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Abstract

Cefquinome is a new generation cephalosporin that is effective in the treatment of mastitis
in animals. In this study, we evaluated the associations between the specific pharmacokinet-
ics and pharmacodynamics (PK/PD) of cefquinome and its antibacterial activity against
Streptococcus agalactiae in a mouse model of mastitis. After a single intramammary dose
of cefquinome (30, 60, 120, and 240 yg/mammary gland), the concentration of cefquinome
in plasma was analysed by liquid chromatography with tandem mass spectrometry (HPLC/
MS-MS). The PK parameters were calculated using a one-compartment first-order absorp-
tion model. Antibacterial activity was defined as the maximum change in the S. agalactiae
population after each dose. An inhibitory sigmoid E,,,x model was used to evaluate the rela-
tionships between the PK/PD index values and antibacterial effects. The duration for which
the concentration of the antibiotic (%T) remained above the minimum inhibitory concentra-
tion (MIC) was defined as the optimal PK/PD index for assessing antibacterial activity. The
values of %T > MIC to reach 0.5-log;,CFU/MG, 1-log;o CFU/MG and 2-log;o CFU/MG
reductions were 31, 47, and 81%, respectively. When the PK/PD index %T > MIC of cefqui-
nome was >81% in vivo, the density of the Streptococcus agalactiae was reduced by 2-
log+o. These findings provide a valuable understanding to optimise the dose regimens of cef-
quinome in the treatment of S. agalactiae infections.

Introduction

Bovine mastitis (BM) is an inflammatory condition of the mammary gland that is caused by
trauma or infection and results in the reduced production of both casein proteins and milk
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[1]. BM is a major threat to the dairy industry as it can reduce the quality and volume of milk
production. Acute mastitis damages the milk-secreting alveolar cells leading to a permanent
reduction in milk yield [2].

Streptococcus agalactiae is a highly contagious obligate pathogenic bacterium found in
bovine mammary glands (MGs) [3]. Before the widespread use of antibiotics, it was reported
that >85% of BM cases were caused by S. agalactiae [4] due to low-grade persistent infections
that do not spontaneously resolve. Unidentified infected cows can be reservoirs of infection
when they remain untreated or segregated [5]. S.agalactiae is a fundamental threat to the dairy
industry in many countries [6] and infection is associated with elevated bulk tank somatic cell
counts (SCC) and standard plate counts. Economic losses resulting from S. agalactiae infec-
tions are due to production losses associated with bulk tank SCC, milk quality penalties associ-
ated with bulk tank SCC and standard plate counts, and decreases in milk quality associated
with bulk tank SCC [7]. The prevalence of S. agalactiae in the 4 regions of China ranges
between 5.3-17% and is highest in eastern China (17%). The subregional prevalence of S. aga-
lactiae ranges between 2.0-25.0% and is highest in the Jiangsu province of eastern China [8].
Between 2017 and 2019, the prevalence of S. agalactiae in several regions of the Sichuan prov-
ince was 33.6% [9]. The detection rate of S. agalactiae in Chinese bulk tank milk samples was
92.2% [10].

The widespread misuse of antibiotics has resulted in increased antibiotic resistance leading
to treatment failure. Previous studies have shown that in 11 provinces of China, all of the S.
agalgcitae strains collected from mastitic raw milk samples were multi-resistant to three or
more antimicrobial agents [11]. Also, in inner Mongolia, the isolates of S. agalactiae from
dairy cows with mastitis were found to have a high frequency of B-lactam resistance alone and
with tetracyclin or erythromycin [12]. These data highlight the need to optimise the dosing
regimens of antibiotics to produce maximum efficacy during treatment.

The pharmacokinetic/pharmacodynamic (PK/PD) integration model is an important
method of dosage optimisation, particularly in animal infection models. Only a few studies
have used dairy cows as experimental animals because of the management challenges and
costs associated with feeding. Other domestic animals, such as goats and sheep, have been
used as substitutes yet the cost of these models remains considerable [13]. In comparison, the
use of murine models are highly advantageous. A murine mastitis model was first described by
Chandler and has since been widely used to study BM [14-16]. Data from murine mastitis
models should be interpreted with an appreciation of the differences between the MGs of mice
and cows. Several studies have reported on the similarities of bacterial inoculation in the
mouse and cow MGs in terms of PMN infiltration and tissue damage [13, 17].

Cefquinome is a newly developed cephalosporin-specific drug that is used in animals [18].
Cefquinome has good PKs and can be absorbed quickly to peak concentrations in the blood
[19]. It accumulates at high concentrations in the lungs and MGs, and has low toxicity in ani-
mals making it a highly attractive treatment option for various bacterial infections [20, 21].
Compared to systemic therapy, the intramammary administration of cefquinome is more
effective in eliminating the causative pathogens of BM [22]. However, no previous studies have
investigated the association between the PK/PD indexes and the antibacterial activity of cefqui-
nome in the treatment of S. agalactiae infections.

In this study, we used a mouse mastitis model to study the PK/PD integration of cefqui-
nome against S. agalactiae. This approach was used to determine the most suitable PK/PD
indexe of cefquinome for the treatment of S. agalactiae mastitis, and to obtain specific PK/PD
index values under different antibacterial conditions.These data provide a valuable under-
standing of the dose optimisation of cefquinome in the treatment of S. agalactiae infections.

PLOS ONE | https://doi.org/10.1371/journal.pone.0278306 January 25, 2023

2/15


https://doi.org/10.1371/journal.pone.0278306

PLOS ONE

PK/PD analysis of the activity of cefquinome to treat Streptococcus agalactiae in a murine mastitis model

Materials and methods
Drugs, bacteria, and animals

Cefquinome sterile powder was obtained from Dr. Ehrenstorfer (lot number G130285; Augs-
burg, Germany). S. agalactiae 3-64 were isolated from dairy cows infected with mastitis. Kun-
ming mice were purchased from the Hunan Silaike Jingda Laboratory Animal (Hunan,
China). The mice were maintained in compliance with the American Association for Accredi-
tation of Laboratory Animal Care guidelines [23]. All animal studies were approved by the
Laboratory Animal Welfare and Ethics Committee of the Northeast Agricultural University
(NEAUEC20191011).

Analysis of minimum inhibitory concentration (MIC), minimum
bactericidal concentration (MBC) and mutant prevention concentration
(MPC)

MICs were determined by microdilution in compliance with the Clinical Laboratory Standards
Institute guidelines [24]. Briefly, colonies were transferred into MHB supplemented with 5%
mouse serum and incubated at 37°C on a shaking incubator (220 rpm). The final count was
approximately 1x10® CFU/mL. 10 pL (1x10° CFU/mL) of the culture was used to inoculate
each well of a 96-well plate containing broth with different concentrations of cefquinome. A
series of two-fold dilutions was achieved by adding 100 uL culture aliquots to a 96-well plate.
The MIC was considered the lowest concentration of cefquinome that inhibited bacterial
growth in broth after 24 hrs incubation. MBC was determined using a single set of doubling
dilutions. The MIC well and four other wells with drug concentrations higher than the MIC
were used to establish the MBC using the spot plate count method. The lowest drug concentra-
tion that reduced the bacterial count by 99.9% of the original count after 18 hrs was defined as
the MBC [25]. Mutant prevention concentrations were determined by applying a high count
bacterial suspension (1.5x10'" colony-forming units (CFU)/mL) on to an agar plate contain-
ing different drug concentrations (1, 2, 4, 8, 16, 32, 64 and 128 multiples of the MIC for each
isolate). The concentration ranges were narrowed down. The plates were incubated at 37°C
for 72 h and checked for bacterial growth every 24 h. The MPC was defined as the lowest con-
centration of cefquinome that completely inhibited bacterial growth after 72-hrs [26]. All sus-
ceptibility tests were repeated in triplicates.

Establishment of an LC-ESI-MS/MS method for the analysis of cefquinome

The plasma concentrations of Cefquinome were determined by LC-ESI-MS/MS as described
previously [27]. Briefly, 100 ul of water containing 0.1% (v/v) formic acid and 100 pL of plasma
were combined and vortexed for 3 min. The samples were then centrifuged at 5000 x g for 15
min and the supernatants were harvested. 20 pL of the supernatant was injected into the
HPLC system. The limit of detection (LOD) and limit of quantification (LOQ) values for this
assay were 0.005 and 0.01 pg/ml, respectively. The recoveries of cefquinome in the plasma
samples were >85%. All inter- and intra-assay variations were measured by calculating the rel-
ative standard deviation (%RSD) and ensuring that it was <10%.

In vitro killing curve analyses

After 6 hrs of culture, logarithmic phase S. agalactiae 3-64 were added to 10 mL of MH broth
(5% foetal calf serum) and diluted to 10° CFU/mL and 10" CFU/mL. A series of concentrations
of cefquinome (0%, 0.5%, 1x, 2x, 4%, 8x, and 16x MIC) were added to the bacterial suspensions
which were then cultured and incubated at 37°C. The bacterial population was measured at 0,
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3, 6,9, and 12 hrs. After serial 10-fold dilution, samples were plated on to trypticase soy agar
(TSA) plates (5% defibrinated sheep blood) and cultured for 18-20 hrs. The detection limit
was 300 CFU/mL.

Establishment of a murine mastitis model

A murine mastitis model was established based on previous studies [28, 29]. 8-12 day old pups
were removed and lactating mice were anaesthetised with 1% pentobarbital sodium delivered
by i.p injection. After 0.15 hrs, the L4 (4™ on the left) and R4 (4™ on the right) abdominal MGs
were disinfected with 75% ethanol and the teat tip was cut using scissors. To prevent environ-
mental bacterial contamination, <1 mm of the tissue was removed. Each teat was held with
fine forceps and the duct orifice was located. 100 uL of S. agalactiae (5.2x10° CFU/mL) was
slowly injected through the orifice using a syringe with a blunt needle (<30 gauge).

In vivo antibacterial efficacy

After S. agalactiae was injected into the mice, four mice were euthanized by CO, asphyxiation
and MG samples were collected at 3, 6, 9, 12, 24, 48, and 72 h. MG samples were homogenized
and the visible bacterial colonies were counted to establish in vivo bacterial growth curves for
four experimental groups and one control group. In the mastitis model, a single dose of cefqui-
nome was administered to the MG at a range of concentrations (30, 60, 120, or 240 pg/gland).
The control group was treated with saline solution. The limit of detection for the bacteria was
300 CFU/MG.

The pharmacokinetics of cefquinome in murine plasma

PK experiments were performed on lactating Kunming mice. The mice were randomized into
four experimental groups (n = 6 each). Sedation and analgesia management were performed
as described by Zeng et al. [30]. Briefly, mice were added to an induction chamber (oxygen
flow rate = 0.5-1.0 L/min). At the same time, 3%-5% of isoflurane vapour was applied for
induction and then reduced to 1%-3% for maintenance. As stated above, after intramammary
administration (30, 60, 120, and 240 ug/MG), retro-orbital blood samples (200 uL at each time
point) were harvested at 0.083, 0.167, 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, and 12 h after cefquinome
administration. The plasma samples were isolated by centrifugation for 10 min (2500 x g,
4°C). The supernatants were stored at -20°C for 2 weeks and the plasma cefquinome concen-
tration was established via HPLC-MS/MS. The linearity of cefquinome quantitation was from
0.01-5 pg/mL and R* was >0.99. Cefquinome extraction recovery in the plasma was >80%,
and the coefficient of variation was <10% within and between runs. The respective limitations
of quantification and detection were 0.01 pg/mL and 0.005 pg/mL. The main PK parameters
were harvested using WinNonlin version 5.2.1 (Pharsight, MO, USA). These parameters were
the half-life of first-order elimination (T\,.), the half-life of absorption (T} ,,,), peak plasma
concentration (Cp,ay),and time of maximum plasma concentration (T ,ax)-

PK/PD integration

The PK/PD indexes comprised the AUC/MIC (area under the time-concentration curve
divided by MIC), %T > MIC (the percentage time for which the drug concentration exceeded
MIC), and C,;,,,/MIC (peak concentration divided by MIC). The relationship between in vivo
antibacterial effects (Alog CFU/MG) and the PK/PD indexes were described using an
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inhibitory sigmoid E,,x model [31, 32].

(Emax — E0) x C
EC}, + CY

E = Emax —

where E denotes the antibacterial effect determined based on the maximum change in the
bacterial counts (log;o CFU/MG) during 72 h after treatment; E,,,, indicates the maximum
change in the bacterial counts in the control group; E, represents the maximum change in the
bacterial counts in the various experimental groups; ECsy is the PK/PD index values that pro-
duced antibacterial effects equal to 50% of the maximum; C, is the PK/PD index; and N is the
Hill coefficient, corresponding to the steepness of the effect curve associated with each of the
PK/PD indexes.

Statistical analyses

Statistical analyses were conducted by the analysis of variance. Significant differences in the
data were analysed using Bonferroni correction and with a P-value threshold of <0.05 set for
statistical significance [33].

Results
Chromatogram of cefquinome

The chromatograms for cefquinome in a cefquinome standard solution and the experimental
samples are shown in Fig 1. This method had good specificity and was used for the determina-
tion of cefquinome.

MIC, MCB and MPC

The MIC of cefquinome against S. agalactiae 3-64 was 0.03 ug/mL, the MBC was 0.06 ug/mL,
and the MPC was 0.24 pug/mL. For the quality-control ATCC25922 (Escherichia coli) and
ATCC29213 (Staphylococcus aureus) strains, the MIC values were 0.06 and 0.5 pg/mL,
respectively.

The PKs of cefquinome in murine plasma

Due to the low protein binding (8%) [34] and precipitation in the samples, we believe that the
cefquinome was almost entirely unbound in plasma. The concentration-time data are shown
in Table 1. The cefquinome concentration-time curves for the different doses were generated
(Fig 2). A one-compartment model with first-order absorption was fitted to calculate the PK
parameters (Table 2). The time of the maximum plasma concentration (T,,,) was 0.20-0.25
hrs (mean, 0.22 hrs). The half-life of first-order elimination (T ,,.) was 0.47-0.69 hrs (mean,
0.65 hrs). The peak plasma concentration (C,.x) increased proportionately with increasing
doses of cefquinome along with the area under the time-concentration curve (AUC).

In vitro killing curves

The in vitro killing curves are presented in Fig 3 and show that cefquinome is a classical time-
dependent drug. The killing rate and bactericidal effects did not increase with an increase in
drug concentration. In the low-concentration group (< 4 x MIC), cefquinome did not have a
bactericidal effect. When the concentration reached >4 x MIC, in the low-concentration-
pathogens group, the maximum bactericidal effect achieved a 3-log;o CFU/mL reduction.
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Fig 1. The standard cefquinome and test sample chromatograms. A sample of cefquinome (A) or test sample (B) was analyzed by
LC-ESI-MS/MS. For the test sample, cefquinome was extracted as described in the method section and analyzed by LC-ESI-MS/MS (B).

https://doi.org/10.1371/journal.pone.0278306.9001

However, in the high-concentration-pathogens group, the maximum bactericidal effect only
achieved a 1.2-log;o CFU/mL reduction.

In vivo antibacterial effect

The in vivo killing curves are shown in Fig 4. The killing rate of cefquinome in mice was lower
than that observed in Mueller-Hinton Broth. However, the killing curve of cefquinome against
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Table 1. The cefquinome concentration (ug/mL) in the plasma of mice with Streptococcus agalactiae-induced mastitis following intramammary administration of
30, 60, 120, 240 ug/MG.

Time (h) Does regimen (ug/MG)
30 60 120 240

0.083 0.52 £ 0.065 0.825+0.113 2.17 £0.217 526 £0.273
0.167 1.389 + 0.045 3.93+0.143 4.33 +£0.282 6.56 £ 0.398
0.25 1.755 + 0.064 4.39 +£0.351 7.48 £ 0.553 10.68 + 0.49
0.5 0.641 = 0.107 1.21 £ 0.102 3.66 + 0.222 5.78 + 0.602
0.75 0.504 = 0.072 1.007 £ 0.136 1.81 £0.104 3.11+0.321
1 0.196 = 0.029 0.451 £0.084 1.32 £0.079 2.22+£0.164

2 0.054 = 0.006 0.176 £ 0.036 0.375 £ 0.039 0.596 + 0.047

4 0.029 + 0.006 0.096 + 0.023 0.143 +0.023 0.274 £+ 0.043

6 0.019 + 0.004 0.049 +0.01 0.093 +£0.012 0.131 £0.013

8 0.014 + 0.002 0.03 £+ 0.003 0.054 + 0.006 0.079 £ 0.008
10 0.011 +0.002 0.022 + 0.003 0.038 + 0.004 0.058 £ 0.006
12 0.009 + 0.002 0.014 + 0.002 0.021 + 0.004 0.036 £ 0.004

https://doi.org/10.1371/journal.pone.0278306.t001

S. agalactiae showed a classical time-dependent pattern. The 30, 60, 120, and 240 pg/MG
experimental groups achieved 1.1-log;, 1.2-log, 2.5-log;0, and 2.8-log;CFU/MG reductions,
respectively at 72 h. The 120 pg/gland and 240 pg/gland experimental groups almost achieved
bactericidal effects but these did not change significantly within increasing drug concentration
increased (P>0.05).

PK/PD integration and analysis

PK/PD integration of the various PK/PD indexes versus the antibacterial effectiveness for the
inhibitory sigmoid E,.x model are shown in Figs 5-7. The R* values between the observed PD
and predicted PD data of %T > MIC, AUC/MIC, and C,,,,/MIC were 0.9863, 0.9582, and
0.8774, respectively. The key PK/PD parameters are summarized in Table 3. The target values

15=
R — 30 ug/MG
Q
£ —=— 60 ug/MG
2 10
2 —— 120 pg/MG
o
= —— 240 ug/MG
S §m
3
o=
o
O

R
() I L] L] L] L] l L] L L] L] I
0 S 10 15
Time (h)

Fig 2. Plot of plasma concentrations of cefquinome versus time in a mouse model of S. agalactiae mastitis (n = 6)
following a single intramammary administration of 30 ug/MG, 60 ug/MG, 120 ug/MG, and 240 ug/MG. The bars
represent the standard deviations. The cefquinome concentration in plasma was determined by LC-ESI-MS/MS as
described in the method section.

https://doi.org/10.1371/journal.pone.0278306.g002
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Table 2. The pharmacokinetic parameters of cefquinome in the plasma of mice with Streptococcus agalactiae-
induced mastitis.

Parameter (units) Dosage (ug/MG)
30 60 120 240
T1/2, (h) 0.08 0.07 0.07 0.07
T1/2, (h) 0.61 0.51 0.38 0.46
Tonax (h) 0.22 0.20 0.25 0.20
AUC (pg-h/mL) 1.16 2.39 5.41 8.33
Cpnax (ug/mL) 1.31 3.20 6.79 8.43
MRT (h) 0.84 0.78 1.06 0.98
Vss (L/kg) 0.22 0.18 0.23 0.28

T\ /20 indicates the absorption half-life; Ty, represents the elimination half-life; T,,.x denotes the time to achieve the
maximum concentration; the AUC represents the area under the concentration-time curve; Cy,,, indicates the

maximum plasma concentration; MRT indicates the mean residence time; Vss represents the volume of distribution.

https://doi.org/10.1371/journal.pone.0278306.t002

of the PK/PD indexes to produce a 0.5-log;o CFU/MG reduction, 1-log;o CFU/MG reduction,
and 2-log;o CFU/MG reduction were 31%, 47%, and 81% for %T > MIC; 39 h, 79 h, and 101 h
for AUC/MIC; and 43, 98, and 147 for C,,,.x/MIC, respectively.

Discussion

In veterinary drug research, PK and PD data are often established in separate parallel studies
to formulate the drug delivery scheme which is evaluated and verified in subsequent clinical
trials [35]. However, with the widespread use of antibiotics, bacterial resistance has gradually
emerged. PK/PD modelling is a vital approach to optimise the use of antibacterial drugs. The
elimination half-life (T'1/2e) identified in this study (0.49+0.083 hrs) was similar to that previ-
ously reported i.e. 0.4 hrs for intramammary administration in an experimental mouse model
of S. aureus mastitis and 0.43 hrs for the intramuscular injection in the black swan model [27,
36]. However, the value was significantly lower than reported for intramammary administra-
tion in lactating Chinese dairy cows (4.63 hrs) which detected the drug concentration in milk
and for intramammary administration in an Escherichiacoli lactating mouse mastitis model
(12.63 hrs) that detected the drug concentration in the MGs [29, 37]. Compared to the cefqui-
nome concentration in MGs, the cefquinome concentration in plasma was much lower which
also occurs in cows. This may be related to the chemical properties of cefquinome.
Cefquinome is an organic acid with low fat solubility and pKa values of 2.51 and 2.91 [38].
This causes the distribution of cefquinome to be less extensive and so it cannot penetrate
membranes and cross the blood-MG barrier, preventing the drug from reaching the blood
from the MG. The T}, 0f 0.07+0.05 hrs was identical to the 0.07 hrs previously reported [36].
In addition to oral administration, the body can rapidly absorb other forms of cefquinome.
After metabolism in vivo, cefquinome is mainly excreted in the urine through the kidneys [38].
In the present study, after 9 hrs of inoculation in mice MGs, the S. agalactiae bacterial bur-
den reached approximately 107 CFU/MG. These data showed that the S. agalactiae-induced
mastitis model could sufficiently replicate acute mastitis for bacterial evaluations. Low and
high-concentration groups were designed to observe the bactericidal effect of cefquinome on
S. agalactiae. The low-concentration group achieved bactericidal efficacy when the drug con-
centration was >4 x MIC. However, for the high-concentration group, cefquinome achieved
only a bacteriostatic effect. These data agree with a previous report [39]. Significant differences
were observed between the low-concentration and high-concentration groups (p<0.05) that

PLOS ONE | https://doi.org/10.1371/journal.pone.0278306 January 25, 2023 8/15


https://doi.org/10.1371/journal.pone.0278306.t002
https://doi.org/10.1371/journal.pone.0278306

PLOS ONE

PK/PD analysis of the activity of cefquinome to treat Streptococcus agalactiae in a murine mastitis model

(A)
104
8 -
_
E
-
S
o
&
S}
-
D -
0 L] L] L] L] I L] L] L] L] I L] L] I
0 5 10
Time (h)
(B)
8 -
-
E
-
S
o
&
o)
-
L] L] I
15

Time (h)

Control
0.5 MIC
1 MIC
2 MIC
4 MIC
8 MIC
16 MIC

Control
0.5 MIC
1 MIC
2 MIC
4 MIC
8 MIC
16 MIC

Fig 3. In vitro cefquinome killing curve against S. agalactiae 3-64. (A) Antibacterial effects begin at an initial
inoculum of 10° CFU/mL. (B) Antibacterial effects begin at an initial inoculum of 10’ CFU/mL. The bacterial

population was measured at 0, 3, 6, 9, and 12 hrs by counting visible bacterial colonies.

https://doi.org/10.1371/journal.pone.0278306.9003

may be related to the fact that cefquinome is a beta-lactam which is a bactericidal drug at the

exponentialstage of bacteria.

Penicillin-binding proteins (PBPs) are needed for the survival, growth, and reproduction of
bacteria. PBPs are also the binding sites for beta-lactam antibiotics [40] which cause bacterial
death by creating defects in bacterial cell walls [41]. In this study, based on the bacterial killing
curves, the low-concentration group had a higher growth rate (more bacteria were present at
the exponential stage) compared to the high-concentration group. The greater number of
exponential growing bacteria means that more PBPs could combine with the cefquinome.
Hence, the bactericidal effect in the low-concentration group was greater than that in the high-

concentration group.

Different bacteria have been used to describe the association between PK/PD indexes and
cefquinome antibacterial activity in different animal infection models. A prior report used
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Fig 4. In vivo cefquinome PD studies in a murine mastitis model. The change in the log;o CFU/MG was measured
after 72 hrs of treatment. Changes in the viable cell density (CFU/MG) of S. agalactiae and the concentrations of
antibiotics (xMIC) in vivo following a single treatment with cefquinome. Test dosage regimens were a single dose of
30 pg/MG, 60 pg/MG, 120 pug/MG, and 240 ug/MG by intramammary administration, (n = 4 for mice, and 8
mammary glands). The bacterial population was measured by counting visible bacterial colonies.

https://doi.org/10.1371/journal.pone.0278306.9004

Haemophilus parasuis to study the antibacterial activity of cefquinome. The data suggested
that the %T > MIC required for 3-log;, drop and 4-log;, drop were 61% and 71%, respectively
[42]. A later study investigated the effects of cefquinome on Actinobacillus pleuropneumoniae
using a piglet tissue cage model and reported that %T > MIC achieved 11.59%, 27.49%, and
59.81% with respective 1/3-log;o, 2/3-log;o, and 1-log;, reductions [43]. The same group also
used Escherichia coli to examine cefquinome antibacterial efficacy and calculated that the val-
ues of %T > MIC to achieve 1/6-log;, reductions, 1/3-log;o reductions, and 1/2-log;, reduc-
tions were 3.97%, 17.08%, and 52.68%, respectively [44]. The efficacy of cefquinome was also
reported for Klebsiella pneumonia and Staphylococcus aureus in an ex vivo dog model and an
in vivo rabbit tissue cage infection model [21, 45]. All these studies demonstrated that
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Fig 5. The inhibitory Sigmoid E,,,.« relationship between in vivo antibacterial effects (Alog CFU/MG) and PK/PD index of %T>MIC against S.
agalactiae 3-64. The line represents the fit of the model to the data. The circles represent the observed PD data. R* indicates the correlation coefficient.

https://doi.org/10.1371/journal.pone.0278306.9005
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cefquinome had effective antimicrobial activity against these pathogens. However, to the best
of our knowledge, no previous study has reported on the efficacy of cefquinome against S.
agalactiae.

In the current study, we used an experimental S. agalactiae mastitis model system to investi-
gate the interactions between the PK/PD indexes and cefquinome activity against S. agalactiae.
The %T>MIC was the PK/PD index that most effectively described the antibacterial activity of
cefquinome against S. agalactiae. When the in vivo %T > MIC values were 31%, 47%, and
81%, there were 0.5-log;, units, 1-log; units, 2-log;o units reductions observed, respectively.
Studies have shown that %T > MIC is a vital index for describing the PK/PD relationship of
the cefquinome concerning bactericidal activity [46, 47]. Here, the correlation coefficient (R?»)
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Fig 7. The inhibitory Sigmoid E,,,,, relationship between in vivo antibacterial effects (Alog CFU/MG) and the PK/PD index of C,,,,,/MIC against S.
agalactiae 3-64. The line represents the fit of the model to the data. The circles represent the observed PD data. R* indicates the correlation coefficient.

https://doi.org/10.1371/journal.pone.0278306.9007
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Table 3. The key PK/PD parameters for %T>MIC to achieve different antibacterial effects.

Parameter Values

Eax (1og;oCFU/MG) 1.12

E, (log;o CFU/MG) -2.89

ECs, (h) 44.79

N 3.26
%T>MIC for 0.5-log,, reduction 31
%T>MIC for 1-log,, reduction 47
%T>MIC for 2-log;o reduction 81

Emax represents the AlogCFU72 h in the drug-free control samples; E, indicates the AlogCFU72 h in experimental
samples containing cefquinome when reached the maximum antibacterial effect; EC5, denotes the PK-PD indexes
for the drug that means 50% of the maximum antibacterial effect, and N indicates the Hill coefficient (indicating

effect curve steepness estimates for PK-PD indexes).

https://doi.org/10.1371/journal.pone.0278306.t003

values of %T > MIC, AUC/MIC, and C,,,,/MIC were 0.9863, 0.9582, and 0.8774, respectively.
AUC/MIC has been used to describe the relationship between PK and PD for concentration-
dependent drugs. However, in this study, the R* of %T > MIC and AUC/MIC were very close
showing that both indexes were useful in this model. These data are in agreement with a previ-
ous report by Yu et al. [28]. The cefquinome concentrations in the blood and MG were not
identical due to the blood-milk barrier which explains this result.

In this study, we showed that specific doses of cefquinome cause different therapeutic
impacts on the S. agalactiae-induced mastitis model. We also demonstrated that cefquinome
can cause a reduction of 2.8-log;o CFU/MG in the in vivo killing-time curve to achieve a bacte-
ricidal effect in vivo.
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