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Abstract

Despite savannas being known for their relatively sparse vegetation coverage compared to

other vegetation ecosystems, they harbour functionally diverse vegetation forms. Savannas

are affected by climate variability and anthropogenic factors, resulting in changes in woody

plant species compositions. Monitoring woody plant species diversity is therefore important

to inform sustainable biodiversity management. Remote sensing techniques are used as an

alternative approach to labour-intensive field-based inventories, to assess savanna biodi-

versity. The aim of this paper is to review studies that applied remote sensing to assess

woody plant species diversity in savanna environments. The paper first provides a brief

account of the spatial distribution of savanna environments around the globe. Thereafter, it

briefly defines categorical classification and continuous-scale species diversity assessment

approaches for savanna woody plant estimation. The core review section divides previous

remote sensing studies into categorical classification and continuous-scale assessment

approaches. Within each division, optical, Radio Detection And Ranging (RADAR) and Light

Detection and Ranging (LiDAR) remote sensing as applied to savanna woody species diver-

sity is reviewed. This is followed by a discussion on multi-sensor applications to estimate

woody plant species diversity in savanna. We recommend that future research efforts

should focus strongly on routine application of optical, RADAR and LiDAR remote sensing

of physiologically similar woody plant species in savannas, as well as on extending these

methodological approaches to other vegetation environments.

1. Introduction

Savanna biomes are characterised by marked wet and dry seasons, with monthly mean temper-

atures ranging between 20 and 30˚C [1] and annual rainfall ranging between 200 and 1350

mm [2]. These climatic conditions along with other factors such as fire and herbivory promote

heterogeneous environments that are composed of varying extents of grassland, herbaceous
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cover and woody plant species [3–5]. Around the globe, there are different types of savannas,

comprising of (i) Tropical−Subtropical, (ii) Temperate, (iii) Mediterranean, (iv) Flooded and

(v) Montane savanna [6]. Tropical−Subtropical savannas are mostly distributed near the equa-

tor, and bordered by tropical rainforests and deserts [3]. Temperate savannas are found in

mid-latitude regions with semi-arid to semi-humid climate, and dominated by grass and

shrubs [7]. Mediterranean savannas are also found in mid-latitude and Mediterranean envi-

ronments, and are dominated by shrubs and small evergreen trees [8]. Flooded savannas are

located in tropics and Subtropical regions, and consist of large expanses of flooded grasslands

either seasonally or throughout the year [9]. Montane savannas are classified according to geo-

graphical regions they are located in, for instance Tropical, Subtropical, Temperate and are

typically situated in high altitude areas [10].

Savanna woody plants serve as a source of primary productivity, by providing food for

humans, livestock and wildlife [11–13]. Savanna ecosystems also play a pivotal role in regulat-

ing global climate dynamics [14–16]. However, climate change coupled with anthropogenic

activities continue to contribute towards high spatial and temporal variations in woody plant

species diversity, composition and productivity in the savanna environment [17, 18]. Studying

the phenology of savanna vegetation, [19] reported exacerbated spatial and temporal variations

of savanna vegetation due to modified weather patterns as a result of climate change.

Climate projections indicate that hotter, drier conditions will continue to intensify across

the savanna ecosystems [3, 12, 20–22]. Such climatic changes are expected to increase the

dominance of certain plant species in the ecosystem [18, 23]. It is therefore important to have

timely information about plant species diversity and associated dynamics of woody plant spe-

cies in order to design and implement sustainable management strategies for savanna ecosys-

tems [24]. However, assessment of woody plant species diversity has largely relied on

traditional methods, which are generally costly and time-consuming [11, 25–27].

Remote sensing offers efficient assessment methods at considerably lower costs than tradi-

tional field-based surveys [28–30]. Several studies have applied remote sensing systems to assess

woody plant species diversity in different savanna environments and reported solid perfor-

mances [31–36]. Given the proliferation of works applying remote sensing to savanna environ-

ments, a number of authors have attempted to compile reviews of such works [13, 24, 37–42].

For example, [13] conducted a review of remote sensing applications to savanna environ-

ments at a global scale. They reported that low plant cover and limited background reflection

of herbaceous plants and grassland impacted classification of woody plant species. Since Brazil

is home to large expanses of savanna vegetation (Cerrado) in South America, multiple studies

have reviewed the application of remote sensing to that savanna environment [40, 43, 44].

[40] conducted a systematic and integrative review of studies on vegetation composition in

Brazilian Passive Restoration and Active Restoration sites. The authors found deficiencies,

including studies being focused on single areas, resulting in insufficient studies across bound-

aries of tropical regions that comprise different forest types. [39] reviewed perspectives of

applying remotely sensed and field-based data in the mapping of fragmented forests in the

tropical savanna. Their study noted the need for rapid and cost-effective assessments of tree

species diversity and forest structure.

Research has shown that increases in climate variability in Africa, which has approximately

65% savanna coverage by area has had an impact on the savanna ecosystem in terms of photo-

synthetic activity, abscission and the length of growing-season [21, 23, 45]. [37] conducted a

systematic review of vegetation phenology in Africa, and classified studies based on the meth-

ods and techniques used. Their review stressed the need for finer spatial resolution satellite

sensors for regional phenological assessments. Such a review study showed progress in remote

sensing of savanna environments and underscored the need to review studies beyond those
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concerned with phenological assessments in savanna regions. [24] reviewed the application of

remote sensing in analysing vegetation in the Sudano-Sahelian savanna zone between 1975

and 2014. They noted that remote sensing applications largely emphasise mapping broad vege-

tation types or distinct vegetation forms.

Considering the rapidly improving classification methods and data qualities, it is important

to track the status of species diversity assessments using remote sensing. The present study,

therefore, reviews the literature by placing focus on two aspects of savanna woody species

diversity assessment using remote sensing. Firstly, it aims to look into diversity assessment

techniques by grouping them into categorical classification and continuous-scale assessment

methods. Secondly, it seeks to review applications through the lens of remote sensing data

types including optical (multispectral and hyperspectral) and structural (Radio Detection And

Ranging (RADAR) and Light Detection and Ranging (LiDAR)) systems.

2. Literature survey method and structure of the review

Literature was searched from seven bibliographic databases, including Web of Science, Science

Direct, Scopus, Taylor and Francis Online, SpringerLink, IEEE Xplore and Academic Search

Ultimate. The search used catch phrases such as “remote sensing of savanna woody plant spe-

cies diversity”, “classification of savanna woody plant species”, “remote sensing application for

species discrimination”, “statistical analysis of savanna woody plant species using remote sens-

ing”, “multi-sensor remote sensing for savanna woody plant species diversity”, “optical—

RADAR, optical—LiDAR and LiDAR—RADAR data fusion for savanna plant species diversity

estimation”. Adopting the Preferred Reporting Items for Systematic Reviews and Meta-Analy-

ses (PRISMA) framework (Fig 1), [46] the study identified 1098 documents (including books

and scientific research articles) that were potentially relevant to this review study. Of these, 911

were omitted initially due to limited relevance to the review. The omission resulted in 187,

which were further screened following the inclusion-exclusion criterion (Fig 1) and resulted in

137 articles that had strong significance to the review. During analysis of the information in

the 137 articles and the writing process, we re-incorporated 33 articles resulting in a total of

170 (articles) used for core review of the paper. Please notice that this number does not include

sources that were used to introduce generic concepts outside of remote sensing.

The review is organised as follows. Section 3 provides a brief introduction of general ecologi-

cal discrimination of species using categorical-scale and continuous-scale approaches. Section 4

focuses on remote sensing applications to savanna woody plant species diversity using classifica-

tion/categorical scale approaches. Section 5 reviews studies that applied remote sensing to

savanna woody plant species diversity using continuous-scale assessment techniques. Section 6

is dedicated to reviewing studies that applied multi-source remote sensing for savanna woody

plant species discrimination using categorical-scale and continuous-scale approaches. Section 7

concludes the review by addressing the benefits, challenges and future potential of remote sens-

ing based monitoring of woody plant species diversity in savanna environments.

3. Species discrimination using categorical-scale and continuous-

scale approaches

Categorical-scale discrimination of species adopts the principle of allocating different species

into distinct classes [47]. In that respect, categorical-scale measurement seeks to establish a

correspondence between observed classes with mutually exclusive attributes. Numerous

research in the field of forestry and ecology have exhausted this approach more specifically in

enumerating species diversity. Though this approach is the most favoured information extrac-

tion method, it can under-or-overestimate the number of species that potentially exist on the
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ground [48]. In contrast, continuous-scale assessment/modelling converts unique species data

into a continuous diversity scale, thus allowing stretching the ability to estimate as many spe-

cies as possible. Continuous-scale assessment approach eliminates the restriction on the num-

ber of species that can be identified in a given area [49, 50]. This is achieved by applying

statistical indices such as the Shannon diversity index [50], Species richness [51] and Simp-

son’s Index [52]. Continuous-scale measurement has largely been applied in ecology and bio-

diversity assessment, for quantifying species distribution in an area. It is therefore an indicator

of diversity level without placing emphasis on the type of categories.

4. Remote sensing of savanna woody plant species diversity using

categorical-scale approach

4.1 Categorical classification of savanna woody plant species using optical

remote sensing

Optical images typically use sensors that operate in the visible (0.4–0.7 μm) and infrared (0.7–

1.3 μm) regions of the electromagnetic spectrum to acquire images of the Earth’s surface [53,

54]. These regions are sensitive to biochemical variations that exist in plant foliage [13]. While

multispectral data (e.g., Landsat, Sentinel) are widely available and used for species classifica-

tion, they are inefficient in discriminating subtle differences between plant characteristics. In

contrast, hyperspectral data that use several narrow and contiguous bands provide improved

classification capability even at the species level [54]. One of the significant advantages of opti-

cal data (particularly multispectral data) is that, it has a long history of data acquisition

Fig 1. Literature selection process using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework.

https://doi.org/10.1371/journal.pone.0278529.g001
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allowing for time series analysis that is vital for monitoring the temporal dynamics of biodiver-

sity [24, 55, 56]. Common weaknesses of optical remotely sensed data include applications

being limited to ideal weather conditions particularly for land cover and species discrimination

purposes. Opportune weather conditions data acquisition is forced due to the reliance of opti-

cal sensors on the sun’s electromagnetic radiation as a source of energy, although these sensors

provide useful thermal data during night-time acquisitions as well [54]. Weather dependence

of optical images is linked to the fact that the system uses short-wavelength electromagnetic

energy that fails to penetrate dense atmospheric conditions common in hazy or cloudy skies

[39]. Nevertheless, advances in image pre-processing continue to tackle these problems [56] to

improve the signal-to-noise ratio vital for reliable information extraction about a target.

Traditional and advanced classification methods can be used to exploit spectral information

of optical images for species discrimination. Traditional approaches employ the classical classi-

fication algorithms such as K-means and Iterative Self Organizing Data Analysis Technique

(ISODATA) [57] Maximum Likelihood Classification (MLC) [58] and Minimum Distance-to-

Means Classifier [59]. Applying ISODATA unsupervised classification using SPOT 5 and

QuickBird in a Subtropical savanna (20 000 km2 area coverage), [60] for example discrimi-

nated between 19 woody plant species recorded from plots measuring 10 m in diameter. The

study reported overall accuracy of 95%. Conspicuously, savanna environments are character-

ised by patches (clusters of woody plants) that vary in size, necessitating multi-scale analysis

[4]. To assess the degree of information lost when using medium to high spatial resolution

images that capture species coverage at varied scales, [61] classified eight plant species from

15-m plots in Montane savanna covering 20 000 km2. The authors utilised ISODATA classifi-

cation and four images including Landsat, IKONOS, QuickBird and Worldview-2. The classi-

fication resulted in overall accuracies ranging between 75%– 91%. The aforementioned

classification algorithms use hard techniques that allocate each image pixel to one class [62]. In

contrast, soft techniques allocate each pixel to more than one class by applying membership

weighting for each class. Adopting this approach, [63] compared fuzzy classification (soft tech-

nique) and Maximum Likelihood (ML) (hard technique) to classify six species recorded from

plots measuring 30-m2 in a Sub-tropical savanna (456 498 ha). Overall classification results

showed higher performance for fuzzy classification (87%) compared to ML classification

(77%). Overall, traditional algorithms for classification of optical image suffer from data distri-

butional assumptions and data input restrictions [54, 62].

Advanced classification methods including machine-learning and deep-learning algorithms

do not make assumptions about data distribution and can model complex class signatures

[64]. These approaches handle samples with a large number of variables while minimising

error during the classification process [65]. Most notable advanced classification methods that

have wide acceptance in remote sensing of species classification include Random Forest (RF)

[66], Support Vector Machine (SVM) [67], Decision Trees (DT) [68], Boosted Decision Trees

[69], Artificial Neural Network (ANN) [59], Deep Neural Network (DNN) [70] and Convolu-

tional Neural Network (CNN) [71]. [65] implemented RF and SVM algorithms to Worldview-

3 and discriminated seven woody plant species recorded from 14 m2 plots in a Sub-tropical

savanna covering 247 km2. The authors found overall accuracies of 83% (RF) and 88% (SVM).

Similarly, [72] discriminated one invasive species type from coexisting species and land cover

types using SVM classification, Landsat-8 and SPOT-6 images in a Montane savanna (1 660

km2). The study trained the spectra of each imagery on samples collected from 5 m2 plots.

They reported overall accuracies of 83% (Landsat-8) and 86% (SPOT-6). [73] used RF and

Worldview-2 for a bi-seasonal analysis of seven woody plants. The authors recorded woody

plant species from 4-m2 plots in a Subtropical savanna forest covering 71 km2 and reported

overall accuracy of 86%.
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Complex savanna environments present challenges to the effective separation of woody

plant species that may have similar spectral signatures. [74] proposed a deep learning classifi-

cation framework “Diverse Region-Based CNN” with more discriminative power for extract-

ing spatial-spectral features than conventional machine learning algorithms. The approach is

based on the assumption that adjacent pixels often consist of similar features and can represent

the same class as the focal pixel, and therefore the spatial information of pixels should be fac-

tored in to determine class assignment. Testing the approach in a complex Tropical savanna

region covering 325 ha, [64] utilised CNN on aerial photographs to classify nine woody plant

species. Using a Global Position System (GPS), 370 plant species were identified in the field

and manually delineated from the aerial photographs. The CNN approach followed the major-

ity voting rule to identify tree crowns giving it the advantage of being more straightforward

and faster compared to other machine learning algorithms. The authors reported an overall

classification accuracy of 98%. [75] utilised optical image derived from Unmanned Aerial Sys-

tems (UAS) and three CNN approaches including FasterRCNN, RetinaNet and YOLOv3 to

separate Dipteryx alata species from coexisting species and land cover types in a Tropical

savanna area covering 150 000 m2. The authors reported overall classification accuracies rang-

ing between 82% to 93%, with RetinaNet achieving the best results. The above literature has

shown the efficacy of optical remote sensing data combined with a multiple classification algo-

rithms to map and monitor species diversity in savanna ecosystems. Table 1 provides a list of

selected studies that categorically classified woody plant species in the savanna environment

using optical remote sensing.

4.2 Categorical classification of savanna woody plant species using RADAR

remote sensing

RADAR remote sensing system operates in the microwave region (1 mm to 1 m) of the electro-

magnetic spectrum; as a result, it is capable of passing through cloud cover, haze, as well as

foliage to detect understory features [86, 87]. A key advantage of active RADAR systems over

optical remote sensing is that they provide own source of electromagnetic energy allowing

them to be operated during day and night. Unlike in optical data, however, pixels in RADAR

carry information from multiple scatterers that result in a highly complex data structure [88].

This phenomenon results in speckled appearance that require careful interpretation, especially

in classification applications [89]. In addition, the topography is also a major limitation in

mountainous regions due to geometric and radiometric effects when data are mapped to

ground-range images; however, common public RADAR data (e.g., Sentinel-1) offer pre-pro-

cessed product ready for application purposes [90].

Both traditional and advanced classification methods have been applied to RADAR data for

categorical-scale species discrimination in savanna environments. For example, [91] used

Wishart unsupervised classification and RADARSAT-2 data to discriminate between different

species (n = 19) recorded in plots measuring 5 m x 8 m in a Tropical savanna (462 km2). The

study reported overall accuracy of 62% and also found the importance of incidence angle (a

characteristic of RADAR acquisition mode) on classification accuracy with images taken at

low incidence angle performing better. [92] classified (overall accuracy = 86%) five plant spe-

cies recorded from 25-m2 plots in a Subtropical savanna (11 ha) using Wishart classification

applied to L-band Polarimetric Synthetic Aperture Radar (PolSAR). [93] applied ML classifica-

tion to L-band Phased Array type L-band Synthetic Aperture Radar (PALSAR) in a Tropical

savanna (area of 125 × 100 km2) to discriminate between three species and coexisting land

cover types recorded from 12.5-m2 plots. The study reported overall accuracy of 87%. [94]

combined fuzzy ML classification and TerraSAR-X, RADAR data to discriminate between
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three species and two land cover types in a Tropical savanna covering 354.6 ha. Plant species

were recorded using Unmanned Aerial System (UAS) within plots measuring 0.2-m2, and the

study found an overall classification accuracy of 89%.

Machine learning algorithms have been explored to improve savanna plant species discrim-

ination using RADAR data. For instance, [95] applied DT classification (overall accu-

racy = 52%) to Sentinel-1 C-band data classifying eight woody plant species recorded from

3-m2 plots in a 2 550 km2 Tropical savanna. They also compared different polarisation (orien-

tation modes of RADAR images) including Vertical-Vertical (VV), Vertical-Horizontal (VH)

and VV/VH images and found better results from VH cross polarisation. Using PALSAR and

RF, [96] classified (overall accuracy = 72%) three species and coexisting land cover types

recorded from 30 m x 30 m plots in a Subtropical savanna measuring 3 697 km2. [97] classified

three woody plant species derived from plots measuring 10 m radius in a Tropical savanna

region covering 224 300 km2. They applied RF and Multilayer Perceptron (MLP) classifiers to

Sentinel-1 C-band image and found accuracies of 75% and 83%, respectively. Unlike in optical

remote sensing, the use of deep learning algorithms with RADAR data for the purpose of classify-

ing savanna plant species is limited although these algorithms hold a promise for complex data

structures offered by RADAR [98]. [99], for example, classified three plant species and coexisting

Table 1. Examples of studies that categorically classified woody plant species in savanna using optical remote sensing.

Savana Biome

Ecoregion

Number of

species

Area

covered

Sensor (Platform) Spatial

Resolution

(m)

Categorical-

scale parameter

Classification method Results Reference

Montane 10 species 6 000 ha WorldView-2

(Spaceborne)

0.5 Individual tree

crowns

Support Vector Machine

(SVM)

Overall

Accuracy = 89

[76]

Mediterranean 17 species 70 ha Hyperspectral (Airborne) 0.56 Class

separability

SVM, Artificial Neural

Network (ANN) and

K-Nearest Neighbour

(K-NN)

Overall

Accuracy (75%–

84%)

[77]

Tropical-

Subtropical

40 species 210 ha QuickBird (Spaceborne) 0.65 Individual tree

crowns

Maximum Likelihood

Classifier (MLC)

Kappa

coefficient

(0.58–0.99)

[78]

Tropical Two species

and two land

cover types

5 km2 QuickBird (Spaceborne) 0.65 Class

separability

MLC Overall

Accuracy (60%–

73%)

[79]

Montane Four species 265 km2 Worldview-2 and

IKONOS (Spaceborne)

0.5

0.8

Class

separability

Random Forest (RF) Overall

Accuracy (67%–

76%)

[80]

Tropical Eight species 251.8 ha ProSpecTIR-VS system

(SpecTIR, Inc., USA)

Hyperspectral (Airborne)

1 Individual tree

crowns

Linear Discriminant

Analysis (LDA) and SVM

Overall

Accuracy (57%–

85%)

[81]

Tropical-

Subtropical

24 species 1 210km2 Sentinel-2A (Spaceborne) 10 Class

separability

SVM, Nearest Neighbour

(NN), RF and

Classification Trees

Overall

Accuracy (50%–

74%)

[82]

Montane One species

and two land

cover types

1 660km2 SPOT-5 and Landsat-7

(Spaceborne)

5

30

Class

separability

SVM Overall

Accuracy (83%–

86%)

[72]

Tropical-

Subtropical

Four species

and three land

cover types

580 km2 Sentinel-2 and Landsat-8

(Spaceborne)

10

30

Class

separability

RF and SVM Overall

Accuracy (90%–

93%)

[83]

Tropical-

Subtropical

22 species 530 km2 SPOT-5 and Landsat-5

(Spaceborne)

5

30

Class

separability

MLC Overall

Accuracy (30%–

53%)

[84]

Montane and

Tropical

Six species

and three land

cover types

315 ha Landsat-8 (Spaceborne) 30 Class

separability

ANN, Decision Tree

(DT), SVM and RF

Overall

Accuracy (48%–

73%)

[85]

https://doi.org/10.1371/journal.pone.0278529.t001

PLOS ONE Remote sensing of savanna woody species diversity: A systematic review of data types and assessment methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0278529 December 1, 2022 7 / 29

https://doi.org/10.1371/journal.pone.0278529.t001
https://doi.org/10.1371/journal.pone.0278529


land cover types in a Mediterranean Subtropical savanna environment covering 400 km2. They

specifically applied Recurrent Neural Network (RNN) on Sentinel-1 C-band image and found an

overall accuracy of 90%. Table 2 provides examples of studies that used RADAR remote sensing

for categorical classification of woody plant species in different savanna environments.

4.3 Categorical classification of savanna plant species using LiDAR remote

sensing

LiDAR remote sensing captures information about species in three dimensions: latitude, longi-

tude and altitude [54]. It is therefore suitable for structural assessment of vegetation such as

canopy cover, height and volume [108, 109]. LiDAR systems scan ground features using laser

points at high sampling rates and relatively small laser footprint size, and are therefore able to

even penetrate through small canopy gaps [110]. This effect provides the capability for detailed

geometrical reconstruction of different species. Because of its active illumination mode,

LiDAR can be operated during day and night, and is not constrained by weather conditions

that may block the sun’s energy. Furthermore, the (near) nadir looking approach used by the

system makes LiDAR to be largely unaffected by geometrical distortions of landscapes [111].

Table 2. Examples of studies that categorically classified woody plant species in savanna using RADAR remote sensing.

Savana

Biome

Ecoregion

Number of

species

Area

covered

Sensor (Platform) Spatial

resolution

(m)

Categorical-

scale parameter

Classification method Results Reference

Tropical Four species and

two land cover

types

300 ha PoLSAR (Spaceborne) 8 Class

separability

RF Overall accuracy

(50%–83%)

[100]

Tropical Two species and

four land cover

types

40 km2 PoLSAR and

RADARSAT-2

(Spaceborne)

8

10

Individual tree

crowns

RF Overall accuracy

(75%–83%)

[34]

Tropical One species and

three land cover

types

27 km2 Sentinel-1 C-band

(Spaceborne)

10 Class

separability

Pixel Based and Object-

Based classification

Overall accuracy

(58%–85%)

[101]

Tropical Eight species

and three land

cover types

25 520

km2
Sentinel-1 C-band

(Spaceborne)

10 Class

separability

DT Overall

accuracy = 52%

[95]

Tropical Six species and

three land cover

types

139 km x

71 km

RADARSAT-2

(Spaceborne)

10 Class

separability

K-mean unsupervised Overall

accuracy = 86%

[102]

Tropical Nine species

and one land

cover type

160

000 km2
RADARSAT-2 and

ALOS PALSAR

(Spaceborne)

10

25

Class

separability

Object Based classification Overall

accuracy = 80%

[32]

Montane Three species

and four land

cover types

1 314 km2 RADARSAT-2 and

ALOS PALSAR

(Spaceborne)

10

25

Class

separability

Wishart supervised

classification

Overall

accuracy = 86%

[103]

Tropical Four species and

Land cover

types

3 660 km2 RADARSAT-2 and

ALOS PALSAR

(Spaceborne)

10

25

Class

separability

Naive Bayes (NB), DT, RF,

Multilayer Perceptron

(MP) and SVM

Overall accuracy

(63%–74%)

[104]

Tropical Two species and

three land cover

types

11 240

km2
ALOS PALSAR

(Spaceborne)

25 Class

separability

Object Based classification Overall

accuracy = 87%

[105]

Tropical Five species and

two land cover

types

30 km x

60 km

ALOS PALSAR

(Spaceborne)

25 Class

separability

SVM Overall

accuracy = 85%

[106]

Tropical One species one

land cover

68 000

km2
ENVISAT ASA and

ALOS PALSAR

(Spaceborne)

25

25

Class

separability

MLC Overall

accuracy = 87%

[107]

https://doi.org/10.1371/journal.pone.0278529.t002
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Though LiDAR is desirable for producing accurate results, it is expensive to apply it to large

spatial areas. Moreover, like hyperspectral remote sensing, LiDAR systems collect a large vol-

ume of data that require high performance computers for analysis. As in the case of optical

and RADAR data, LiDAR data have been used with traditional and advanced classification

methods to categorically classify wood species in savanna ecosystems. [112] for example,

applied ML classification to LiDAR height metrics classifying 41 woody plant species identified

from 4-m2 plot sizes in a Subtropical savanna region covering 400 ha. The study reported over-

all accuracy of 81%. [113] used K-means unsupervised classification algorithm on LiDAR data

in a Mediterranean savanna (16.5 ha) to classify five species recorded in 7 m x 7 m plots.

Height metrics derived from LiDAR data resulted in an overall accuracy of 97%.

Given the large amount of structure- and intensity-related information (metrics) that can

be extracted from LiDAR point clouds, traditional classification approaches may offer suboptimal

accuracy. It is therefore logical to exploit machine learning algorithms that handle such large data.

[114] used small-footprint LiDAR data to distinguish between five woody plant species recorded

from plots measuring ~11 m in radius within a Temperate savanna region (405 m2). RF algorithm

applied to 34 LiDAR tree height metrics resulted in an overall accuracy of 95%. Despite the suc-

cess, the study also noted that there was a significant reduction in the number of LiDAR pulses

that reach the forest understory in closed canopy forests, inhibiting the characterisation of under-

story species. In order to account for understory foliage in a Temperate savanna region covering 2

km2, [111] classified three species using small-footprint LiDAR and tree crown size data in plots

measuring 20 m2. The authors used linear unmixing and RF classification algorithms that

returned overall accuracies of 81% and 84%, respectively. Furthermore, it is worth noting that dif-

ferent seasons exhibit unique characteristics which ultimately influence classification of LiDAR

remote sensing similar to optical remote sensing. [115] compared woody species classification

accuracies in leaf-on (wet season) and leaf-off (dry season) conditions in Temperate savanna

region (100-m2) using terrestrial LiDAR data. The study used RF classification and LiDAR-

derived height metrics, achieving overall accuracies of 77% for leaf-off and 78% for leaf-on condi-

tions, indicating the importance of season for species discrimination.

A key advantage of LiDAR data is that it offers high level of detail for individual tree map-

ping. In a Tropical-Subtropical savanna [116] applied voxel-based tree extraction and noise

removal approach to identify four species in study area A (1 ha) and eight species in study area

B (1 ha) using LiDAR and Deep Belief Network (DBN). Tree crowns were subsequently ras-

terised and classified using DBN model at an overall accuracy of 93% and 95% for two study

areas respectively. Similarly, [117] classified 50 000 individual tree samples (tree crowns)

belonging to 10 species along a 4 km road in a Montane savanna region using DBN model and

LiDAR-derived voxels (volumetric structures) achieving an overall accuracy of 86%. In a Tem-

perate savanna covering 7 440 ha, [118] classified woody plant species (n = 11) from LiDAR-

derived individual tree crowns and using CNN (overall accuracy = 81%). Table 3 presents

examples of additional studies which applied LiDAR data and categorical classification to

assess woody plant species diversity in different savanna regions.

5. Remote sensing of savanna woody plant species diversity using

continuous-scale assessment

5.1 Continuous-scale assessment of savanna plant species using optical

remote sensing

Categorical classification of vegetation types suffers from misallocation of species to incorrect

classes. Continuous-scale species diversity assessment overcomes this by building statistical

relationships between diversity indices and remotely-sensed data. This bodes well in

PLOS ONE Remote sensing of savanna woody species diversity: A systematic review of data types and assessment methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0278529 December 1, 2022 9 / 29

https://doi.org/10.1371/journal.pone.0278529


biodiversity assessment that may seek to focus on Species richness measures of a given area.

Continuous-scale assessment benefits greatly from spectral data provided by remote sensing

systems. For example, [126] estimated three diversity indices including Species richness, Simp-

son and Shannon Wiener indices derived from 20-m2 plots in a Temperate savanna (113 700

ha). They applied Spearman correlation test to assess the relationship between diversity indices

with Difference Vegetation Index (DVI), Normalised Difference Vegetation Index (NDVI),

Enhanced Vegetation Index (EVI), Vegetation Index (VI) and Greenness Ratio derived from

Landsat 8 data. Species richness was negatively correlated (r = -0.18) with DVI and strongly

and positively correlated (r = 0.59) with NDVI. Similarly, Shannon diversity index showed a

negative correlation (r = -0.12) with DVI and positive correlation (r = 0.60) with NDVI.

Almost comparable results were recorded for Simpson index. In a Subtropical savanna area

covering 100 km2, [127] derived Shannon and Simpson diversity indices from plots measuring

15 m2 and regressed the indices against NDVI metrics extracted from both Landsat 8 and

Worldview-2 datasets. The study reported coefficients of determination (R2) of 0.32 for Shan-

non–Landsat-8 NDVI, 0.72 for Shannon–Worldview-2 NDVI, 0.58 for Simpson–Landsat-8

NDVI and 0.69 for Simpson–Worldview-2 NDVI.

Reliance on spectral properties data alone may not fully capture species variability in a

given area because identical spectral reflectance values can correspond to unique species [128].

This shortcoming can be mitigated by using texture information that uses the spatial arrange-

ment of pixels in an image [129]. Applying this principle, [130] derived Shannon diversity

index from 30 x 30 m plots in a Temperate savanna covering 24 281 ha. They, then, used linear

regression to assess the relationship between the diversity index and eight Grey Level Co-

occurrence Matrices (GLCM) extracted from Landsat-7 achieving R2 = 0.01–0.60. [48] esti-

mated woody plant species diversity in Montane savanna area (651 ha), dominated by mor-

phologically similar woody plant species. The study applied the all-subsets regression to

correlate Shannon diversity index quantified from field inventory of 15 m radius plots with

GLCM derived from individual bands of WorldView-2 imagery. The authors reported

adjusted R2 = 0.41–0.46 and Root Mean Square Error (RMSE) = 0.60–0.58. [131] derived

empirical relationships of GLCM, Leaf Area Index (LAI) with Shannon diversity index

Table 3. Examples of studies which categorically classified woody plant species in savanna using LiDAR remote sensing.

Savana Biome

Ecoregion

Number of species Area

covered

Sensor (Platform) Categorical-scale

parameter

Classification method Results Reference

Montane Three species 100 ha Small-footprint 0.1

points/m2 (Airborne)

Individual tree

crowns

RF Overall

Accuracy = 64%

[119]

Temperate 11 species 7 440ha Small-footprint 0.13

points/m2 (Airborne)

Individual tree

crowns

CNN Overall Accuracy

(65%–90%)

[118]

Temperate 40 species 316 km2 Small-foot-print 3.5

points/m2 (Airborne)

Individual tree

crowns

Gaussian fuzzy

membership

Overall

Accuracy = 69%

[120]

Tropical Five species 300 km2 Waveform (Airborne) Plant Area Index RF Overall

Accuracy = 81%

[121]

Temperate Five species 10 km2 Waveform (Airborne) Leaf Area Index RF Overall

Accuracy = 89%

[122]

Montane Six species 1 103 ha Small-footprint and Full-

Waveform (Airborne)

Individual tree

crowns

RF Overall Accuracy

(69%–86%)

[123]

Mediterranean 24 species 6 km2 Waveform (Airborne) Individual tree

crowns

DT

RF

Overall

Accuracy = 79%

[124]

Montane 10 species 250 m x

500 m

Waveform (Airborne) Individual tree

crowns

Deep Boltzmann

Machines (DBM)

Overall

Accuracy = 86%

[117]

Tropical-

Subtropical

One species and two

land cover types

50 m x

80 m

Waveform (Airborne) Individual tree

crowns

DT Overall

Accuracy = 69%

[125]

https://doi.org/10.1371/journal.pone.0278529.t003
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calculated surveys of plots measuring 20 m2 in a Montane savanna area (258 km2). Linear

regression analysis was used to correlate the GLCM, LAI and Shannon diversity index with

adjusted R2 values ranging between 0.73 and 0.74.

While the above reviews prove the importance of spectral and textural information for spe-

cies diversity assessment individually, the assessment can benefit by combining the two types

of information. For example, [132] derived Shannon, Simpson and Species richness indices

from 50 plots measuring 90 m x 90 m in a Montane savanna. These indices were regressed

against eight individual bands, four spectral indices and three GLCMs extracted from Landsat-

8 achieving R2 of 0.36–0.41. [133] correlated eight GLCMs and two vegetation indices derived

from QuickBird with Species Richness (R2 = 0.44–0.59), Shannon-Wiener diversity index (R2

= 0.46–0.6), and Simpson’s diversity index (R2 = 0.42–0.57) for woody plant species in Tropical

environment (20 x 5m plots) covering 12.6 km2. Overall, findings related to optical remote

sensing studies indicate that it is preferable to assess species diversity with high spectral and

spatial resolutions to identify subtle differences in plant species. Further examples of continu-

ous-scale assessment of woody plant species in savanna are provided in Table 4.

5.2 Continuous-scale assessment of savanna woody plants using RADAR

remote sensing

RADAR images provide backscatter related to intensity, amplitude and interferometry informa-

tion acquired in different customisable acquisition modes including wavelengths, incidence

angles and polarisations (orientations) of emitted and received radiations. The variation in

interaction of backscatter depending on target characteristics further complicate the informa-

tion content of RADAR data. Such complexity might render the data suitable for continuous-

scale statistical assessment of species diversity [141]. Exploring the efficacy of image intensity

for species diversity estimation, [142] used images of different polarisations including HV,

(HH, VV, and VH derived from Sentinel-1 C-band and Advanced Land Observation System

Phased Array L-band Synthetic Aperture Radar (ALOS PALSAR) for species diversity estima-

tion in a Montane savanna (6 km2). Regression analysis relating the images with Shannon diver-

sity index calculated from surveys of 10-m2 plots indicated good correlations for ALOS

PALSAR data (HV polarisation R2 = 0.63; HH polarisation R2 = 0.58) compared to Sentinel-1

C-band (VV polarisation R2 = 0.054 and VH polarisation R2 = 0.044). [143] calculated Shannon

diversity index of species surveyed from 10 m radius plots in a Montane savanna region cover-

ing 1752km2 and subsequently correlated it with Dual Polarisation SAR Vegetation Index

(DPSVI) obtained from VV and VH polarisations of Sentinel-1 C-band. Simple linear regres-

sion analysis returned R2 ranging between 0.70 and 0.75, with DPSVI computed from VH

polarisation performing better than VV polarisation. [144] utilised RADARSAT-2 to estimate

Shannon diversity index calculated from 1 m2 plot sizes in a Montane savanna (260 000 ha).

Simple linear regression results showed R2 = 0.66 for HH and R2 of 0.71 for HV. Earlier, [145]

calculated Shannon diversity index from 30-m2 plots in Tropical savanna covering 60 km x 18

km and correlated the index four polarisations of AIRSAR data (HH, VV, HV and VH). The

results showed R2 ranging between 0.04 for HV polarisation to R2 = 0.95 for HH polarisation.

Spatial associations of the scattering properties of target features can be extracted from

RADAR through GLCMs for estimating plant species diversity [143]. [146] calculated Shan-

non diversity index from 15-m radius plots in a Tropical savanna measuring 200 km2. Simple

linear regression analysis was used to compare the association of GLCMs extracted from Japa-

nese Earth Resources Satellite 1 (JERS-1) SAR and Shannon diversity, recording R2 ranging

between 0.04 (for contrast GLCM) and 0.85 (for entropy GLCM). In a Subtropical savanna

covering 1 100 km2, [147] extracted eight GLCMs from RADARSAT-2 and correlated them
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with Shannon diversity index calculated from species in plots measuring 15 m in radius. Using

multiple linear regression, the authors reported adjusted R2 ranging between 0.40 and 0.9.

[148] also estimated plant species diversity recorded from plots measuring 25 m x 25 m in a

Tropical savanna (25 ha). Eight GLCMs statistics were recorded from P band of TomoSAR

data and using linear regression the best correlation between species diversity and GLCMs sta-

tistics resulted in R2 = 0.70.

A valuable extension of RADAR technology relates to interferometry which combines mul-

tiple images taken from different positions or at different times and quantifies their phase

Table 4. Examples of studies that quantified woody plant species diversity in the savanna using optical remote sensing and continuous-scale.

Savana Biome

Ecoregion

Number of

species

Area

covered

Sensor (Platform) Spatial

resolution

(m)

Continuous-scale parameter Analysis

methods

Results Reference

Temperate Five

species

150 ha Worldview-3

(Spaceborne)

0.4 NDVI Exponential

regression

R2 = 0.84 [134]

Montane 26 species 651 ha Worldview-2

(Spaceborne)

0.5 GLCM All-possible

subsets

regression

Adj R2 (0.41–0.46)

RMSE (0.60–0.58)

[48]

Montane Three

species

258 km2 GF2 and SPOT-6

(Airborne and

Spaceborne)

1

1.5

NDVI, Soil Adjusted

Vegetation Index (SAVI),

Enhanced Vegetation Index

(EVI), Normalized difference

index using green band

(NDVIg), Chlorophyll index

using green band (CIg) and

GLCM

Random Forest

regression

model

R2 (0.78–0.92) [135]

Montane Eight

species and

three land

cover types

23 404

ha

SPOT-6 (Spaceborne) 1.5 NDVI, Renormalized

Difference Vegetation Index

(RDVI), Ratio Vegetation

Index (RVI), Difference

Vegetation Index (DVI),

Modified Simple Ratio

(MSR), (EVI)

Random Forest

regression

model

R2 = 0.74 [136]

Temperate Two

species

40 ha Rapid Eye and

Landsat-7

(Spaceborne)

5

30

Normalized Difference

Wetness Index (NDWI),

NDVI and Normalized

Difference Red Edge (NDRE),

Multiple linear

regression

Adj R2 (0.9–0.92) [137]

Mediterranean Seven

species

20 ha Sentinel-2A and

Landsat-8

(Spaceborne)

10

30

NDVI Linear

regression

R2 (0.42–0.74) [138]

Temperate 27 species 113

700 ha

Landsat-8

(Spaceborne)

30 DVI, NDVI, EVI, Vegetation

Index (VI) and Greenness

Ratio

Spearman

correlation

Species richness r =

-0.18 (DVI) and

r = 0.59 (NDVI).

Shannon diversity r

= -0.12 (DVI) and

r = 0.60 (NDVI).

Simpson index r =

-0.11 (DVI) and

r = 0.59 (NDVI)

[126]

Tropical 25 species 844 453

km2
Landsat-5, and

Landsat-8

(Spaceborne)

30

30

Simple Ratio Index (SRI)

NDVI, SAVI, EVI and Leaf

Area Index (LAI)

Pearson

correlations and

Principal

Components

Analyses

r (0.34–0.744) [139]

Tropical Three

species and

three land

cover types

22

270 km2
Moderate Resolution

Imaging

Spectroradiometer

(MODIS)

(Spaceborne)

250 NDVI, EVI, LAI, and Fraction

of Photosynthetically Active

Radiation (FPAR)

Multiyear Partial

Least Square

Regression

R2 (0.76–0.91) [140]

https://doi.org/10.1371/journal.pone.0278529.t004
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difference to identify similarity (coherence) and dissimilarity (incoherence) of features [54].

Height variations obtained using interferometric analysis can be used to discriminate between

vegetation species. [149], for example, assessed the suitability of coherence data extracted from

RADARSAT-2 for species diversity estimation in a Tropical savanna covering 85 km2. Linear

regression analysis correlating the coherence data with plot-level field surveys resulted in an R2

of 0.5. Recently, [141] recorded tree height information to modelling species diversity (Shan-

non diversity index) from 5-m2 plots in a Montane savanna covering 1 102 km2. They, then,

regressed the index against coherence data derived from ALOS/PALSAR imagery and found

R2 of 0.67. Table 5 presents examples of additional studies which applied RADAR data and

continuous-scale assessment of woody plant species in different savanna regions.

5.3 Continuous-scale assessment of savanna woody plants using LiDAR

remote sensing

Continuous-scale species diversity assessment using LiDAR remote sensing can be applied at

plot level and individual tree level given the high spatial detail afforded by the system.

Although savanna environments exhibit discontinuous tree species distribution, which tends

to affect the applicability of plot level analysis, the approach has largely achieved good results.

In general, plot level approaches affords better correlations with large plot sizes combined with

LiDAR data that provide high pulse density capable of capturing sufficient number of tree

crowns. For example, [159] estimated Shannon diversity index from surveys in 400 m2, 1000

m2 and 2200 m2 plots in a Tropical savanna covering 9 km2. They correlated the index with

LiDAR derived canopy density and tree height metrics (mean and standard deviation) using

Ordinary Least Squares. Low associations between field and LiDAR data were recorded from

Table 5. Examples of studies that estimated savanna woody plant species diversity using RADAR remote sensing and continuous-scale.

Savana

Biome

Ecoregion

Number of

species

Area

covered

Sensor (Platform) Spatial

Resolution

(m)

Continuous-scale

parameter

Method Results Reference

Flooded Four species and

one land cover

type

153 500 ha RADARSAT-2

(Spaceborne)

10 HH+HV, VH+VV

polarisations

Univariate and

multivariate linear

regression

R2 = 0.48 [150]

Tropical Five species 1 011 ha TanDEM-X

(Spaceborne)

12 HH and VV

polarisations

Regression analysis r = 0.93 [151]

Temperate 11 species 1 620 m2 Sentinel-1 C-band and

PALSAR-2 (Spaceborne)

10 x25 VH and VV

polarisations

Multiple linear

regression

R2 (0.56–

0.93)

[152]

Montane 67 species 6.25 km2 Sentinel-1 C-band ALOS

PALSAR L band

(Spaceborne)

10 x25 VH and VV

polarisations

Regression analysis R2 (0.04–

0.66)

[142]

Tropical Seven species

and three land

cover types

15 000 km2 JERS-1 and ALOS

PALSAR (Spaceborne)

12.5 x 25 HH and HV

polarisations

Linear regression R2 (0.86–

0.95)

[153]

Montane 11 species 684 km2 ALOS PALSAR

(Spaceborne)

25 HH and HV, HH + HV,

HH − HV and HH/HV

polarisations

Multiple linear

regression

R2 (0.53–

0.55)

[154]

Tropical Three species 1 750 km2 ALOS PALSAR

(Spaceborne)

25 HH and HV

Polarisations

Linear regression R2 (0.53–

0.70)

[155]

Montane Two species 9 km2 ALOS PALSAR

(Spaceborne)

25 HH and HV

polarisations

Linear regression R2 (0.56–

0.93)

[156]

Flooded Three species 181 037

km2
ALOS PALSAR

(Spaceborne)

25 HV and HH/HV

polarisations

Regression analysis R2 (0.67–

0.95)

[157]

Montane Three species 308 245

km2
ALOSPALSAR

(Spaceborne)

25 HH and HV

polarisations

Regression analysis R2 = 0.59 [158]

https://doi.org/10.1371/journal.pone.0278529.t005
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400-m2 and 1000-m2 plots (R2 0.18 and 0.19, respectively), compared to R2 = 0.49 for 2 200-m2

plot. Using rather small plot sizes, [160] successfully correlated (r = 0.85) Shannon diversity

index and LiDAR-derived tree height in 10-m radius plots covering a total of 97 km2 study

area in a Mediterranean savanna region. In addition to height metrics extraction, canopy

cover is also used for plot level species diversity prediction using LiDAR remote sensing. For

instance, [161] calculated modified Shannon–Wiener and Evenness indices extracted from

plots measuring 2 and 4 m radius in a Subtropical savanna (1600 ha). These diversity indices

were correlated to canopy cover and height using linear regression recording R2 = 0.72–0.82.

Although overstorey and understorey LiDAR returns can be successfully separated in

sparsely vegetated savanna environments, the separation capabilities becomes less effective in

canopies with dense and continuous architecture especially when LiDAR point density is low

[160, 162]. Canopy height models (CHM), which simulate continuous surfaces (grids) of can-

opy tops, have been used to solve such problem instead of directly relying on point cloud

height information. For example, [162] used LiDAR metrics generated from CHM to correlate

Rao’s Q and Shannon diversity indices extracted from 100-m2 plots in a Mediterranean

savanna of 270 ha. Using simple linear regression, the authors reported R2 of 0.73 for Shannon

diversity index and R2 of 0.75 for Rao’s Q. [138] related Simpson diversity index (R2 = 0.56)

and Shannon diversity index (R2 = 0.63) calculated from 100-m2 plots with CHM derived

from LiDAR in a Temperate region (270 ha). In a Mediterranean environment (20 000 ha),

[163] measured Shannon and Simpson diversity indices from 400- and 2840-m2 plots. Correla-

tion of the diversity indices and LiDAR derived CHM resulted in adjusted R2 of 0.63 and 0.89

for Shannon diversity index and Simpson diversity index, respectively.

The aforementioned area-based (plot level) analysis suffer from overfitting, thus individual

tree based approaches are more suited for heterogeneous savanna environments [109, 116].

Individual tree based approaches involve locating tree canopies first, provided that there is suf-

ficient point density data. It is critical to have a reasonable window size when delineating indi-

vidual tree crowns. Large window sizes can capture multiple trees in dense environments

while a smaller window creates more trees than the actual available trees. For example, [164]

underestimated available plant species when using smaller window sizes for individual tree

crown delineation in a 50 ha Tropical environment. In contrast, a study by [165] in a Mediter-

ranean environment overestimated functional beta diversity attributed to large window sizes

used to identify individual crowns. In a Mediterranean savanna covering 1295 ha, [116] corre-

lated Species richness index calculated from individual trees counted in 5 m2 plot sizes. Tree

crowns were segmented from a Digital Canopy Model (DCM) derived from LiDAR data were

able to estimate the index with R2 = 0.64. [166] utilised cluster analysis to segment individual

trees (650) delineated from plots measuring 3 m x 3 m in a Temperate savanna covering 35 ha.

The study used simple linear regression to relate LiDAR derived crown segments with Species

richness (R2 = 0.76) and Shannon diversity index (R2 = 0.84). Theoretically, individual tree

based approaches can be surrogates of fieldwork thus, minimising manual field work. Further

examples of studies that applied LiDAR remote sensing to savanna woody plant species diver-

sity assessment using continuous-scale analysis are provided in Table 6.

6. Multi-source remote sensing for savanna woody plant species

diversity assessment

6.1 Multi-source remote sensing

Advances in technology, coupled with an impetus in space exploration has seen a plethora of

remotely sensed data available to the remote sensing community, providing more opportuni-

ties for multi-sensor data integration [89, 135, 178–181]. To take advantage of this, data fusion
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approaches have been applied for both categorical and continuous-scale species diversity esti-

mation. Data fusion is a technique of integrating data obtained from a single sensor or multiple

sensors to produce better information content than offered by individual dataset [89, 182].

Generally, data fusion is implemented at three different levels including pixel, feature and deci-

sion level [29, 183]. Pixel-level fusion combines raw data (mainly optical images) from multi-

ple sources into single resolution data (spatial–spectral). Feature-level fusion operates at

higher processing levels and extracts features from different data sources and then combines

them into one or more feature maps that may be used instead of the original data for further

analysis. Decision level fusion represents the highest level of the three data fusion approaches

and uses knowledge-based procedures to combines the results from various algorithms

[184, 185].

6.2 Categorical classification of savanna woody plants using multi-source

remote sensing

Categorical classification of savanna species using data fusion can exploit both similar (e.g.,

optical—optical) and different (optical—RADAR, optical—LiDAR and LiDAR—RADAR)

datasets. [186] classified six plant species recorded from 30-m2 plots in a Subtropical environ-

ment (1610 km2) using Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8

and HJ-Hyperspectral images. The study reported overall accuracies of 69% for Landsat-8,

70% for hyperspectral image, 79% for MODIS and 84% for the fused image. In a Tropical

savanna covering 252 ha, [81] classified eight species recorded from 3 m x 3 m plots. Using

data integrated from Worldview-3 and Hyperspectral images, the study reported overall

Table 6. Examples of studies that estimated savanna woody plant species diversity using continuous-scale and LiDAR remote sensing.

Savana Biome

Ecoregion

Number of species Area

covered

Sensor (Platform) Continuous-scale

parameter

Method Results Reference

Montane Three species 50 ha Small-footprint 0.01–0.02

points/m2 (Airborne)

Individual tree crowns Linear regression R2 = 0.80 [167]

Tropical-

Subtropical

Three species 25 km2 Small footprint 0.02 points/

m2 (Airborne)

Individual trees crowns Non-linear

regression

R2 (0.83–0.86) [168]

Temperate Three species 2 601 ha Small-footprint 0.19 points/

m2 (Airborne)

Forest strata Random Forest

model

R2 (0.72–0.88)

RMSE = 0.06%

[169]

Montane Six species 1 103 ha Small-footprint 0.25 points/

m2 (Airborne)

Individual trees crowns Regression Analysis Adj-R2 (0.50–

0.93)

[123]

Temperate Six species 2 258 ha Small-footprint 0.25 points/

m2 (Airborne)

Individual trees crowns Stepwise multiple

linear regression

R2 = 0.8 [170]

Montane One species and one

land cover type

63 000 ha Small-footprint 1.5 points/

m2 (Airborne)

Tree height Multiple linear

regression

R2 = 0.71

RMSE = 34.84%

[171]

Mediterranean One species 4.5 ha Small-footprint 1.5 points/

m2 (Airborne)

Individual trees crowns Linear regression R2 = 0.95 [172]

Tropical-

Subtropical

Two species 3 300 ha Small-footprint full-

waveform 9 points/m2

(Airborne)

Leaf Area Index Regression Analysis R2 = 0.75 [173]

Montane Four species 13 650 ha Waveform (Airborne) Plot level canopy height Regression Analysis R2 (0.73–0.89) [174]

Tropical Six species 50 m2 Small-footprint full-

waveform 9 points/m2

(Airborne

Individual trees crowns,

Leaf Area Index

Linear regression R2 = 0.81 [175]

Tropical Seven species 515 ha Waveform (Airborne) Leaf Area Index Regression Analysis R2 = 0.42

RMSE = 1.91

[176]

Montane Three species 130

000 km2
Waveform (Airborne) Individual trees crowns Linear regression r = 0.91 [177]

https://doi.org/10.1371/journal.pone.0278529.t006
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accuracies of 79% (Wordview-3), 85% (Hyperspectral) and 89% for the fused image. Accessi-

bility of optical images at no cost (such as Landsat and Sentinel), and improved accuracies due

to enhanced spatial and spectral information perpetuated multi-sensor fusion of optical images

for biodiversity assessment. However, an amalgamation of optical images suffers from colour

distortion and spatial artifacts [178]. Analysts should therefore take into consideration these

shortcomings when fusing optical data.

Perhaps, the most notable limitation of optical data is their inability in cloudy or hazy

weather conditions making them inefficient for all year round monitoring of species diversity.

Taking advantage of all-weather utility afforded by RADAR, [187] fused Sentinel-1 C-band

and ALOS-2/PALSAR to classify two plant species and coexisting land cover types recorded

from 12-m2 plots in a Mediterranean environment (28 km2). Classification results showed

overall accuracies of 79% for Sentinel-1 C-band, 81% for ALOS-2/PALSAR and 89% for the

fused image. Integrating the sensitivity of optical data to biochemical variations of plant spe-

cies, and the sensitivity of RADAR backscattering to vegetation structure can maximize infor-

mation extracted about vegetation characteristics and thus improve species discrimination

[188, 189]. [190], for example, combined Sentinel-1 C-band with Sentinel-2 and Landsat-8 to

classify two woody species in plots of varying sizes (15 m x 15 m and 50 x 50 m) in a Montane

savanna region (242 813 ha). The classification resulted in overall accuracies of 65% for Land-

sat-8, 67% for Sentinel-2 and 76% for the fused image. Combining RADAR and hyperspectral

data holds great capacity given the ability of the latter in mapping species diversity better than

multispectral data. [191] for example, fused hyperspectral data acquired using Compact Air-

borne Spectrographic Imager (CASI) and RADAR data obtained using L-band AIRSAR in a

Tropical savanna (50 km2) to classify nine plant species recorded from 2.5-m2 plots. They

applied ML, ANN, Hierarchical ANN algorithms and found overall classification accuracies

ranging between 58% and 80%, with the fused image providing the best result.

Similarly, combining optical and LiDAR data allows for exploitation of biochemical and

structural information that can be used to classify species types. For example, [192] integrated

LiDAR data and WorldView-2 image to classify eight woody plant species in a Tropical

savanna covering 523 ha. Applying Dense Convolutional Network, SVM and RF, the analyses

resulted in overall classification accuracies ranging between 52% and 83%. Combining the

strength of hyperspectral and LiDAR is expected to identify detailed tree species diversity even

in areas covered with morphologically similar plant species. In a Montane savanna covering

360 km x 70 km, [193] fused LiDAR data and hyperspectral data obtained from CASI image to

classify 15 plant species recorded from 30-m2 plots and reported overall classification accura-

cies of 65% (hyperspectral image), 71% (LiDAR) and 76% for the fused image.

6.3 Continuous-scale assessment of savanna woody plants using multi-

source remote sensing

Recent improvements in remote sensing technology associated with enhanced spatial and

spectral resolution allows for improved species recognition and is particularly useful for con-

tinuous-scale species diversity estimation. [194] fused MODIS (coarse resolution) and Rapi-

dEye (high spatial resolution) in a Montane savanna covering 2915 km2. Shannon diversity

index computed from 30 m x 30 m plots was then correlated with MODIS (R2 = 0.36), Rapi-

dEye (R2 = 0.45) and fused data (R2 = 0.71). Using better spatial resolution optical images

(SPOT-6 and Gaofen-2 (GF2)) for data fusion in a Subtropical savanna covering 7 600 ha,

[135] estimated Shannon diversity index from plots measuring 20 m x 20 m. Regression results

from the study recorded R2 = 0.45 for GF2, R2 = 0.67 for SPOT-6 and better accuracy (R2 =

0.78) for the combined image. [195] combined Landsat-8 and Sentinel-2 images to quantify

PLOS ONE Remote sensing of savanna woody species diversity: A systematic review of data types and assessment methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0278529 December 1, 2022 16 / 29

https://doi.org/10.1371/journal.pone.0278529


Species richness in 30-m2 plots in a Mediterranean savanna (12 000 km2). A simple linear

regression analysis resulted in R2 = 0.86 (Landsat-8), R2 = 0.88 (Sentinel-2) and R2 = 0.98 for

the fused image.

Combining LiDAR and optical data has become a popular method in the assessment of spe-

cies diversity especially for high-spatial resolution end-products. [35] fused height and tree

crown metrics extracted from LiDAR data with spectral information extracted from RapidEye

to quantify the species complexity of a tropical savanna region covering 9 km2. That study

used all-possible subset regression to relate Species richness and Shannon diversity indices

recorded from 18-m radius plots, reporting R2 = 0.68 for RapidEye, R2 = 0.77 for LiDAR and

R2 = 0.87 for the fused image. [196] calculated Shannon diversity index calculated from 18-m

radius plots in a Tropical-Montane savanna environment covering 200 ha correlated them

with LiDAR-derived canopy cover metrics and Landsat-8 spectral data. The correlation using

linear regression analysis resulted in R2 = 0.55 for Landsat-8, R2 = 0.59 for LiDAR and R2 =

0.66 for the fused image. [197] combined LiDAR and Airborne Visible Infrared Imaging Spec-

trometer (AVIRIS) to estimate Species richness in 15-m radius plots in a Mediterranean envi-

ronment (22 000 ha). Regression results from the study showed R2 = 0.69 (AVRIS), R2 = 0.77

(LiDAR) and R2 = 0.84 for the fused image.

Although commonly suitable to extract structural information, RADAR and LiDAR have

also been combined to estimate woody plant species diversity. Crucially, LiDAR and RADAR

data integration is useful for routine assessment of woody plant species diversity, since the sen-

sors can be operated at all-weather conditions. It is therefore important to highlight few exam-

ples that exploited the combination of the two datasets. [198] fused TanDEM-X RADAR data

and LiDAR data for estimating Species richness calculated from 20-m radius plots in a Tem-

perate savanna region (3 100 ha). The estimation showed R2 = 0.39 for TanDEM-X, R2 = 0.51

for LiDAR and R2 = 0.71 for the fused image. Similarly, [199] combined TanDEM-X and

LiDAR datasets and regressed against Species richness computed from 55-m2 plots in Tropical

savanna with R2 = 0.76 for TanDEM-X, R2 = 0.78 for LiDAR and R2 = 0.83 for the fused

image. [200] integrated ONERA’s SETHI airborne SAR data and LiDAR data in a Tropical

savanna region covering 4910 km2. They specifically estimated Shannon diversity index

obtained from 50 m × 50 m plots using the fused data that returned R2 = 0.80, compared to R2

= 0.67 for ONERA’s SETHI airborne SAR and R2 = 0.68 for LiDAR data. Table 7 presents

examples of studies which utilised fused images for species diversity estimation using both cat-

egorical and continuous-scale approaches.

7. Conclusions and possible future potentials of remotely sensed data

The literature review analysed previous works which utilised optical, RADAR and LiDAR

remote sensing for the assessment of woody plant species diversity in different savanna envi-

ronments. A number of studies have used categorical classification methods to identify a dis-

crete number of species at mixed accuracy levels, depending chiefly on remotely-sensed data

characteristics and the species of interest. Alternative assessment methods that convert cate-

gorical species data into continuous diversity scale eliminate the restriction on the number of

species that can be estimated. Such methods have been applied widely in the assessment of

savanna woody plant species. Both methods utilised optical (multispectral and hyperspectral)

and structural (LiDAR and RADAR) data. In this regard, although single sensor datasets are

the most common image source, fusing different datasets is becoming an attractive option in

savanna woody species classification. Data fusion is preferred because it exploits the benefits of

more than one dataset, and the fact that fusions that involve RADAR data enable all-year

round assessment [190].
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Given the evidence in the literature, we recommend studies in the following areas of interest:

• Methods for routine application of structural and optical remote sensing should be expanded

to assess diversity amongst physiologically similar woody plant species.

• Studies on discriminating woody plant species at the relatively fine spatial resolution

afforded by UASs should be promoted. This will enable identification of complexities due to

seasonal dynamics and landscape heterogeneity.

• Image fusion should be explored as a means of improving the accuracy of assessing woody

plant species diversity at both improved spectral and spatial resolutions, particularly in areas

such as African savannas that are affected by seasonal weather changes.

• Limitations in spectral resolutions in most publicly available remotely-sensed data such as

the Landsat and Sentinel multispectral series is acknowledged in the effort to accurately clas-

sify plants in species-diverse environments. There is therefore the need to expand the provi-

sion and exploration of hyperspectral images at affordable or no costs.

• Woody plant species of the same vegetation environment can have different ages, growing

conditions, sizes and shapes that can lead to considerable within-species variability in woody

plant species spectral characteristics. There is therefore the need for LiDAR, RADAR and

optical images with high temporal resolution to effectively assess species diversity in savanna.

• Multi-temporal analysis of remotely sensed data should be widely explored as a means of

improving species diversity in savanna environments that exhibits subtle differences in

physiologically similar plant species.

Table 7. Examples of studies that classified species types in savanna environment using categorical/continuous-scale approaches.

Savana Biome

Ecoregion

Number of

species

Area

covered

Sensor (Platform) Categorical/

Continuous-scale

parameter

Method Result Reference

Montane One species 0.5 km x 2

km

Pléiades-1A, RapidEye and Landsat-8

(Spaceborne)

Tree detection Object based

classification

Overall accuracy

(63%–90%)

[201]

Temperate One species and

one land cover

type

52 km2 Sentinel-1 C-band and LiDAR

Waveform (Spaceborne and

Airborne)

Class separability RF Overall accuracy

(30%–60%)

[202]

Flooded 18 species 869 ha Trimble Harrier 68i laser scanner

data and LiDAR (Spaceborne)

Individual tree

extraction

CNN Overall

accuracy = 73%

[203]

Tropical Five species 580 km2 RapidEye, Landsat-5 and

TerraSAR-X (Spaceborne)

Class separability RF Overall Accuracy

(89%–94%)

[204]

Temperate 110 species 9 km2 RapidEye and LiDAR Small-foot-

print 1.5 points/m2 (Spaceborne and

Airborne)

GLCM, EVI, NDVI and

Individual tree

extraction

All-possible

subset regression

R2 (0.68–0.89) [35]

Montane Three species and

two land cover

types

35 000 ha RADARSAT-2 and waveform LiDAR

(Spaceborne and Airborne)

Individual tree

extraction

Regression

analysis

R2 (0.67–0.75) [205]

Montane Four species 239 km2 Hyperspectral (HyMap, HyVista,

Inc.) and Waveform LiDAR

(Spaceborne)

25 spectral variables

and Individual tree

extraction

Regression

analysis

R2 (0.63–0.71) [206]

Tropical Three species 37 ha UAS, Sentinel-1 C-band and

Sentinel-2A (Spaceborne)

10 spectral variables RF regression

model

R2 (0.70–0.90) [207]

Montane Six species and

four land cover

types

101

800 km2
ALOS PALSAR Landsat-7

(Spaceborne)

HH and HV Mean

spectral reflectance

Stepwise

regression

analysis

R2 (0.28 to 0.44) [179]

https://doi.org/10.1371/journal.pone.0278529.t007
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• Since woody plant species phenology varies, species-specific knowledge of phenology is

imperative and desirable to inform choice of remotely sensed data with acquisition dates in

line with phenological cycle of species under investigation.
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75. dos Santos AA, Marcato Junior J, Araújo MS, Di Martini DR, Tetila EC, Siqueira HL, et al. Assessment

of CNN-based methods for individual tree detection on images captured by RGB cameras attached to

UAVS. Sensors (Switzerland). 2019; 19. https://doi.org/10.3390/s19163595 PMID: 31426597

76. Cho MA, Malahlela O, Ramoelo A. Assessing the utility WorldView-2 imagery for tree species mapping

in South African subtropical humid forest and the conservation implications: Dukuduku forest patch as

case study. Int J Appl Earth Obs Geoinf. 2015. https://doi.org/10.1016/j.jag.2015.01.015

77. Feret JB, Asner GP. Tree species discrimination in tropical forests using airborne imaging spectros-

copy. IEEE Trans Geosci Remote Sens. 2013; 51: 73–84. https://doi.org/10.1109/TGRS.2012.

2199323

78. Lin C, Popescu SC, Thomson G, Tsogt K, Chang CI. Classification of tree species in overstorey can-

opy of subtropical forest using QuickBird images. PLoS One. 2015; 10: 1–23. https://doi.org/10.1371/

journal.pone.0125554 PMID: 25978466

79. Ouma YO, Tetuko J, Tateishi R. Analysis of co-occurrence and discrete wavelet transform textures for

differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery. Int J

Remote Sens. 2008. https://doi.org/10.1080/01431160701601782

80. Madonsela S, Cho MA, Mathieu R, Mutanga O, Ramoelo A, Kaszta Ż, et al. Multi-phenology World-

View-2 imagery improves remote sensing of savannah tree species. Int J Appl Earth Obs Geoinf.

2017; 58: 65–73. https://doi.org/10.1016/j.jag.2017.01.018

81. Ferreira MP, Zortea M, Zanotta DC, Shimabukuro YE, de Souza Filho CR. Mapping tree species in

tropical seasonal semi-deciduous forests with hyperspectral and multispectral data. Remote Sens

Environ. 2016; 179: 66–78. https://doi.org/10.1016/j.rse.2016.03.021

82. Macintyre P, van Niekerk A, Mucina L. Efficacy of multi-season Sentinel-2 imagery for compositional

vegetation classification. Int J Appl Earth Obs Geoinf. 2020. https://doi.org/10.1016/j.jag.2019.101980

PLOS ONE Remote sensing of savanna woody species diversity: A systematic review of data types and assessment methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0278529 December 1, 2022 22 / 29

https://doi.org/10.1016/j.jag.2009.11.001
https://doi.org/10.3390/rs9050419
https://doi.org/10.3390/rs9050419
https://doi.org/10.1093/jpe/rtm005
https://doi.org/10.1109/IGARSS.2007.4423035
https://doi.org/10.1016/j.ufug.2021.127241
https://doi.org/10.1016/j.jag.2020.102211
https://doi.org/10.1016/j.jag.2020.102211
https://doi.org/10.1023/A
https://doi.org/10.1023/A%3A1022627411411
https://doi.org/10.1023/A%3A1022627411411
https://doi.org/10.1.1.133.1040
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.jag.2017.12.008
https://doi.org/10.3390/s18030829
http://www.ncbi.nlm.nih.gov/pubmed/29522476
https://doi.org/10.1109/TIP.2018.2809606
http://www.ncbi.nlm.nih.gov/pubmed/29533899
https://doi.org/10.3390/s19163595
http://www.ncbi.nlm.nih.gov/pubmed/31426597
https://doi.org/10.1016/j.jag.2015.01.015
https://doi.org/10.1109/TGRS.2012.2199323
https://doi.org/10.1109/TGRS.2012.2199323
https://doi.org/10.1371/journal.pone.0125554
https://doi.org/10.1371/journal.pone.0125554
http://www.ncbi.nlm.nih.gov/pubmed/25978466
https://doi.org/10.1080/01431160701601782
https://doi.org/10.1016/j.jag.2017.01.018
https://doi.org/10.1016/j.rse.2016.03.021
https://doi.org/10.1016/j.jag.2019.101980
https://doi.org/10.1371/journal.pone.0278529


83. Forkuor G, Dimobe K, Serme I, Tondoh JE. Landsat-8 vs. Sentinel-2: examining the added value of

sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience Remote

Sens. 2018; 55: 331–354. https://doi.org/10.1080/15481603.2017.1370169

84. Lewis D, Phinn S, Pfitzner K. Pixel-based image classification to map vegetation communities using

SPOT5 and Landsat5 thematic mapper data in a tropical savanna, northern Australia. Can J Remote

Sens. 2012; 38: 570–585. https://doi.org/10.5589/m12-047

85. chien Shih H, Stow DA, Tsai YH. Guidance on and comparison of machine learning classifiers for

Landsat-based land cover and land use mapping. Int J Remote Sens. 2019; 40: 1248–1274. https://

doi.org/10.1080/01431161.2018.1524179

86. Vreugdenhil M, Wagner W, Bauer-Marschallinger B, Pfeil I, Teubner I, Rüdiger C, et al. Sensitivity of
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vegetation types in the Mamirauá Sustainable Development Reserve, Central Amazon floodplain, Bra-

zil. Wetl Ecol Manag. 2014. https://doi.org/10.1007/s11273-014-9359-1

106. Liesenberg V, Gloaguen R. Evaluating SAR polarization modes at L-band for forest classification pur-

poses in eastern Amazon, Brazil. Int J Appl Earth Obs Geoinf. 2012. https://doi.org/10.1016/j.jag.

2012.08.016

107. Haarpaintner J, Einzmann K, Pedrazzani D, Mateos San Juan MT, Gómez Giménez M, Heinzel J,
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