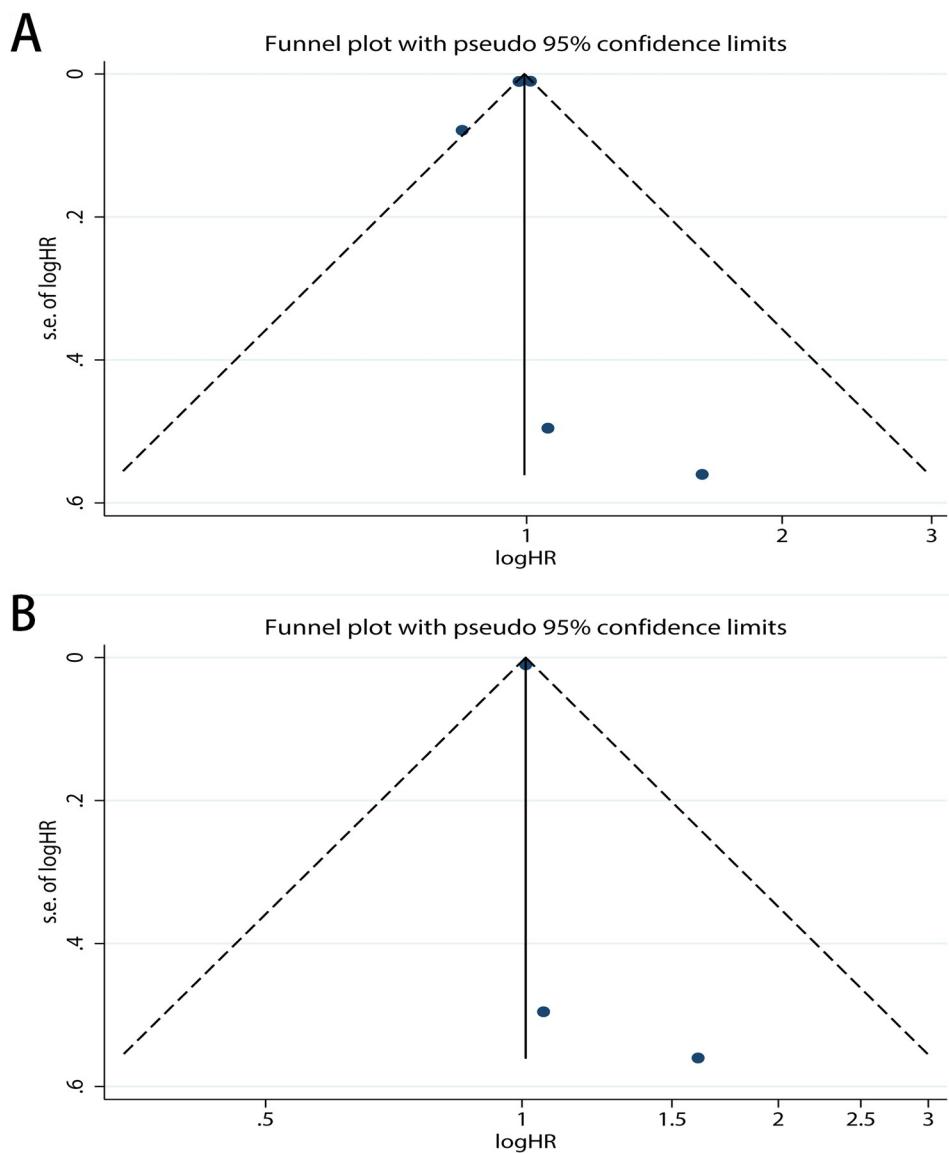


Fig 9. Funnel plot of CAIX expression and progression-free survival on A, all inclusion studies; B, by excluding the low quality score studies (quality score ≤ 6).

<https://doi.org/10.1371/journal.pone.0278556.g009>

abnormal oxygen statuses and acidic conditions, CAIX expression is mediated by the HIF transcriptional complex [95]. In the literature, the HIF-1 α non-oxygen concentration dependence accumulation because of VHL gene mutations leads to an abnormal increase in CAIX so that it can not reflect real hypoxic status, and then it is accordant that the results of our analysis show no correlation between CAIX level and prognosis.

Numerous studies [96–103] manifested the dependency of CAIX expression on HIF-1 α under hypoxic conditions. And showed the HIF-1-responsive element HRE was localized next to CAIX transcription start site [30], suggesting that CAIX was a HIF-1 downstream target gene. In summary, this behavior of CAIX expression in RCC can be attributed to the pVHL which prevented proteasomal degradation of CAIX upon normoxia and expressed without hypoxia [87, 104]. To sum up, VHL gene mutation led to pVHL deletion, which can not degrade HIF-1 α , resulted in abnormal accumulation of HIF-1 α . Under normal or hypoxic

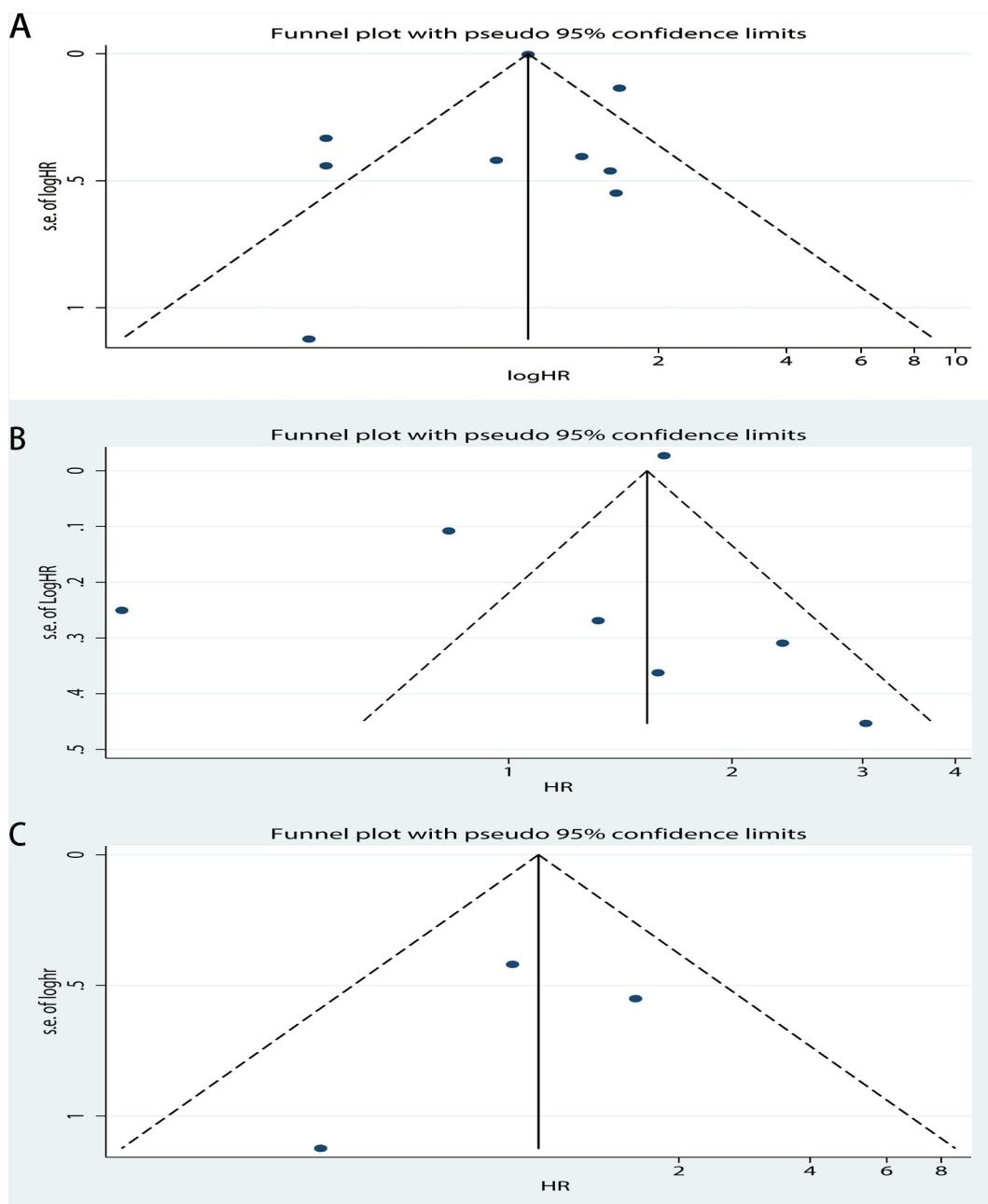


Fig 10. Funnel plot of CAIX expression and recurrence-free survival on A, all inclusion studies; B, by excluding the low quality score studies (quality score ≤ 7).

<https://doi.org/10.1371/journal.pone.0278556.g010>

conditions, HIF-1 α can regulate CAIX overexpression, which can not reflect tumor hypoxia by testing CAIX expression level, and can not predict the prognosis of patients. This mechanism contributed to the independence between CAIX expression and real hypoxic status and then indirectly estranged from survival rates, so it explained our results that CAIX expression was not associated with several endpoints. By going through aforementioned studies, we can explain the result of meta-analysis and bioinformatic analysis based on TCGA database, and understood why CAIX expression was not associated with different endpoints.

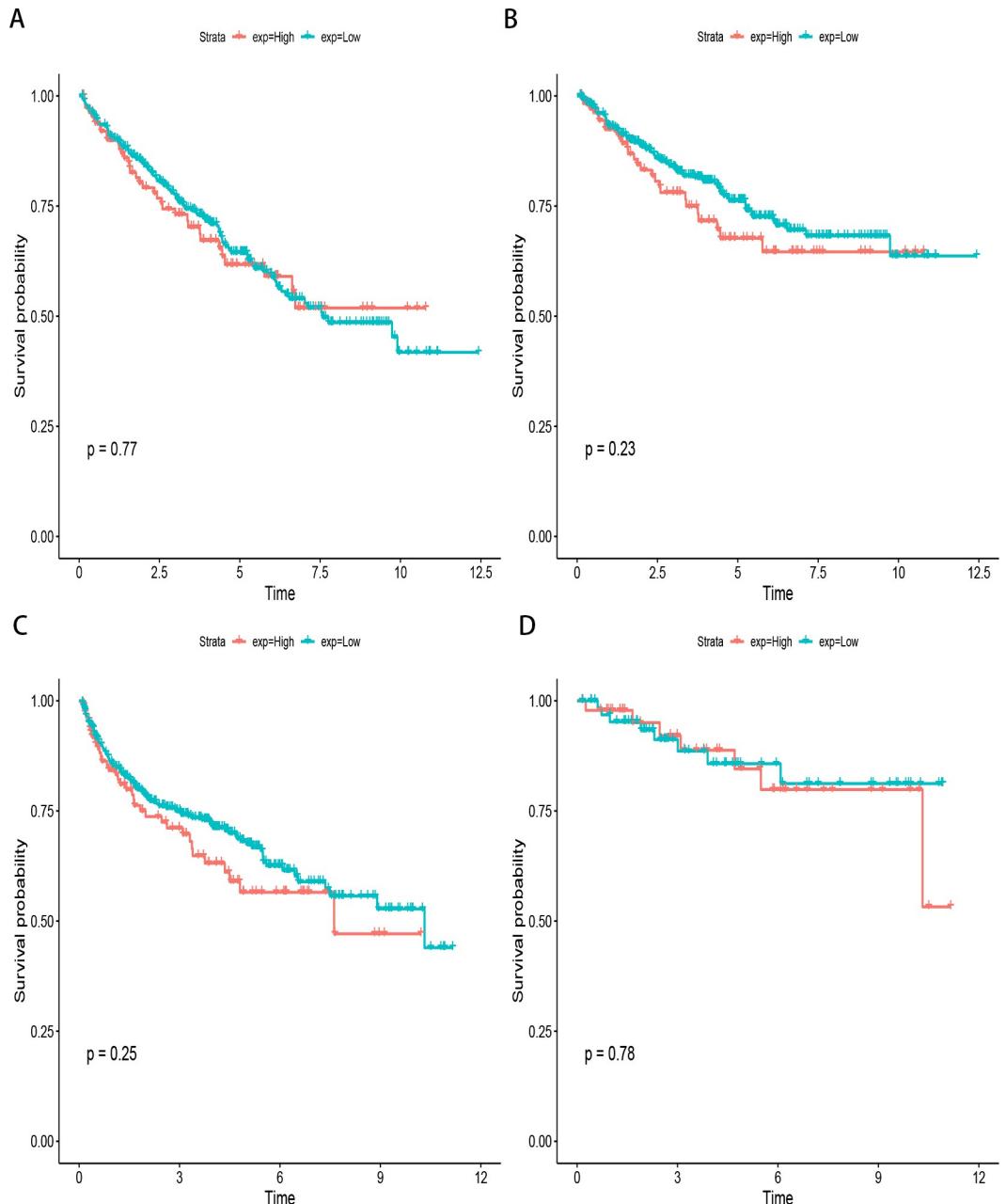

A meta-analysis [12] carried out in 2014 connected low expression of CAIX to poor DSS, OS and PFS. It seemed contrary to the functional mechanism of CAIX. Although Several studies have also suggested a positive correlation between CAIX levels and the IL-2 response of patients with RCC undergoing treatment [18–20]. In this case, it can only be stated that CAIX

Fig 11. Funnel plot of CAIX expression and disease-free survival on A, all inclusion studies; B, by excluding the low quality score studies (quality score ≤ 6); C, only including new studies (quality score ≤ 6).

<https://doi.org/10.1371/journal.pone.0278556.g011>

may be used as an effective therapeutic target, but it cannot be determined whether its expression level has a connection with patient survival (especially when no treatment aiming at this target). Some studies found different or even opposite effects on different subtypes [19, 44, 95], for instance, a study reported that in ccRCC, high CAIX expression had more favorable prognosis in OS and RFS, while in papillary RCC (pRCC) the result was opposite, although the P value did not reach the level of statistical significance in OS ($P = 0.1645$ for ccRCC, $P = 0.3861$ for pRCC). We do not evaluate the association between CAIX expression and T stage, N stage, M stage and Furhman grade since few new studies after 2014 reported complete data about

Fig 12. Bioinformatic analysis based on TCGA database. A, Kaplan-Meier survival analysis between CAIX expression and overall survival; B, Kaplan-Meier survival analysis between CAIX expression and disease-specific survival; C, Kaplan-Meier survival analysis between CAIX expression and progression-free interval; D, Kaplan-Meier survival analysis between CAIX expression and disease-free interval.

<https://doi.org/10.1371/journal.pone.0278556.g012>

them, and the association between CAIX level and T stage has been demonstrated irrelevant [12]. According to these results, CAIX expression was neither a suppressing nor a promoting factor for patients with RCC. No matter what kind of analysis we used, all of them led to the conclusion that CAIX was an unsuitable biomarker for predicting the prognosis of RCC.

Compared with the meta analysis [12] a few years ago, we have included more literature and drawn more scientific conclusions. We assessed the relevance of CAIX to RFS in addition to DSS, OS and PFS. In order to make the conclusions more reliable, we used bioinformatic

analysis to verify the conclusions. And similar results were also obtained in bioinformatic analysis.

We also have some limitations, for instance, the level of evidence provided by observational studies was less than that provided by randomized controlled trials; and most of the studies included in our meta-analysis were retrospective studies. In our research, there was significant heterogeneity among 27 included studies. And because of the number of including studies, the funnel plot of publication bias may have very low power to distinguish chance from real asymmetry. Compared with the former analysis [12], we did not limit the literature language so we get a more complete literature search [52]. Heterogeneity may have been caused by some factors such as patients coming from different countries with different tumor stages and histological types, cut-off values, the therapy methods used, follow-up time, different sources and dilutions of primary antibodies. For the reduction of heterogeneity, only IHC-based studies evaluating CAIX expression levels were included. Further, it was necessary to take the publication bias into account. For OS, the result exhibited publication bias (Figs 7A and 8A). However, when the low quality studies were excluded, there existed little publication bias (Figs 7B and 8B). Furthermore, there was no significant publication bias for RFS and DSS (Figs 10A and 11A), that indicated the analyses were feasible and the results were credible. Another limitation was the process of data extraction. The data was calculated by using survival curves when the study did not provide HR and SE directly, this process also introduced a potential source of bias.

In conclusion, Our meta-analysis indicated that no difference found between low and high CAIX expression detected by IHC was associated with poor DSS, OS, PFS and RFS in patients with RCC.

Supporting information

S1 Checklist. PRISMA checklist for this meta-analysis.
(DOC)

S1 Table. Newcastle–Ottawa quality assessment scale.
(PDF)

S2 Table. Quality assessment of each study included.
(TIF)

S1 Data. Raw data and the final data for survival outcome.
(DOC)

Author Contributions

Methodology: Zikuan Zhang, Dongwen Wang.

Resources: Yongquan Chen.

Software: Zikuan Zhang, Yuan Shao.

Validation: Zikuan Zhang, Bo Wu.

Writing – original draft: Zikuan Zhang.

References

1. Koul H, Huh J, Rove K, Crompton L, Koul S, Meacham R, et al. Molecular aspects of renal cell carcinoma: a review. *American journal of cancer research*. 2011; 1(2):240–54. PMID: 21969126.

2. Siegel R, Miller K, Jemal A. Cancer statistics, 2020. *CA Cancer J Clin.* 2020; 70(1):7–30. <https://doi.org/10.3322/caac.21590> PMID: 31912902.
3. Nordmark M, Bentzen S, Rudat V, Brizel D, Lartigau E, Stadler P, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. *Radiotherapy oncology.* 2005; 77(1):18–24. <https://doi.org/10.1016/j.radonc.2005.06.038> PMID: 16098619.
4. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. *Cancer research.* 1996; 56(19):4509–15. PMID: 8813149.
5. Wojtkowiak J, Verduzco D, Schramm K, Gillies R. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. *Molecular pharmaceutics.* 2011; 8(6):2032–8. <https://doi.org/10.1021/mp200292c> PMID: 21981633.
6. Good J, Harrington K. The hallmarks of cancer and the radiation oncologist: updating the 5Rs of radiotherapy. *Clinical oncology.* 2013; 25(10):569–77. <https://doi.org/10.1016/j.clon.2013.06.009> PMID: 23850153.
7. Helbig L, Koi L, Brüchner K, Gurtner K, Hess-Stumpf H, Unterschlemann K, et al. BAY 87–2243, a novel inhibitor of hypoxia-induced gene activation, improves local tumor control after fractionated irradiation in a schedule-dependent manner in head and neck human xenografts. *Radiation oncology.* 2014; 9:207. <https://doi.org/10.1186/1748-717X-9-207> PMID: 25234922; PubMed Central PMCID: PMC4262387.
8. Dubois L, Niemans R, van Kuijk S, Panth K, Parvathaneni N, Peeters S, et al. New ways to image and target tumour hypoxia and its molecular responses. *Radiotherapy oncology.* 2015; 116(3):352–7. <https://doi.org/10.1016/j.radonc.2015.08.022> PMID: 26324018.
9. Peeters SG, Zegers CM, Biemans R, Liewes NG, van Stiphout RG, Yaromina A, et al. TH-302 in Combination with Radiotherapy Enhances the Therapeutic Outcome and Is Associated with Pretreatment [18F]HX4 Hypoxia PET Imaging. *Clinical cancer research.* 2015; 21(13):2984–92. <https://doi.org/10.1158/1078-0432.CCR-15-0018> PMID: 25805800.
10. Pettersen E, Ebbesen P, Gieling R, Williams K, Dubois L, Lambin P, et al. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. *Journal of enzyme inhibition medicinal chemistry* 2015; 30(5):689–721. <https://doi.org/10.3109/14756366.2014.966704> PMID: 25347767.
11. Mocellin S, Zavagno G, Nitti D. The prognostic value of serum S100B in patients with cutaneous melanoma: a meta-analysis. *International journal of cancer.* 2008; 123(10):2370–6. <https://doi.org/10.1002/ijc.23794> PMID: 18752249.
12. Zhao Z, Liao G, Li Y, Zhou S, Zou H, Fernando S. Prognostic value of carbonic anhydrase IX immunohistochemical expression in renal cell carcinoma: a meta-analysis of the literature. *PloS one.* 2014; 9(11):e114096. <https://doi.org/10.1371/journal.pone.0114096> PMID: 25426861.
13. Raina P, Singh SK, Goswami AK, Kashyap MK, Khullar M, Sharma SK, et al. MN/CA9 gene expression as a potential tumor marker for renal cell carcinoma. *Mol Cell Biochem.* 2022; 477(2):333–343. <https://doi.org/10.1007/s11010-021-04279-y> PMID: 34716861.
14. Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. *Nature reviews Drug discovery.* 2011; 10(10):767–77. <https://doi.org/10.1038/nrd3554> PMID: 21921921.
15. Pastorek M, Simko V, Takacova M, Barathova M, Bartosova M, Hunakova L, et al. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy. *International journal of oncology.* 2015; 47(1):51–60. <https://doi.org/10.3892/ijo.2015.2987> PMID: 25955133.
16. van Kuijk S, Yaromina A, Houben R, Niemans R, Lambin P, Dubois L. Prognostic Significance of Carbonic Anhydrase IX Expression in Cancer Patients: A Meta-Analysis. *Frontiers in oncology.* 2016; 6:69. <https://doi.org/10.3389/fonc.2016.00069> PMID: 27066453.
17. Zhang BY, Thompson RH, Lohse CM, Dronca RS, Cheville JC, Kwon ED, et al. Carbonic anhydrase IX (CAIX) is not an independent predictor of outcome in patients with clear cell renal cell carcinoma (ccRCC) after long-term follow-up. *BJU international.* 2013; 111(7):1046–53. <https://doi.org/10.1111/bju.12075> PMID: 23551810.
18. Atkins M, Regan M, McDermott D, Mier J, Stanbridge E, Youmans A, et al. Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. *Clinical cancer research.* 2005; 11(10):3714–21. <https://doi.org/10.1158/1078-0432.CCR-04-2019> PMID: 15897568.
19. Bui M, Seligson D, Han K, Pantuck A, Dorey F, Huang Y, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. *Clinical cancer research.* 2003; 9(2):802–11. PMID: 12576453.

20. Dudek A, Yee R, Manivel J, Isaksson R, Yee H. Carbonic anhydrase IX expression is associated with improved outcome of high-dose interleukin-2 therapy for metastatic renal cell carcinoma. *Anticancer research*. 2010; 30(3):987–92. PMID: 20393025.
21. Kim H, Kim W, Park S, Jung C, Choi H, Lee H, et al. Molecular biomarkers for advanced renal cell carcinoma: implications for prognosis and therapy. *Urologic oncology*. 2010; 28(2):157–63. <https://doi.org/10.1016/j.urolonc.2008.08.002> PMID: 18976937.
22. Klatte T, Seligson D, Riggs S, Leppert J, Berkman M, Kleid M, et al. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. *Clinical cancer research*. 2007; 13(24):7388–93. <https://doi.org/10.1158/1078-0432.CCR-07-0411> PMID: 18094421.
23. Muriel López C, Esteban E, Berros J, Pardo P, Astudillo A, Izquierdo M, et al. Prognostic factors in patients with advanced renal cell carcinoma. *Clinical genitourinary cancer* 2012; 10(4):262–70. <https://doi.org/10.1016/j.clgc.2012.06.005> PMID: 22959659.
24. Patard J, Fergelot P, Karakiewicz P, Klatte T, Trinh Q, Rioux-Leclercq N, et al. Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. *International journal of cancer*. 2008; 123(2):395–400. <https://doi.org/10.1002/ijc.23496> PMID: 18464292.
25. Phuoc N, Ehara H, Gotoh T, Nakano M, Kamei S, Deguchi T, et al. Prognostic value of the co-expression of carbonic anhydrase IX and vascular endothelial growth factor in patients with clear cell renal cell carcinoma. *Oncology reports*. 2008; 20(3):525–30. PMID: 18695901.
26. Soyupak B, Erdoğan S, Ergin M, Seydaoglu G, Kuzgunbay B, Tansuğ Z. CA9 expression as a prognostic factor in renal clear cell carcinoma. *Urologia internationalis*. 2005; 74(1):68–73. <https://doi.org/10.1159/000082713> PMID: 15711113.
27. Rasmussen S, Donskov F, Pedersen J, Wandall H, Buus S, Harndahl M, et al. Carbon anhydrase IX specific immune responses in patients with metastatic renal cell carcinoma potentially cured by interleukin-2 based immunotherapy. *Immunopharmacology immunotoxicology*. 2013; 35(4):487–96. <https://doi.org/10.3109/08923973.2013.802802> PMID: 23802595.
28. Xing X, Tang Y, Yuan G, Wang Y, Wang J, Yang Y, et al. The prognostic value of E-cadherin in gastric cancer: a meta-analysis. *International journal of cancer*. 2013; 132(11):2589–96. <https://doi.org/10.1002/ijc.27947> PMID: 23169395.
29. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. *Biometrics*. 1994; 50(4):1088–101. PMID: 7786990.
30. Williams E, Martin S, Moss R, Durrant L, Deen S. Co-expression of VEGF and CA9 in ovarian high-grade serous carcinoma and relationship to survival. *Virchows Archiv*. 2012; 461(1):33–9. <https://doi.org/10.1007/s00428-012-1252-9> PMID: 22699808.
31. Kim K, Park W, Kim J, Sol M, Shin D, Park D, et al. Prognostic Relevance of the Expression of CA IX, GLUT-1, and VEGF in Ovarian Epithelial Cancers. *Korean journal of pathology*. 2012; 46(6):532–40. <https://doi.org/10.4132/KoreanJPathol.2012.46.6.532> PMID: 23323103.
32. Cheng J, Klausen C, Leung P. Hypoxia-inducible factor 1 alpha mediates epidermal growth factor-induced down-regulation of E-cadherin expression and cell invasion in human ovarian cancer cells. *Cancer letters*. 2013; 329(2):197–206. <https://doi.org/10.1016/j.canlet.2012.10.029> PMID: 23142284.
33. Hynnenen P, Vaskivuo L, Saarnio J, Haapasalo H, Kivelä J, Pastoreková S, et al. Expression of transmembrane carbonic anhydrases IX and XII in ovarian tumours. *Histopathology*. 2006; 49(6):594–602. <https://doi.org/10.1111/j.1365-2559.2006.02523.x> PMID: 17163844.
34. Krieg A, Werner T, Verde P, Stoecklein N, Knoefel W. Prognostic and clinicopathological significance of survivin in colorectal cancer: a meta-analysis. *PloS one*. 2013; 8(6):e65338. <https://doi.org/10.1371/journal.pone.0065338> PMID: 23755220.
35. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. *Control Clin Trials* 7: 177–188. [https://doi.org/10.1016/0197-2456\(86\)90046-2](https://doi.org/10.1016/0197-2456(86)90046-2) PMID: 3802833.
36. Choueiri T, Cheng S, Qu A, Pastorek J, Atkins M, Signoretti S. Carbonic anhydrase IX as a potential biomarker of efficacy in metastatic clear-cell renal cell carcinoma patients receiving sorafenib or placebo: analysis from the treatment approaches in renal cancer global evaluation trial (TARGET). *Urologic oncology*. 2013; 31(8):1788–93. <https://doi.org/10.1016/j.urolonc.2012.07.004> PMID: 23141780.
37. Stewart G, O'Mahony F, Laird A, Rashid S, Martin S, Eory L, et al. Carbonic anhydrase 9 expression increases with vascular endothelial growth factor-targeted therapy and is predictive of outcome in metastatic clear cell renal cancer. *European urology*. 2014; 66(5):956–63. <https://doi.org/10.1016/j.eururo.2014.04.007> PMID: 24821582.
38. Park I, Cho Y, Lee J, Ahn J, Lee D. Prognostic tissue biomarker exploration for patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor receptor tyrosine kinase inhibitors. *Tumour biology*. 2016; 37(4):4919–27. <https://doi.org/10.1007/s13277-015-4339-5> PMID: 26526582.

39. Abel E, Bauman T, Weiker M, Shi F, Downs T, Jarrard D, et al. Analysis and validation of tissue biomarkers for renal cell carcinoma using automated high-throughput evaluation of protein expression. *Human pathology*. 2014; 45(5):1092–9. <https://doi.org/10.1016/j.humpath.2014.01.008> PMID: 24746216.
40. Kim S, Park W, Park E, Park B, Joo J, Joung J, et al. The prognostic value of BAP1, PBRM1, pS6, PTEN, TGase2, PD-L1, CA9, PSMA, and Ki-67 tissue markers in localized renal cell carcinoma: A retrospective study of tissue microarrays using immunohistochemistry. *PLoS one*. 2017; 12(6):e0179610. <https://doi.org/10.1371/journal.pone.0179610> PMID: 28654655.
41. Lastraioli E, Pillozzi S, Mari A, Tellini R, Duranti C, Baldazzi V, et al. hERG1 and CA IX expression are associated with disease recurrence in surgically resected clear cell renal carcinoma. *European journal of surgical oncology*. 2020; 46(1):209–15. <https://doi.org/10.1016/j.ejso.2019.10.031> PMID: 31679954.
42. Cetin B, Gonul I, Buyukberber S, Afsar B, Gumasay O, Algin E, et al. The impact of immunohistochemical staining with ezrin-carbonic anhydrase IX and neuropilin-2 on prognosis in patients with metastatic renal cell cancer receiving tyrosine kinase inhibitors. *Tumour biology*. 2015; 36(11):8471–8. <https://doi.org/10.1007/s13277-015-3589-6> PMID: 26026587.
43. Ingels A, Hew M, Algaba F, de Boer O, van Moorselaar R, Horenblas S, et al. Vimentin over-expression and carbonic anhydrase IX under-expression are independent predictors of recurrence, specific and overall survival in non-metastatic clear-cell renal carcinoma: a validation study. *World journal of urology*. 2017; 35(1):81–7. <https://doi.org/10.1007/s00345-016-1854-y> PMID: 27207480.
44. Büscheck F, Fraune C, Simon R, Kluth M, Hube-Magg C, Möller-Koop C, et al. Aberrant expression of membranous carbonic anhydrase IX (CAIX) is associated with unfavorable disease course in papillary and clear cell renal cell carcinoma. *Urologic oncology*. 2018; 36(12):531.e19–e25. <https://doi.org/10.1016/j.urolonc.2018.08.015> PMID: 30322727.
45. Chow S, Galvis V, Pillai M, Leach R, Keene E, Spencer-Shaw A, et al. High-dose interleukin2—a 10-year single-site experience in the treatment of metastatic renal cell carcinoma: careful selection of patients gives an excellent outcome. *Journal for immunotherapy of cancer*. 2016; 4:67. <https://doi.org/10.1186/s40425-016-0174-5> PMID: 27777776.
46. Yu W, Wang Y, Jiang Y, Zhang W, Li Y. Distinct immunophenotypes and prognostic factors in renal cell carcinoma with sarcomatoid differentiation: a systematic study of 19 immunohistochemical markers in 42 cases. *BMC Cancer*. 2017; 17(1):293. <https://doi.org/10.1186/s12885-017-3275-8> PMID: 28449664; PubMed Central PMCID: PMC5408832.
47. Chamie K, Klöpfer P, Bevan P, Störkel S, Said J, Fall B, et al. Carbonic anhydrase-IX score is a novel biomarker that predicts recurrence and survival for high-risk, nonmetastatic renal cell carcinoma: Data from the phase III ARISER clinical trial. *Urologic oncology*. 2015; 33(5):204.e25–33. <https://doi.org/10.1016/j.urolonc.2015.02.013> PMID: 25823535.
48. Sandlund J, Oosterwijk E, Grankvist K, Oosterwijk-Wakka J, Ljungberg B, Rasmuson T. Prognostic impact of carbonic anhydrase IX expression in human renal cell carcinoma. *BJU international*. 2007; 100(3):556–60. <https://doi.org/10.1111/j.1464-410X.2007.07006.x> PMID: 17608827.
49. Zerati M, Leite KR, Pontes-Junior J, Segre CC, Reis ST, Srougi M, et al. Carbonic Anhydrase IX is not a predictor of outcomes in non-metastatic clear cell renal cell carcinoma—a digital analysis of tissue microarray. *BJU International*. 2013; 39(4):484–92. <https://doi.org/10.1590/s1677-5538.bjui.2013.04.05> PMID: 24054396.
50. Biswas S, Charlesworth PJ, Turner GD, Leek R, Thamboo PT, Campo L, et al. CD31 angiogenesis and combined expression of HIF-1 α and HIF-2 α are prognostic in primary clear-cell renal cell carcinoma (CC-RCC), but HIF α transcriptional products are not: implications for antiangiogenic trials and HIF α biomarker studies in primary CC-RCC. *Carcinogenesis*. 2012; 33(9):1717–25. Epub 2012/07/11. <https://doi.org/10.1093/carcin/bgs222> PMID: 22777959.
51. Dornbusch J, Zacharis A, Meinhardt M, Erdmann K, Wolff I, Froehner M, et al. Analyses of potential predictive markers and survival data for a response to sunitinib in patients with metastatic renal cell carcinoma. *PLoS one*. 2013; 8(9):e76386. <https://doi.org/10.1371/journal.pone.0076386> PMID: 24086736.
52. Gorban NA, Popov AM, Karyakin OB. Prognostic value of the expression of carbonic anhydrase 9 in combination with other markers in patients with clear cell renal cell carcinoma. *Onkourologiya*. 2016; 12(3):40–4. <https://doi.org/10.17650/1726-9776-2016-12-3-40-44> RSCI:26702603.
53. Ahmed S, Sami A, Xiang J. HER2-directed therapy: current treatment options for HER2-positive breast cancer. *Breast cancer*. 2015; 22(2):101–16. <https://doi.org/10.1007/s12282-015-0587-x> PMID: 25634227.
54. Beketic-Oreskovic L, Ozretic P, Rabbani Z, Jackson I, Sarcevic B, Levanat S, et al. Prognostic significance of carbonic anhydrase IX (CA-IX), endoglin (CD105) and 8-hydroxy-2'-deoxyguanosine (8-

OHdG) in breast cancer patients. *Pathology oncology research*. 2011; 17(3):593–603. <https://doi.org/10.1007/s12253-010-9355-6> PMID: 21249485.

55. Befot A, Rabbani Z, Hardee M, Kim S, Broadwater G, Bentley R, et al. Carbonic anhydrase IX is a predictive marker of doxorubicin resistance in early-stage breast cancer independent of HER2 and TOP2A amplification. *British journal of cancer*. 2012; 106(5):916–22. <https://doi.org/10.1038/bjc.2012.32> PMID: 22333602.

56. Hussain S, Ganesan R, Reynolds G, Gross L, Stevens A, Pastorek J, et al. Hypoxia-regulated carbonic anhydrase IX expression is associated with poor survival in patients with invasive breast cancer. *British journal of cancer*. 2007; 96(1):104–9. <https://doi.org/10.1038/sj.bjc.6603530> PMID: 17213826.

57. Garcia S, Dalès J, Charafe-Jauffret E, Carpentier-Meunier S, Andrac-Meyer L, Jacquemier J, et al. Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. *Human pathology*. 2007; 38(6):830–41. <https://doi.org/10.1016/j.humpath.2006.11.015> PMID: 17316758.

58. Kaya A, Gunel N, Benekli M, Akyurek N, Buyukberber S, Tatli H, et al. Hypoxia inducible factor-1 alpha and carbonic anhydrase IX overexpression are associated with poor survival in breast cancer patients. *Journal of BUON*. 2012; 17(4):663–8. PMID: 23335522.

59. Kyndt M, Sørensen FB, Knudsen H, Alsner J, Overgaard M, Nielsen HM, et al. Carbonic anhydrase IX and response to postmastectomy radiotherapy in high-risk breast cancer: a subgroup analysis of the DBCG82 b and c trials. *Breast cancer research: BCR*. 2008; 10(2):R24. <https://doi.org/10.1186/bcr1981> PMID: 18355402; PubMed Central PMCID: PMC2397523.

60. Tan E, Yan M, Campo L, Han C, Takano E, Turley H, et al. The key hypoxia regulated gene CAIX is upregulated in basal-like breast tumours and is associated with resistance to chemotherapy. *British journal of cancer*. 2009; 100(2):405–11. <https://doi.org/10.1038/sj.bjc.6604844> PMID: 19165203.

61. Birner P, Jesch B, Friedrich J, Riegl M, Zacherl J, Hejna M, et al. Carbonic anhydrase IX overexpression is associated with diminished prognosis in esophageal cancer and correlates with Her-2 expression. *Annals of surgical oncology*. 2011; 18(12):3330–7. <https://doi.org/10.1245/s10434-011-1730-3> PMID: 21519917.

62. Tanaka N, Kato H, Inose T, Kimura H, Faried A, Sohda M, et al. Expression of carbonic anhydrase 9, a potential intrinsic marker of hypoxia, is associated with poor prognosis in oesophageal squamous cell carcinoma. *British journal of cancer*. 2008; 99(9):1468–75. <https://doi.org/10.1038/sj.bjc.6604719> PMID: 18841153.

63. Hiraoka N, Ino Y, Sekine S, Tsuda H, Shimada K, Kosuge T, et al. Tumour necrosis is a postoperative prognostic marker for pancreatic cancer patients with a high interobserver reproducibility in histological evaluation. *British journal of cancer*. 2010; 103(7):1057–65. <https://doi.org/10.1038/sj.bjc.6605854> PMID: 20736942; PubMed Central PMCID: PMC2965866.

64. Li Y, Dong M, Sheng W, Huang L. Roles of Carbonic Anhydrase IX in Development of Pancreatic Cancer. *Pathology oncology research*. 2016; 22(2):277–86. <https://doi.org/10.1007/s12253-015-9935-6> PMID: 26224207.

65. Couvelard A, O'Toole D, Turley H, Leek R, Sauvanet A, Degott C, et al. Microvascular density and hypoxia-inducible factor pathway in pancreatic endocrine tumours: negative correlation of microvascular density and VEGF expression with tumour progression. *British journal of cancer*. 2005; 92(1):94–101. <https://doi.org/10.1038/sj.bjc.6602245> PMID: 15558070.

66. Kim J, Choi K, Lee I, Choi Y, Kim W, Shin D, et al. Expression of hypoxic markers and their prognostic significance in soft tissue sarcoma. *Oncology letters*. 2015; 9(4):1699–706. <https://doi.org/10.3892/ol.2015.2914> PMID: 25789026.

67. Måseide K, Kandel R, Bell R, Catton C, O'Sullivan B, Wunder J, et al. Carbonic anhydrase IX as a marker for poor prognosis in soft tissue sarcoma. *Clinical cancer research*. 2004; 10(13):4464–71. <https://doi.org/10.1158/1078-0432.CCR-03-0541> PMID: 15240538.

68. Wouters B, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. *Nature reviews Cancer*. 2008; 8(11):851–64. <https://doi.org/10.1038/nrc2501> PMID: 18846101.

69. van den Beucken T, Ramaekers CH, Rouschop K, Koritzinsky M, Wouters BG. Deficient carbonic anhydrase 9 expression in UPR-impaired cells is associated with reduced survival in an acidic microenvironment. *Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology*. 2009; 92(3):437–42. <https://doi.org/10.1016/j.radonc.2009.06.018> PMID: 19615771.

70. Kaluz S, Kaluzová M, Chrastina A, Olive P, Pastoreková S, Pastorek J, et al. Lowered oxygen tension induces expression of the hypoxia marker MN/carbonic anhydrase IX in the absence of hypoxia-inducible factor 1 alpha stabilization: a role for phosphatidylinositol 3'-kinase. *Cancer research*. 2002; 62(15):4469–77. PMID: 12154057.

71. Turner K, Crew J, Wykoff C, Watson P, Poulsom R, Pastorek J, et al. The hypoxia-inducible genes VEGF and CA9 are differentially regulated in superficial vs invasive bladder cancer. *British journal of cancer*. 2002; 86(8):1276–82. <https://doi.org/10.1038/sj.bjc.6600215> PMID: 11953885.
72. Kim B, Cho H, Chung J, Conway C, Ylaya K, Kim J, et al. Prognostic assessment of hypoxia and metabolic markers in cervical cancer using automated digital image analysis of immunohistochemistry. *Journal of translational medicine*. 2013; 11:185. <https://doi.org/10.1186/1479-5876-11-185> PMID: 23927384.
73. Liao S, Darcy K, Randall L, Tian C, Monk B, Burger R, et al. Prognostic relevance of carbonic anhydrase-IX in high-risk, early-stage cervical cancer: a Gynecologic Oncology Group study. *Gynecologic oncology*. 2010; 116(3):452–8. <https://doi.org/10.1016/j.ygyno.2009.10.062> PMID: 19913895.
74. Woelber L, Kress K, Kersten J, Choschzick M, Kilic E, Herwig U, et al. Carbonic anhydrase IX in tumor tissue and sera of patients with primary cervical cancer. *BMC cancer*. 2011; 11:12. <https://doi.org/10.1186/1471-2407-11-12> PMID: 21223596.
75. Armeis H, Drenckhan A, Freytag M, Izbicki J, Supuran C, Reinshagen K, et al. Carbonic anhydrase IX correlates with survival and is a potential therapeutic target for neuroblastoma. *Journal of enzyme inhibition medicinal chemistry*. 2016; 31(3):404–9. <https://doi.org/10.3109/14756366.2015.1029471> PMID: 25884234.
76. Yoo H, Sohn S, Nam B, Min H, Jung E, Shin S, et al. The expressions of carbonic anhydrase 9 and vascular endothelial growth factor in astrocytic tumors predict a poor prognosis. *International journal of molecular medicine*. 2010; 26(1):3–9. https://doi.org/10.3892/ijmm_00000427 PMID: 20514415.
77. Sooman L, Freyhult E, Jaiswal A, Navani S, Edqvist P, Pontén F, et al. FGF2 as a potential prognostic biomarker for proneural glioma patients. *Acta oncologica*. 2015; 54(3):385–94. <https://doi.org/10.3109/0284186X.2014.951492> PMID: 25263081.
78. Proescholdt MA, Merrill MJ, Stoerr EM, Lohmeier A, Pohl F, Brawanski A. Function of carbonic anhydrase IX in glioblastoma multiforme. *Neuro-oncology*. 2012; 14(11):1357–66. <https://doi.org/10.1093/neuonc/nos216> PMID: 23074198; PubMed Central PMCID: PMC3480266.
79. Nordfors K, Haapasalo J, Korja M, Niemelä A, Laine J, Parkkila AK, et al. The tumour-associated carbonic anhydrases CA II, CA IX and CA XII in a group of medulloblastomas and supratentorial primitive neuroectodermal tumours: an association of CA IX with poor prognosis. *BMC Cancer*. 2010; 10:148. <https://doi.org/10.1186/1471-2407-10-148> PMID: 20398423; PubMed Central PMCID: PMC2874782.
80. Korkolopoulou P, Perdiki M, Thymara I, Boviatsis E, Agrogiannis G, Kotsiakis X, et al. Expression of hypoxia-related tissue factors in astrocytic gliomas. A multivariate survival study with emphasis upon carbonic anhydrase IX. *Human pathology*. 2007; 38(4):629–38. <https://doi.org/10.1016/j.humpath.2006.07.020> PMID: 17367605.
81. Järvelä S, Parkkila S, Bragge H, Kähkönen M, Parkkila A, Soini Y, et al. Carbonic anhydrase IX in oligodendroglial brain tumors. *BMC cancer*. 2008; 8:1. <https://doi.org/10.1186/1471-2407-8-1> PMID: 18173856.
82. Haapasalo J, Nordfors K, Hilvo M, Rantala I, Soini Y, Parkkila A, et al. Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. *Clinical cancer research*. 2006; 12(2):473–7. <https://doi.org/10.1158/1078-0432.CCR-05-0848> PMID: 16428489.
83. Erpolat O, Gocun P, Akmansu M, Ozgun G, Akyol G. Hypoxia-related molecules HIF-1α, CA9, and osteopontin: predictors of survival in patients with high-grade glioma. *Strahlentherapie und Onkologie*. 2013; 189(2):147–54. <https://doi.org/10.1007/s00066-012-0262-5> PMID: 23263636.
84. Abraham S, Hu N, Jensen R. Hypoxia-inducible factor-1-regulated protein expression and oligodendrogloma patient outcome: comparison with established biomarkers and preoperative UCSF low-grade scoring system. *Journal of neuro-oncology*. 2012; 108(3):459–68. <https://doi.org/10.1007/s11060-012-0839-y> PMID: 22396073.
85. Jensen R, Lee J. Predicting outcomes of patients with intracranial meningiomas using molecular markers of hypoxia, vascularity, and proliferation. *Neurosurgery*. 2012; 71(1):146–56. <https://doi.org/10.1227/NEU.0b013e3182567886> PMID: 22472549.
86. Dungwa J, Hunt L, Ramani P. Carbonic anhydrase IX up-regulation is associated with adverse clinicopathologic and biologic factors in neuroblastomas. *Human pathology*. 2012; 43(10):1651–60. <https://doi.org/10.1016/j.humpath.2011.12.006> PMID: 22436629.
87. Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. *Nature genetics*. 1994; 7(1):85–90. Epub 1994/05/01. <https://doi.org/10.1038/ng0594-85> PMID: 7915601.
88. Sun J, Wang X, Tang B, Liu H, Zhang M, Wang Y, et al. A tightly controlled Src-YAP signaling axis determines therapeutic response to dasatinib in renal cell carcinoma. *Theranostics*. 2018; 8(12):3256–67. <https://doi.org/10.7150/thno.23964> PMID: 29930727.

89. Masoud G, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. *Acta pharmaceutica Sinica B*. 2015; 5(5):378–89. <https://doi.org/10.1016/j.apsb.2015.05.007> PMID: 26579469.
90. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. *Science*. 2001; 292 (5516):468–72. Epub 2001/04/09. <https://doi.org/10.1126/science.1059796> PMID: 11292861.
91. Schofield C, Ratcliffe P. Signalling hypoxia by HIF hydroxylases. *Biochemical biophysical research communications*. 2005; 338(1):617–26. <https://doi.org/10.1016/j.bbrc.2005.08.111> PMID: 16139242.
92. Semenza G. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. *The Biochemical journal*. 2007; 405(1):1–9. <https://doi.org/10.1042/BJ20070389> PMID: 17555402.
93. Potharaju M, Mathavan A, Mangaleswaran B, Patil S, John R, Ghosh S, et al. Clinicopathological Analysis of HIF-1alpha and TERT on Survival Outcome in Glioblastoma Patients: A Prospective, Single Institution Study. *Journal of Cancer*. 2019; 10(11):2397–406. <https://doi.org/10.7150/jca.32909> PMID: 31258744.
94. Gossage L, Eisen T, Maher E. VHL, the story of a tumour suppressor gene. *Nature reviews Cancer*. 2015; 15(1):55–64. <https://doi.org/10.1038/nrc3844> PMID: 25533676.
95. Schödel J, Grampp S, Maher E, Moch H, Ratcliffe P, Russo P, et al. Hypoxia, Hypoxia-inducible Transcription Factors, and Renal Cancer. *European urology*. 2016; 69(4):646–57. <https://doi.org/10.1016/j.euro.2015.08.007> PMID: 26298207.
96. Silagi E, Schoepflin Z, Seifert E, Merceron C, Schipani E, Shapiro I, et al. Bicarbonate Recycling by HIF-1-Dependent Carbonic Anhydrase Isoforms 9 and 12 Is Critical in Maintaining Intracellular pH and Viability of Nucleus Pulposus Cells. *Journal of bone mineral research*. 2018; 33(2):338–55. <https://doi.org/10.1002/jbmr.3293> PMID: 28940640.
97. Chiche J, Ilc K, Laferrière J, Trottier E, Dayan F, Mazure N, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. *Cancer research*. 2009; 69(1):358–68. <https://doi.org/10.1158/0008-5472.CAN-08-2470> PMID: 19118021.
98. Wykoff C, Beasley N, Watson P, Turner K, Pastorek J, Sibtain A, et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. *Cancer research*. 2000; 60(24):7075–83. PMID: 11156414.
99. Svastová E, Hulíková A, Rafajová M, Zat'ovicová M, Gibadulinová A, Casini A, et al. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. *FEBS letters*. 2004; 577(3):439–45. <https://doi.org/10.1016/j.febslet.2004.10.043> PMID: 15556624.
100. Kaelin W, Ratcliffe P. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. *Molecular cell*. 2008; 30(4):393–402. <https://doi.org/10.1016/j.molcel.2008.04.009> PMID: 18498744.
101. Lendahl U, Lee K, Yang H, Poellinger L. Generating specificity and diversity in the transcriptional response to hypoxia. *Nature reviews Genetics*. 2009; 10(12):821–32. <https://doi.org/10.1038/nrg2665> PMID: 19884889.
102. Ivanov S, Kuzmin I, Wei M, Pack S, Geil L, Johnson B, et al. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. *Proceedings of the National Academy of Sciences of the United States of America*. 1998; 95(21):12596–601. <https://doi.org/10.1073/pnas.95.21.12596> PMID: 9770531.
103. Salnikow K, Blagosklonny M, Ryan H, Johnson R, Costa M. Carcinogenic nickel induces genes involved with hypoxic stress. *Cancer research*. 2000; 60(1):38–41. PMID: 10646848.
104. Oosterwijk-Wakka J, Boerman O, Mulders P, Oosterwijk E. Application of monoclonal antibody G250 recognizing carbonic anhydrase IX in renal cell carcinoma. *International journal of molecular sciences*. 2013; 14(6):11402–23. <https://doi.org/10.3390/ijms140611402> PMID: 23759990.