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Abstract

High-risk human papillomaviruses (HR-HPVs) cause almost all cervical cancers and a sig-

nificant number of vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV16 and 18

are the most prevalent types among HR-HPVs and together cause more than 70% of all cer-

vical cancers. Low vaccination rate and lack of molecularly-targeted therapeutics for primary

therapy have led to a slow reduction in cervical cancer incidence and high mortality rate.

Hence, creating new models of HPV-induced cancer that can facilitate understanding of the

disease mechanism and identification of key cellular targets of HPV oncogenes are impor-

tant for development of new interventions. Here in this study, we used the tissue-specific

expression technique, Gal4-UAS, to establish the first Drosophila model of HPV16-induced

cancer. Using this technique, we expressed HPV16 oncogenes E5, E6, E7 and the human

E3 ligase (hUBE3A) specifically in the epithelia of Drosophila eye, which allows simple phe-

notype scoring without affecting the viability of the organism. We found that, as in human

cells, hUBE3A is essential for cellular abnormalities caused by HPV16 oncogenes in flies.

Several proteins targeted for degradation by HPV16 oncoproteins in human cells were also

reduced in the Drosophila epithelial cells. Cell polarity and adhesion were compromised,

resulting in impaired epithelial integrity. Cells did not differentiate to the specific cell types of

ommatidia, but instead were transformed into neuron-like cells. These cells extended axon-

like structures to connect to each other and exhibited malignant behavior, migrating away to

distant sites. Our findings suggest that given the high conservation of genes and signaling

pathways between humans and flies, the Drosophila model of HPV16- induced cancer

could serve as an excellent model for understanding the disease mechanism and discovery

of novel molecularly-targeted therapeutics.

Introduction

High-risk human papillomaviruses (HR-HPVs) are the leading cause of cervical, vaginal, vul-

var, penile, anal, and a significant number of oropharyngeal cancers. Annually, roughly

750,000 of HR-HPV-induced cancer cases are identified, of which the majority are caused by

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0278058 December 12, 2022 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hashemi L, Ormsbee ME, Patel PJ,

Nielson JA, Ahlander J, Padash Barmchi M (2022)

A Drosophila model of HPV16-induced cancer

reveals conserved disease mechanism. PLoS ONE

17(12): e0278058. https://doi.org/10.1371/journal.

pone.0278058

Editor: Amit Singh, University of Dayton, UNITED

STATES

Received: July 28, 2022

Accepted: November 9, 2022

Published: December 12, 2022

Copyright: © 2022 Hashemi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The study was supported by Startup

fund, Undergraduate Research Opportunities

Program (UROP) fund as well as the University of

Oklahoma Libraries’ Open Access fund. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

https://orcid.org/0000-0003-1505-8953
https://doi.org/10.1371/journal.pone.0278058
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278058&domain=pdf&date_stamp=2022-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278058&domain=pdf&date_stamp=2022-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278058&domain=pdf&date_stamp=2022-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278058&domain=pdf&date_stamp=2022-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278058&domain=pdf&date_stamp=2022-12-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0278058&domain=pdf&date_stamp=2022-12-12
https://doi.org/10.1371/journal.pone.0278058
https://doi.org/10.1371/journal.pone.0278058
http://creativecommons.org/licenses/by/4.0/


HPV16 and HPV18 [1–3]. HPV16 appears to be the most prevalent carcinogenic HR-HPV

subtype accounting for more than 80% of the HPV-induced head and neck squamous carcino-

mas and more than 50% of cervical cancers [4–7]. Despite the availability of HPV vaccines, a

reduction in the rate of HPV-associated cancers has been slow due to a number of factors,

including the low rate of vaccine uptake, the long delay between initial infection and the devel-

opment of malignancy, and the fact that the current vaccines are prophylactic rather than ther-

apeutic and thus cannot treat pre-existing infections. In more than 90% of individuals infected

with HPV, the immune system eliminates the infection within 12–24 months. However, in a

small percentage of infected cases (5–10%), the host immune system does not clear the infec-

tion and this can lead to the development of cancer. The underlying mechanism is not well-

understood, however, it appears that the persistent HPV infection is necessary for cancer

development and progression towards malignancy. Persistent HPV infection leads to disrup-

tion of cellular homeostasis through cell cycle deregulation, apoptosis evasion, and suppression

of the host immune response. This in turn results in increased cell proliferation, genomic

instability, immortalization, cell transformation, and progression towards malignancy. The

main drivers of these destructive actions are the three HPV oncogenes, E5, E6, and E7 [8–10].

E5, though a weak transforming protein in vitro, provides support for infection and trans-

formation of cells. It is expressed during the early phases of the viral life cycle and stimulates

cell proliferation and transformation by enhancing the activation of the epidermal growth fac-

tor receptor (EGFR) pathway, downregulation of the anti-proliferative keratinocyte growth

factor receptor (KGFR), activation of MAPK signaling, and inhibition of cell cycle regulators

[11–16]. In vivo studies showed that E5 enhances the oncogenic abilities of E6 and E7 in cellu-

lar transformation and tumor formation [17]. Furthermore, E5 protects infected cells from

apoptosis through several mechanisms including proteasomal-mediated degradation of pro-

apoptotic Bcl-2 family member Bax and by reducing the expression of necrosis factor ligand

(FasL) receptor and altering the formation of the Death-Inducing Signaling Complex (DISC)

[18, 19].

E6 promotes tumor formation and cell immortalization by targeting specific proteins and

dysregulating several cellular signaling pathways. These proteins include the tumor suppressor

protein p53, the pro-apoptotic protein BAK, and several key regulators of cell polarity and

junctions including PDZ domain proteins Dlg, Scribble, and the Magi family of proteins [20–

27]. E6 interacts with these proteins by either binding to them to inhibit their function or by

mediating their degradation, decreasing the levels of target proteins in transformed cells.

There are two important domains of E6 that allow it to interact with its targets. The first

domain is the PDZ binding domain, which allows E6 to attach to its PDZ targets [28]. The sec-

ond domain of E6 is its α-helix binding domain. Here, E6 binds to the human ubiquitin pro-

tein-ligase E6AP/UBE3A to induce the degradation of target proteins through the ubiquitin-

proteasome degradation pathway. Targeting the PDZ domain protein is important for HPV-

induced tumor formation, as E6 defective in p53 degradation can still immortalize cells,

whereas E6 deficient in PDZ binding fails to induce hyperplasia [29, 30]. E6 also dysregulates

several signaling pathways including Wnt, JAK/STAT, Hippo, Notch, and PI3K/AKT/mTOR

to promote cell growth, survival, and proliferation [10].

E7, known as the major transforming oncoprotein of HPV, promotes increased cell prolif-

eration by dysregulating the G1/S transition. This is achieved by either binding retinoblastoma

(Rb) and releasing it from the E2F transcription factor, or by proteasomal-mediated degrada-

tion of Rb [31, 32]. E7 also delays cell differentiation through targeting PTPN14 for proteaso-

mal-mediated degradation [33–35]. While E6 and E7 can individually immortalize the cells,

studies have indicated that they cooperate in tumorigenesis with E7 being involved in the early

stages of tumor formation whilst E6 accelerates progression towards malignancy [36, 37].
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While much is known about HPV oncogenes and their targets, the mechanisms underlying

how the disruption of cellular homeostasis leads to cancer remain to be elucidated. The major-

ity of what is known about HPV oncogenes and targets is a result of in vitro and transgenic

mice studies, yet these tools have yet to determine the disease mechanism or identify effective

therapeutic treatments. A Drosophila melanogaster can serve as a well-rounded model for

HPV16-induced cancer, representing the whole organism aspect of the disease that in vitro
models lack, and providing a model that is more efficient and cost-effective than transgenic

mice models for genetic screening and high-throughput compound and drug screening [38–

41]. Drosophila has been used as a powerful genetic model organism for studying human dis-

eases, as up to 75% of disease-related genes in humans have functional Drosophila orthologs

[42–44]. Similarly fruit flies have played important role in understanding the mechanisms

underlying the interactions between pathogens including viruses with their host, uncovering

the molecular mechanism of tissue regeneration, and identifying new therapeutics derived

from plants and other organisms [45–47]. We have previously established a Drosophila model

of HPV18-induced cell deregulation and successfully used it to identify important players in

inducing the cellular abnormalities caused by HPV18 oncogenes [48, 49]. Therefore, a Dro-
sophila model of HPV16-induced cancer will be a powerful complement to existing in vitro
and transgenic mice models in the study of cancerous pathways driven by HPV16 oncogenes.

Here in this study, we used the tissue-specific expression system known as Gal4/UAS to

express three main oncoproteins of HPV16 E5, E6, and E7, plus the human UBE3A, exclu-

sively in the Drosophila eye epithelia. The expression of oncogenes resulted in lethality at the

pupal stage. We found that, as in human cells, hUBE3A is essential for cellular abnormalities

caused by HPV16 oncogenes in flies. Additionally, we discovered that several proteins targeted

for degradation by HPV16 oncoproteins in human cells are also targeted in the Drosophila epi-

thelial cells. Similarly, cell polarity and adhesion were compromised, resulting in impaired epi-

thelial integrity. Cells did not differentiate to specific cell types of ommatidia, but instead were

transformed into neuron-like cells. These cells extended axon-like structures to connect to

each other and exhibited malignant behavior, migrating away from the place of origin to dis-

tant sites. Our findings suggest that given the high conservation of genes and signaling path-

ways between humans and flies, the Drosophila model of HPV16- induced cancer could serve

as an excellent model for the understanding of disease mechanisms, as well as for identification

of novel therapeutic targets for the treatment of cervical cancer and perhaps all HPV-induced

cancers, nationwide and globally.

Materials and methods

Fly strains

The following fly stocks were used: UAS-HPV16 E5, E6, E7 (generated in this study), UAS-

hUBE3A, GMR-Gal4, UAS-p35, UAS-mCD8RFP, and CS were from Bloomington Drosophila
stock center.

Generation of UAS-HPV16 E5, E6, E7 transgenic strain

The construct was designed to be multicistronic and encode three separate proteins from the

same transcript by use of T2A polyprotein cleavage sequences [50]. Three proteins are sepa-

rated by a ribosomal-skip mechanism in which a peptide bond fails to form between the Gly-

cine and Proline residues within the 2A peptide sequence without translation being halted

[51]. This method allows the production of several transgenes without the issue of dispropor-

tionate transgene expression levels [52, 53]. E7 and E6 have a C-terminal T2A epitope tag, and

E5 has an N-terminal HA epitope tag. HPV coding sequences were codon optimized for
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expression in Drosophila and synthesized by Biomatik. PCR-derived gene fragments were

assembled with InFusion cloning (Takara Bio) using the pJFRC7 plasmid as a backbone

expression vector [54]. The assembled construct was isolated from a single clone and verified

by sequencing. Transgenic flies were generated by phiC31 integrase insertion into the attP2

site on chromosome 3 [55] by Duke University Model Systems Genomics.

Immunohistochemistry

For immunolabeling either 3rd instar larval eye imaginal discs or pupal eyes, 40–42 hours after

puparium formation (APF), were dissected in PBS and fixed in 4% formaldehyde. Fixed tissues

were washed three times in PBS solution containing 0.1% Triton-X-100 and blocked in 5%

normal goat serum for 1 h before incubation with primary antibodies. The primary antibodies

used were: rat anti-DE-cadherin (DCAD2) 1:50, mouse anti-Dlg (4F3) 1:100, mouse anti-

Futsch (22C10) 1:100, mouse anti-Arm (N2 7A1) 1:50, and mouse anti-dE2F1 (Hao4) 1:20

from Developmental Studies Hybridoma Bank, rabbit anti-Magi 1:200 [56], rabbit anti-cleaved

caspase 3 (9578, Cell Signaling), rabbit anti-aPKC zeta C-20 1:1000 (SC-216, Santa Cruz Bio-

technology), mouse anti-RBF1 1:20 (a generous gift from Dr. Maxim Frolov). The primary

antibodies were detected using the following secondary antibodies: goat anti-rabbit Alexa 488,

goat anti-mouse Alexa 488, and goat anti-rat Alexa 488 which were all from Invitrogen. The

images were generated using a Leica SP8 confocal microscope and processed in ImageJ. The

figures were generated using Adobe Photoshop. For quantification of protein levels, the fluo-

rescence intensity was measured using ImageJ in both the transgenes expressing and non-

expressing regions. To measure the fluorescence intensity, the maximal intensity projection

images were created based on the z-series of images. Default thresholding and "analyze parti-

cles" with size limitation over 2000 um2 was applied to select area in transgenes expressing

region versus the non-expressing region that was marked using the "inverse selection" func-

tion. The intensity of fluorescent probes of both regions was measured and the data were then

transferred to Excel for further analysis and plot creation. The average percentage of intensity

changes between the transgenes expressing and non-expressing regions were plotted. For each

experiment, at least six eye discs were analyzed and a paired t-test was used for statistical

analysis.

Results

Expression of HPV16 E5, E6, and E7 oncogenes leads to mortality in a

human UBE3A-dependent manner

The simple epithelia of the Drosophila eye provide a useful model for studying epithelial-

derived human cancer as genetic manipulations in the eye epithelia typically do not affect the

survival of the animal. Furthermore, cellular dysfunction in the Drosophila compound eye

manifests as a rough eye phenotype that can easily be observed. Hence, we expressed HPV16

oncogenes E5, E6, and E7 exclusively in the eye epithelia using the Gal4-UAS binary expres-

sion system. This system takes advantage of the Gal4 transcription activator, whose expression

is under the control of the eye-specific gene promoter GMR, to bind to the UAS sequence and

activate the expression of whatever gene follows the sequence [57]. We found that the expres-

sion of these oncogenes alone did not have any effect on the morphology of the eye. The eyes

exhibited morphology that was similar to the morphology of control eyes where the

GMR-Gal4 was only expressed (Fig 1A and 1B). This result indicated that firstly, E6 requires

the activity of E3 ubiquitin ligase (UBE3A) to exert its effect and that it is unable to interact

with Drosophila UBE3A as Drosophila UBE3A lacks the E6-binding motif [49]. Secondly, as it
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was shown previously, cooperation of E6 and E7 is necessary for cell transformation [37]. In

support of this notion, we found that when HPV16 oncogenes were co-expressed with human

UBE3A (hUBE3A) [58] the animals did not develop beyond the pupal stage, resulting in lethal-

ity (Fig 1D). This result was in contrast to expression of hUBE3A alone, which did not induce

any eye abnormalities (Fig 1C). Altogether, these results indicated that E5, E6, E7 are not suffi-

cient to cause altered morphology and that E6 requires the assistance of hUBE3A for its

destructive actions.

HPV16 E5, E6, E7 oncoproteins disrupt epithelial integrity

Drosophila eye epithelium has proven to be an excellent system for understanding the cellular

and molecular mechanisms underlying cell transformation and cancer [59–61]. To assess the

effect of E5, E6, E7, and hUBE3A co-expression on the epithelial integrity, the eye tissues from

two developmental stages were examined. These developmental stages were the 3rd instar larval

and 42 hours after puparium formation, when the eye is fully developed. Immunolabelling with

adherens junction protein, E-Cad, revealed that while expression of GMR-Gal4 or (E5, E6, E7)

alone did not disrupt cell-cell adhesion, in neither of the two stages examined (Fig 2A–2D and

2H–2M), did co-expression of E5, E6, E7+ hUBE3A perturbed adherens junctions, resulting in

loss of epithelial integrity (Fig 2E–2G and 2N–2P). Eye discs expressing either (E5, E6, E7) or

GMR-Gal4 driver exhibited an intact epithelium with proper cell differentiation and ommatidia

formation, which further developed to an array of hexagonal ommatidia arranged in a stereo-

typical pattern at 42 hours after pupation. However, eye discs expressing E5, E6, E7+hUBE3A

did not maintain an intact epithelium. These eye discs showed loss of epithelial integrity, which

was evident by rounded cell morphology, and loss of epithelial cells (Fig 2E). The defects were

more severe at the pupal stage, as no ommatidia were detected and the E5, E6, E7+hUBE3A-

expressing eye was found to be a cluster of cells that had lost adherens junctions. These observa-

tions suggested that HPV16 E5, E6, E7 in cooperation with hUBE3A disrupts the cell-cell

attachments and cell differentiation, both of which are hallmarks of HPV-induced cancers.

Expression of HPV16 E5, E6, E7 oncogenes in conjunction with hUBE3A

induces apoptosis in larval eye disc and has no effect on cell proliferation

Loss of adherens junctions and epithelial integrity prompted us to determine whether cells

expressing HPV oncogenes in conjunction with hUBE3A undergo programmed cell death.

Fig 1. Expression of HPV16 E5, E6, and E7 oncogenes leads to mortality in a human UBE3A-dependent manner. Transgenes were expressed using the

GMR-Gal4 in the eye discs (A-D). The wild type (A) and expression of HPV16 E5, E6, E7 alone (B) or hUBE3A (C) showed no phenotypic defects in the adult

fly eye. Flies co-expressing E5, E6, E7 and hUBE3A (D) did not develop beyond the pupal stage.

https://doi.org/10.1371/journal.pone.0278058.g001
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Fig 2. HPV16 E5, E6, E7 oncoproteins disrupt epithelial integrity. Transgenes were expressed in the third instar larval eye discs

(A-E’) and in pupal eyes 42 hours after pupation (H-P), using GMR-Gal4. Tissues were immunolabelled for adherens junction protein,

E-cad and the expression of mCD8RFP was used to mark the area of transgenes expression. (A) GMR-Gal4-expressing eye disc

showing an intact epithelium with proper localization of E-cad (A’) and a sequential pattern of differentiated ommatidia. (B-D) Co-

expression of HPV16 E5, E6, E7 and the membrane marker, mCD8RFP showing no cellular abnormalities as indicated by proper
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Immunolabeling with the apoptotic marker, cleaved caspase 3, revealed that many cells of the

larval eye disc expressing E5, E6, E7+hUBE3A die due to apoptosis (Fig 3G–3I). This observa-

tion was in contrast to the eye discs expressing either (E5, E6, E7) or GMR-Gal4 driver alone

as they exhibited only a few apoptotic cells (Fig 3A–3F). Since not all cells of larval eye discs

expressing E5, E6, E7+hUBE3A underwent apoptosis, we asked whether the remainder of cells

had resisted apoptosis and progressed to the pupal stages of the eye development. Interestingly,

we did not detect any apoptotic cells among the E5, E6, E7+hUBE3A-expressing cells at 42

hours after pupation (Fig 3P–3R). This was in contrast to GMR-Gal4 or (E5, E6, E7)-express-

ing pupal eyes that showed a ring of apoptotic ommatidia in the periphery of the eye (Fig 3J–

3O). This ring of apoptotic ommatidia is a natural mechanism that eliminates incomplete

ommatidia from the eye periphery at the pupal stage [62]. These results suggested that HPV

oncogenes in cooperation with hUBE3A, induce apoptosis in the eye disc epithelium. How-

ever, not all cells expressing E5, E6, E7+hUBE3A respond equally, as some epithelial cells

resisted apoptosis, survived, and progressed to pupal stages.

In order to determine whether impaired cell differentiation and loss of epithelial integrity

are due to apoptosis or an independent mechanism, we expressed a baculovirus protein p35

that blocks apoptosis, in conjunction with E5, E6, E7, and hUBE3A [63]. We found that when

p35 was expressed alone in larval eye disc, an intact epithelium was present and cell differentia-

tion occurred properly forming a sequential pattern of ommatidia (Fig 4A–4B’). However, eye

discs co-expressing E5, E6, E7+hUBE3A+p35, despite the p35-mediated absence of cell delam-

ination and apoptosis, exhibited impaired adherens junctions and cell differentiation (Fig 4D–

4E’). These abnormalities were also present in the pupal eye as no ommatidia were detected.

The eye tissue consisted of clusters of cells, many of which had lost adherens junctions, whilst

others had established strong adhesions (Fig 4G–4H’). These results suggested that HPV16 E5,

E6, E7+hUBE3A-induced loss of adherens junctions and impaired cell differentiation is inde-

pendent of programmed cell death.

During the third instar larval development, a morphogenetic furrow appears near the poste-

rior edge of the eye disc, which sweeps anteriorly in a progressive fashion. Cells posterior to

the furrow are differentiated in a sequential pattern into ommatidia, whilst the cells anterior to

the furrow are undifferentiated and randomly proliferate to expand the eye epithelium [64]. In

order to determine whether the expression of HPV16 oncogenes alone, or in cooperation with

hUBE3A, has any effect on cell proliferation, we stained the third instar larval eye discs with

antibody against the phospho-histone 3 (pH3), which is a marker for mitotic cells [65]. Similar

to the results of the previous experiments in this study, there are many similarities in the prolif-

eration pattern of eye discs expressing GMR-Gal4 alone or the HPV oncogenes E5, E6, E7.

Mitotic cells detected with pH3 were located anterior to the morphogenetic furrow (S1A–S1C

and S1G Fig). A similar result was also obtained when HPV E5, E6, E7 were expressed in con-

junction with hUBE3A (S1D–S1F Fig). These results suggested that the combined expression

of HPV16 oncogenes and hUBE3A causes loss of epithelial integrity and apoptosis, with no

effect on the mitotic cell division during larval eye disc patterning and development.

localization of E-cad and ommatidia formation (C, C’). (E-G) Eye disc co-expressing HPV16 E5, E6, E7+hUBE3A+ mCD8RFP

exhibited mislocalization or loss of E-cad (F, F’), rounded cell morphology (E, E’), and disrupted pattern of ommatidial formation (F).

(H-J) Pupal eye 42 hrs after pupation expressing GMR-Gal4 and mCD8RFP showing a fully differentiated eye with a stereotype pattern

of hexagonal array of ommatidia and proper localization of E-cad (I). (K-M) Pupal eye co-expressing HPV16 E5, E6, E7+ mCD8RFP

showed no cellular abnormalities and eyes exhibited similar morphology and E-cad localization to the control eyes in H-J. (N-P) Pupal

eye co-expressing HPV16 E5, E6, E7+hUBE3A+ mCD8RFP showed no ommatidia formation and instead the pupal eye was clusters of

cells (N) that had lost cell-cell adhesion evident by lack of E-cad. (O). Insets are digitally magnified 200%. Scale bar indicates 100 μm in

all panels except insets in which scale bar represents 50 μm.

https://doi.org/10.1371/journal.pone.0278058.g002
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Fig 3. Expression of HPV16 E5, E6, E7 oncogenes in conjunction with hUBE3A induces apoptosis in larval eye

disc. Transgenes were expressed in the third instar larval eye discs (A-I) and in pupal eyes 42 hours after pupation

(J-R), using GMR-Gal4. mCD8RFP was used to mark the area of transgenes expression and tissues were

immunolabeled for apoptotic cell marker, Cleaved Caspase 3 (Cas3). (A-C) Eye disc expressing mCD8RFP exhibiting

very few apoptotic cells present in the mCD8RFP-expressing region. (D-F) Eye disc co-expressing HPV16 E5, E6, E7

and mCD8RFP showing a similar result to control eye in A-C. (G-I) Co-expression of HPV16 E5, E6, E7+hUBE3A

+ mCD8RFP resulted in significant increase in apoptosis (H). However not all cells within the region underwent

apoptosis (I). (J-L) Pupal eye 42 hrs after pupation expressing mCD8RFP showing a ring of apoptotic ommatidia at the

periphery of the eye. (M-O) Co-expression of HPV16 E5, E6, E7+ mCD8RFP resulted in similar result to the control

eyes in J-L. (P-R) Pupal eye tissue co-expressing HPV16 E5, E6, E7+hUBE3A+ mCD8RFP showing lack of hexagonal

array of ommatidia but instead clusters of non- apoptotic cells (P and Q). Scale bar in A is 50 μm and in J is 100 μm.

https://doi.org/10.1371/journal.pone.0278058.g003

Fig 4. HPV16 E5, E6, E7+hUBE3A-induced loss of adherens junctions and impaired cell differentiation is independent of programmed cell

death. Transgenes were expressed in the third instar larval eye discs (A-E’) and in pupal eyes 42 hours after pupation (G-H’), using GMR-Gal4.

mCD8RFP was used to mark the area of transgenes expression and tissues were immunolabeled for adherens junctions protein, E-cad. (A-B’) Eye

disc co-expressing mCD8RFP and p35 showed an intact eye epithelium with proper sequential pattern of differentiated ommatidia (B) and adherens

junctions (B’). (D-E’) Eye disc co-expressing HPV16 E5, E6, E7+hUBE3A+ mCD8RFP +p35 exhibited loss of adherens junction protein (E and E’)

and impaired ommatidial differentiation (D) despite p35-mediated absence of cell death. (G-H’) Pupal eye 42 hrs after pupation co-expressing

HPV16 E5, E6, E7+hUBE3A+ mCD8RFP +p35 showed cluster of cells in which many cells lost adherens junctions whilst some remained attached to

each other expressing the E-cad (H, H’). Insets are digitally magnified 200%. Scale bars in A and B’ represent 100 μm and 50 μm, respectively.

https://doi.org/10.1371/journal.pone.0278058.g004
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HPV16 E5, E6, and E7 oncoproteins disrupt cellular polarity

As HPV16 oncogenes are known to disrupt human epithelial cell polarity to promote progres-

sion towards malignancy, we examined the E5, E6, E7 +hUBE3A+p35-expressing eye discs for

the components of cell polarity control complexes, including beta-catenin (Drosophila Arma-

dillo, Arm) and aPKC. These proteins are necessary for the polarity of eye epithelial cells

before differentiation as well as for the polarity of the differentiated ommatidial cells. We

found that expression of either GMR-Gal4, (E5, E6, E7), or p35 alone had no effect on the

localization of aPKC or Arm, and a polarized epithelium was observed (Fig 5A–5I and 5M–

5U). However, the epithelium of eye discs co-expressing E5, E6, E7 +hUBE3A+p35 had lost

Arm and aPKC indicating loss of cell polarity (Fig 5J–5L and 5V–5X). These results are consis-

tent with previous studies indicating a role for HPV oncogenes in perturbing cell polarity [66–

68] and suggested that HPV16 E5, E6, E7-induced loss of cell polarity requires the activity of

hUBE3A and is independent of apoptosis.

Fig 5. HPV16 E5, E6, and E7 oncoproteins disrupt cellular polarity. Transgenes were expressed using GMR-Gal4 in the third instar larval eye discs. mCD8RFP

was used to mark the transgenes expression region and tissues were immunolabeled for polarity proteins, Arm and aPKC. (A-C) Eye disc expressing mCD8RFP

exhibited an intact epithelium with a sequential pattern of ommatidia (A) and proper localization of Arm (B). (D-F) Eye disc co-expressing E5, E6, E7+ mCD8RFP

exhibited a similar result to control eye in A-C. (G-I) Eye disc co-expressing mCD8RFP+p35 showed an intact epithelium (G) with proper Arm localization (H) and

ommatidia pattern to those in A-C and D-F. (J-L) Co-expression of E5, E6, E7+hUBE3A+ mCD8RFP +p35 resulted in impaired cell differentiation as no ommatidia

had formed (J) and epithelial cell polarity was perturbed as Arm was either mislocalized or absent (K). (M-O) Eye disc expressing mCD8RFP exhibited an intact

epithelium with a sequential pattern of ommatidia (M) and proper localization of aPKC (N). (P-R) Eye disc co-expressing E5, E6, E7+ mCD8RFP exhibited a similar

result to control eye in M-O. (S-U) Eye disc co-expressing mCD8RFP+p35 showed an intact epithelium (S) with proper aPKC localization (T) and ommatidia

pattern to those in M-O and P-R. (V-X) Co-expression of E5, E6, E7+hUBE3A+ mCD8RFP +p35 resulted in impaired cell differentiation as no ommatidia had

formed (V) and epithelial cell polarity was perturbed as aPKC was absent (W). Scale bar represents 100 μm.

https://doi.org/10.1371/journal.pone.0278058.g005
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HPV16 E5, E6, E7 reduce the levels of Retinoblastoma and PDZ domain

proteins Magi and Dlg

HPV16 E5, E6, and E7 oncoproteins have been shown to target multiple cellular proteins,

including PDZ domain proteins of polarity and junctional complexes, such as MAGI-1, hDlg1

and Scribble/Vartul, as well as the Retinoblastoma and p53 tumor suppressors [20, 23, 24, 26,

32, 69–71]. Since these targets have homologs in flies, we examined their levels and localization

in tissues expressing HPV16 E5, E6, E7 alone, as well as in tissues co-expressing these onco-

genes and hUBE3A in conjunction with p35. We compared them with the level and localiza-

tion of these proteins in the control tissues that lacked any of the oncogenes. Immunolabeling

of the third instar larval eye discs with antibodies to Drosophila Magi and Dlg revealed that co-

expression of HPV16 oncogenes and hUBE3A led to the elimination of Magi from the epithe-

lial cells (Fig 6J–6L). The PDZ domain protein, Dlg, was also absent from some regions, whilst

other regions within the E5, E6, E7+ hUBE3A co-expression showed no effect on Dlg (Fig 6V–

6X). Similar to our previous results, expression of HPV16 oncogenes, GMR-Gal4, or p35 alone

did not cause any effects on Magi and Dlg levels and localization (Fig 6A–6I and 6M–6U). In

contrast to PDZ domain proteins, Drosophila p53 was not targeted for degradation by HPV16

oncogenes. This is consistent with our previous studies indicating the inability of HPV18 E6

Fig 6. HPV16 E5, E6, E7 in conjunction with hUBE3A promote the degradation of PDZ domain proteins Magi and Dlg. Transgenes

were expressed using the GMR-Gal4 in the third instar larval eye discs. mCD8RFP was used to mark the transgenes expression region

and tissues were immunolabeled for PDZ domain proteins, Magi and Dlg. (A-C) Expression of mCD8RFP had no effect on Magi (B).

(D-F) Co-expression of mCD8RFP +E5, E6, E7 had no effect on Magi (E). (G-I) Co-expression of mCD8RFP+p35 did not affect Magi

level and localization (H). (J-L) Co-expression of E5, E6, E7+hUBE3A+ mCD8RFP +p35 resulted in complete loss of Magi (K). (M-O)

Expression of mCD8RFP had no effect on Dlg (N). (P-R) Co-expression of mCD8RFP +E5, E6, E7 had no effect on Dlg (Q). (S-U) Co-

expression of mCD8RFP+p35 did not affect Dlg level and localization (T). (V-X) Co-expression of E5, E6, E7+hUBE3A+ mCD8RFP

+p35 perturbed Dlg level and localization (W) but to lesser extent compared to Magi. Scale bar represents 100 μm.

https://doi.org/10.1371/journal.pone.0278058.g006
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oncogene to eliminate Drosophila p53 due to differences in E6-binding domains between Dro-
sophila and human p53 [49]. Altogether, these results are consistent with previous findings

establishing Magi as a major degradation target of HPV16 and 18 E6 [24] and suggested that

the mechanism of E6 targeting PDZ domain proteins of junctional and polarity complexes is

conserved between human and Drosophila, both requiring the function of hUBE3A.

In addition to E6 targets, we also examined the E7 target, pRb (Rbf1 in Drosophila). Immu-

nolabeling with an antibody against Rbf1 revealed a significant reduction in the levels of Rbf1

in the nuclei of eye discs expressing HPV16 oncogenes, in comparison with control eye discs

lacking the expression of these oncogenes (Fig 7A–7F and 7M). As Rbf1 binds to E2F1 and

inhibits E2F1-dependent transcription during the G1 phase of the cell cycle [72–75], we exam-

ined the level and localization of Drosophila E2F1 in the presence of the E5, E6, E7 oncogenes

and compared it with control eye disc that lacked the expression of these oncogenes. We

found that eye discs expressing HPV16 oncogenes exhibited high levels of E2F1 in the nuclei

of cells expressing the oncogenes, whilst those eye discs lacking the expression of the onco-

genes showed very low level of E2F1 (Fig 7G–7M). These findings suggested that similar to

E7-induced degradation of pRb in human cells, the Drosophila Rbf1 is a target of HPV16

oncogenes.

HPV 16 E5, E6, and E7 oncoproteins induce the formation of long axon-

like protrusions

HPV-induced cancer cells develop malignant properties in advanced stages of cancer, leaving

the primary tumor and migrating to distant sites. Loss of cell polarity mediated by HPV onco-

genes facilitates the epithelial to mesenchymal transition (EMT) and malignancy [68, 76]. As

co-expression of HPV16 E5, E6, E7+hUBE3A in larval eye disc had perturbed cell polarity, it

prompted us to investigate whether these depolarized cells had acquired invasive phenotypes

later during the pupal stage of development. We discovered that while pupal eyes expressing

either GMR-Gal4, p35, or (E5, E6, E7) alone exhibited an intact eye with a stereotypical pattern

of hexagonal ommatidia (Fig 8A–8C), eyes expressing either HPV16 E5, E6, E7+hUBE3A or

HPV16 E5, E6, E7+hUBE3A+p35 did not contain any ommatidia, but instead had clusters of

cells that had acquired rounded cell morphology with a subset of cells emanating cellular pro-

trusions that were originated from two different regions of the cells. These cells, which were

found to be malignant and in distant sites from the cell cluster, retained their attachment with

either other migratory cells or cells within the primary cluster through these long protrusions

(Fig 8D–8E’). These observations led us to investigate whether these protrusions were axonal

and a result of cell transformation. Immunolabeling for Futsch, the Drosophila homolog of

human MAP1B, a neuron-specific microtubule-associated protein that is widely used to visual-

ize neuronal morphology and axonal projections [77] revealed that these protrusions

expressed Futsch indicating that they were axon-like (Fig 9G–9I and 9M-9O). Furthermore,

we discovered that not only the malignant cells but the cells within the primary cluster devel-

oped these protrusions that held the depolarized cells together. These results were in contrast

to the eyes expressing either GMR-Gal4, p35, or (E5, E6, E7) alone. In these intact eyes with

proper cell differentiation and a stereotypical pattern of a hexagonal array of ommatidia, only

the photoreceptor neurons of each ommatidium extend axons that fasciculate together and

project as a single bundle towards the optic lobes of the brain. The other cells of the ommatidia

are non-neuronal and hence do not express Futsch (Fig 9A–9F and 9J–9L). These results are

novel and altogether suggested that HPV16 oncogenes in cooperation with hUBE3A induce

the transformation of epithelial cells to neuron-like cells, a process that requires gaining an

axonal gene expression program.
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Discussion

Here in this study, we developed the first Drosophila model of HPV16-induced cancer through

the expression of its main oncogenes, E5, E6, E7 in conjunction with human UBE3A. We

found that several dysregulative actions of these oncogenes in human cells also occur in Dro-
sophila epithelial cells, including loss of cell adhesion and polarity, degradation of PDZ domain

proteins and Rbf, disruption of cell differentiation, and cell transformation, as well as malig-

nancy. These findings suggest that the Drosophila model of HPV16-induced cancer can serve

as an excellent complementary model to the existing human cell culture system and transgenic

mice models, thanks to its advantages in large-scale in vivo genetic and high-throughput drug

and compound screening. We further showed that unlike HPV18E6, which caused pupal eye

ommatidial abnormalities [49], expression of HPV16 oncogenes in conjunction with hUBE3A

cause more severe cellular alterations. These alterations result in lack of eye structures but

instead promote formation of cell clusters with migratory and malignant behaviors. These

findings suggest that E6 cooperates with E7, and perhaps with E5 and is consistent with previ-

ous studies demonstrating the necessity for cooperative action of E6 and E7 to induce cellular

transformation [78, 79]. Additionally, HPV16 oncogenes E5, E6, E7 plus hUBE3A caused

pupal lethality. This pupal death is not due to malignancy as we did not find any malignant

cells outside of the eye region. Hence, pupal lethality is likely due to transforming activity of

the oncogenes in cells outside of the eye region as GMR-Gal4 has been shown to have a broad

expression profile rather than an eye-specific pattern of expression [80]. Additionally, our

results indicate that, similar to our previous finding for HPV18 E6, the HPV16 E6 oncogene

lacks the ability to disrupt cellular homeostasis without the assistance of hUBE3A [49].

Although the mechanism of proteasomal-mediated degradation of cellular proteins is con-

served between humans and fruit flies, however, the Drosophila UBE3A does not possess the

E6-binding motif, hindering it from interacting with this oncogene [81]. Additionally, it sug-

gests that E6 plays a crucial role in HPV-induced cancer, as E5 and E7, despite E7’s ability to

eliminate Rbf1, lacked the ability to cause cellular transformation in the absence of hUBE3A

interaction with E6. This is consistent with previous studies indicating an essential role for tar-

geted degradation of PDZ domain proteins of junctional and polarity complexes by E6 in

tumorigenesis [29, 30] as well as the necessity for cooperative action of E6 and E7 to induce

cellular transformation [78, 79]. Furthermore, the lack of Drosophila p53 degradation in our

model suggests that similar to HPV18 [49], HPV16-induced disruption of cellular homeosta-

sis, cancer development, and malignancy is independent of the p53 degradation. This result is

in agreement with previous findings [29, 30, 82] and suggests that our Drosophila model of

HPV16-induced malignancy is ideal for understanding p53-independent mechanisms of can-

cer mediated by HPV16 oncogenes.

One interesting finding in our study was heterogeneity in response to HPV16 oncogenes.

We found that not all cells in the region of larval eye disc expressing HPV oncogenes in con-

junction with hUBE3A, responded equally. While some cells within the population had lost

Fig 7. HPV16 E5, E6, E7 reduce the level of Drosophila Retinoblastoma protein Rbf1 resulting in an increase in

E2F1. Transgenes were expressed in the third instar larval eye discs using GMR-Gal4. mCD8RFP was used to mark the

transgenes expression region and tissues were immunolabeled for Rbf1 and its interacting protein, E2F1. (A-C)

Expression of mCD8RFP had no effect on Rbf1, which was equally present in mCD8RFP-expressing and non-

expressing regions (B). (D-F) Co-expression of mCD8RFP +E5, E6, E7 led to reduction of Rbf1 (E). (G-I) Expression

of mCD8RFP had no effect on E2F1 and was present in low levels in the nuclei (H). (J-L) Co-expression of mCD8RFP

+E5, E6, E7 led to an increase in the level of E2F1 in nuclei of cells expressing the oncogenes (K). (M) Quantification of

the level of E2F1 and Rbf1 showed a significant reduction of the Rbf1 (38%, n = 6 eye discs) and a significant increase

of E2F1 (21%, n = 7 eye discs) in eye discs expressing mCD8RFP +E5, E6, E7 compared to eye discs expressing

mCD8RFP. Scale bar represents 100 μm.

https://doi.org/10.1371/journal.pone.0278058.g007
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Fig 8. HPV16 E5, E6, and E7 oncoproteins induce the formation of long cellular protrusions. Transgenes were

expressed in the epithelium of the eye tissues using GMR-Gal4. mCD8RFP was used to mark the cell membranes in the

GMR-Gal4 expression region. All eyes are from 42 hours after pupation. (A) Pupal eye expressing mCD8RFP

exhibited an array of hexagonal ommatidia arranged in stereotypical pattern. (B) Co-expression of mCD8RFP+E5, E6,

E7 had no effect on the ommatidia formation and organization. (C) Co-expression of mCD8RFP+E5, E6, E7+p35 did

not perturb ommatidia development and arrangement. Co-expression of E5, E6, E7+hUBE3A+ mCD8RFP (D, D’) or

co-expression of E5, E6, E7+hUBE3A+ mCD8RFP+p35 (E, E’) both resulted in loss of ommatidia differentiation.

Pupal eye showed clusters of cells with rounded cell morphology. A subset of these cells were malignant and found at

distant sites from the cluster (D, E). Some of these cells extended long cellular protrusions originating from opposing
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cell adhesion and undergone programmed cell death, others had not. The remaining cells

managed to progress through the next developmental stages. However, these cells lacked the

ability to differentiate to any cell types of the eye and instead transformed into neuron-like

cells extending protrusions to migrate while still connected to their peers. The apoptotic cell

death phenotype and lack of cell proliferation despite E7-induced loss of Retinoblastoma could

be due to action of p53 as HPV E6 does not have the ability to eliminate Drosophila p53 due to

differences in E6-binding domains between Drosophila and human p53 [49]. This is consistent

with previous studies showing that HPV16 and 18 E7 cause apoptotic cell death in the presence

of an intact p53 and that p53 elimination is necessary for E7-mediated cellular transformation

and tumor formation [83–88]. The differential response among cells could lie in the effect of

oncogenes being dosage-dependent and correlates with the degree of oncogene expression.

We have reported similar observations for a HPV18 E6-induced effect, in which only a subset

of the cell population co-expressing E6 and activated Ras were transformed to cancer-like cells

and those were the cells that expressed higher levels of E6 oncogene [49]. Single-cell clone

analysis of HPV18 E6 and E7 positive human esophageal cancer cells also showed that the

intra-tumor heterogeneity is due to variation in the level of E6 and E7 expression, with cells

expressing higher levels exhibiting cell proliferation and invasive behavior [89]. Hence, the

Drosophila model could be a valuable in vivo system for understanding the mechanisms under-

lying the intra-tumor genetic heterogeneity, which is currently a great problem in the treat-

ment of cancers including HPV-associated cancers [90, 91].

One of the important hallmarks of cancer including HPV-induced cancer is malignancy.

We and other studies have shown that E6 or E7 alone lack the ability to cause malignancy [37,

49, 78] and that tumorigenesis requires the cooperative action of both oncogenes. In agree-

ment with these results, we found that the presence of HPV16 E5, E6, E7 oncoproteins in con-

junction with hUBE3A is necessary for cell transformation and development of malignant

properties. Among these properties was a novel characteristic that was not previously reported

for HPV+ cancer cells: the extension of axon-like structures by migrating cells that were leav-

ing the transformed cell cluster, as well as by a subset of cells within the cluster. Our further

investigation revealed that HPV16 oncogenes induced cellular transformation to neuron-like

cells. Gaining a neuronal gene program has been previously reported for metastatic cancer

cells of other types of tumors and shown to contribute to and facilitate their metastatic behav-

ior [92, 93]. However, the mechanisms underlying this epithelial to neuronal transition includ-

ing the change in molecular program, the formation of protrusions, and the connectivity of

cancer cells through these protrusions are not understood. We believe that our in vivo whole-

animal model would be extremely useful in understanding these mechanisms, due to its advan-

tages in whole-genome genetic and high-throughput compound screening. These screenings

can lead to identification of signaling pathways and genes that play important roles in epithe-

lial to neuronal transition, as well as aiding in the discovery of inhibitory compounds that

would provide clinical benefit.

Furthermore, our study reveals that several key cellular targets of HPV16 oncogenes are

well-conserved in Drosophila and are equally targeted for degradation. Although E6-mediated

elimination of PDZ domain proteins requires the human UBE3A, the ubiquitination and sub-

sequent proteasomal degradation of Drosophila Retinoblastoma by E7 did not require the

human cullin 2 ubiquitin ligase complex [94], suggesting that the Drosophila counterpart

regions of the cell that linked the metastatic cells to each other or to the cells within the cluster (D’ and E’ magnified

from boxes in D and E). Insets are digitally magnified 200%. Scale bar in A indicates 100 μm and in insets represents

50 μm.

https://doi.org/10.1371/journal.pone.0278058.g008
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Fig 9. HPV16 oncogenes in cooperation with hUBE3A induce the transformation of epithelial cells to neuron-like

cells. Transgenes were expressed in the epithelium of the eye tissues using GMR-Gal4. mCD8RFP was used to mark

the cell membranes in the GMR-Gal4 expression region. All eyes are from 42 hours after pupation and immunolabeled

for axonal marker, Futsch. (A-C) Pupal eye expressing mCD8RFP exhibited a stereotype pattern of hexagonal array of

ommatidia (A) from which only the photoreceptor neurons of each ommatidia project axons that fasciculate together

and project as a single bundle towards the optic lobes of the brain (B). Co-expression of mCD8RFP+E5, E6, E7 (D-F)

or co-expression of mCD8RFP+E5, E6, E7+p35 (J-L) had no effect on ommatidia differentiation and photoreceptor

axonal projections. Pupal eyes co-expressing E5, E6, E7+hUBE3A+ mCD8RFP (G-I) or E5, E6, E7+hUBE3A

+ mCD8RFP+p35 (M-O) showed no differentiated ommatidia but instead clusters of cells (G, M) with rounded cell

morphology and cellular protrusions that expressed the axonal marker Futsch (H, N). The axon-like protrusions were

developed by both the malignant cells and cells within the primary cluster (I, O). Scale bar represents 100 μm.

https://doi.org/10.1371/journal.pone.0278058.g009
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represents a conserved binding activity of E7. Indeed the subunit within the Cullin 2 ubiquitin

ligase complex with which E7 interacts, Elongin C, is well conserved in Drosophila with more

than 95% sequence homology [95, 96]. These results suggest that HPV16 oncogene-mediated

elimination of cellular targets involves an evolutionarily-conserved mechanism. Similar con-

served mechanisms of virus-host interactions between fruit flies and humans have been dem-

onstrated for other viruses including HIV, ZIKV, Epstein-Barr, VSV, and SARS-CoV [45, 97–

101]. Therefore, the findings from this study, places the Drosophila model of HPV16 onco-

genes-induced malignancy in a unique position for understanding the disease mechanism and

discovery of novel molecular targets for HPV-associated cancer treatments.

Supporting information

S1 Fig. Combined expression of HPV16 E5, E6, E7 and hUBE3A has no effect on the

mitotic cell division during larval eye disc patterning and development. Transgenes were

expressed in the epithelium of the third instar larval eye tissues using GMR-Gal4. mCD8RFP

was used to mark the cell membranes in the GMR-Gal4 expression region. Immunolabeling

for mitotic cell marker phosphohistone 3 (pH3) revealed that co-expression of mCD8RFP+E5,

E6, E7 (A-C) or E5, E6, E7+hUBE3A+ mCD8RFP (D-F) had no effect on the level of mitotic

cell divisions as it exhibited the same result as the control (G) in which only the GMR-Gal4

was expressed. Scale bar represents 100 μm.
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