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Abstract

Multi-scale image decomposition is crucial for image fusion, extracting prominent feature

textures from infrared and visible light images to obtain clear fused images with more tex-

tures. This paper proposes a fusion method of infrared and visible light images based on

spatial domain and image features to obtain high-resolution and texture-rich images. First,

an efficient hierarchical image clustering algorithm based on superpixel fast pixel clustering

directly performs multi-scale decomposition of each source image in the spatial domain and

obtains high-frequency, medium-frequency, and low-frequency layers to extract the maxi-

mum and minimum values of each source image combined images. Then, using the attri-

bute parameters of each layer as fusion weights, high-definition fusion images are through

adaptive feature fusion. Besides, the proposed algorithm performs multi-scale decomposi-

tion of the image in the spatial frequency domain to solve the information loss problem

caused by the conversion process between the spatial frequency and frequency domains in

the traditional extraction of image features in the frequency domain. Eight image quality indi-

cators are compared with other fusion algorithms. Experimental results show that this

method outperforms other comparative methods in both subjective and objective measures.

Furthermore, the algorithm has high definition and rich textures.

Introduction

Although a huge amount of sensor data has been collected with the advancement of sensor

technology, single sensor data can provide limited information about the scene. Thus, multiple

sensors have recently been combined to obtain more comprehensive and accurate scene infor-

mation. However, the different characteristics of different sensors cause some challenges in

subsequent processes. Also, multiple sensors provide redundancy in the collection of informa-

tion, resulting in low utilization of transmission bandwidth and storage space. In order to

overcome these problems, image fusion technology has been researched in many fields. Espe-

cially, the fusion of the visible-light image and infrared image has attracted attention due to its

practical value in the military [1, 2] and security applications [3]. Infrared images are sensitive

to the heat source targets in the scene, enabling users to quickly grasp the target location infor-

mation. However, the infrared sensor cannot detect cold or heat-equilibrium objects in
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practical applications, losing much useful information [4]. In contrast, the visible-light sensor

can provide an image with rich scene texture, but the collected image is susceptible to the influ-

ence of light intensity and smoke occlusion. It often makes the target information difficult to

be quickly recognized by the user [5]. Therefore, the fusion of infrared image and visible-light

image allows combining the advantages of each source image into one image.

Image fusion algorithms are divided into three groups according to the fusion level: pixel

level, feature level, and decision level fusions [6]. Further, a hybrid level fusion has been

explored to combine different levels of fusion methods. In the past few decades, many classic

image fusion algorithms have emerged, such as deep learning-based methods [7, 8], neural

network-based methods [1], sparse representation-based methods [2], and subspace-based

methods [3]. However, those methods provided insufficient image anti-interference ability

with a large amount of information loss in the infrared images. Multi-scale decomposition [6]

was proposed to zoom the image and superimpose multiple layers of spatial feature informa-

tion for the effective fusion of infrared images and visible-light images, based on multi-scale

transform, including pyramid transform [7], Wavelet transform [8], curvelet transform [9],

contourlet transform [10], and non-subsampled contourlet transform [11]. However, regard-

less of the effectiveness of multi-scale decomposition, the fused images often suffered from

halos artifacts and other interference factors [12]. In addition, determining and decomposing

the number of layers in the image space is a challenge. The larger the number of decomposi-

tion layers, the richer the texture details of the fused image. However, the middle- and low-fre-

quency layer coefficients affect most fused pixel values in the fused image as the number of

image decomposition layers increases. The fusion effect and the robustness of the algorithm

are a trade-off. Accordingly, a single-level fusion approach is difficult to deal with complex

and diverse image fusion problems.

With the development of machine learning technology methods such as neural networks,

scholars introduced support vector machines and genetic algorithms into image processing

[13–21] to solve the defects of traditional frequency-domain feature extraction technology.

Among them, the neural network method is more common in image fusion, which includes

three types. The first is based on pre-training the network. This network model allows the

machine to extract images adaptively through many pre-training models. However, this

method requires large-scale training samples. The extracted features cannot meet the applica-

tion requirements under insufficient samples. At the same time, the neural network models

are designed for classifiers and may not be suitable for image fusion tasks. In the second type

proposed by Li et al., the self-encoding network was introduced into image fusion. The net-

work comprises an encoder and a decoder. The encoder can extract the features of the image

to be fused, and the decoder generates the fusion image, which solves the tuning requirement

problem. However, both the encoder and the decoder should be designed for the correspond-

ing fusion task, and the algorithm has weak robustness. In the third type, many scholars pro-

posed neural networks to solve the defects of fused images. Jiayi Ma proposed FusinGAN [22].

With a well-designed network structure, good fusion results can be achieved without hand-

crafted strategies. However, a vast amount of data specified to the target fusion tasks are

required, which often cannot perform well for the different data. For example, the fusion

model trained with bright images cannot work well for low illumination images. Hui Li [23]

proposed a novel image fusion framework based on MDLatLRR, where the source image was

decomposed into detail parts (salient features) and base parts. Then, those detail and base

parts were fused by the nuclear-norm-based fusion strategy. This method effectively solved the

artifacts and halo that happened in the traditional multi-scale fusion method (Fig 1). Still, the

integral definition of the fused image remains to be optimized. The MDLatLRR is similar to

the anisotropic diffusion-based method. Both methods decomposed the infrared and visible
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light images into the basic and detail layers, although the decomposition algorithm and fusion

rules are different. They can prevent artifacts generated in the fusion process, but both suffer

poor image definition.

In order to overcome the above-mentioned issues, this paper proposes an infrared and visi-

ble image fusion method based on spatial domain and image features. In the method, an effi-

cient multi-scale decomposition is adopted to smooth the source image, which can effectively

extract the intermediate frequency layers of the infrared image and the visible-light image.

Unlike strong decomposition algorithms such as the anisotropic diffusion algorithm [24], the

proposed multi-scale decomposition rather causes large edge gradients between different pixel

groups of the intermediate frequency layer. Thus, the mean filter is applied to obtain a better

intermediate frequency layer. Also, the high-frequency and low-frequency layers are extracted,

and then the large layer and the small layer of each source image are extracted. The final fused

image is obtained through the adaptive weight fusion according to the feature parameters of

each source image and layer pixel.

To highlight the major advantage of our method, we illustrate a representative example in

Fig 1. The infrared and visible images are fused, where the visible image contains detailed

background and the infrared image highlights the target, i.e., the pedestrian. Fig 1C and 1D

show the fused images by the traditional method (GTF) and advanced method (FusionGAN),

respectively. Although it highlights the target location information, the clarity of the environ-

mental texture display is not significantly improved. The fused images by MDLatLRR (Fig 1E)

can reflect the information of the infrared and visible images, but it is still blurred. In contrast,

our method (Fig 1F) can provide a fused image where environment texture and target infor-

mation can be easily recognized.

The experimental results show that the proposed fusion method provides a higher defini-

tion and more comprehensive information than the other fusion algorithms. The contribu-

tions of this paper are as follows. First, we propose an image clustering algorithm for image

fusion, greatly improving the quality of fused images. Second, different from the traditional

multi-scale decomposition strategy, we extract one more dark detail layer on the basis of pre-

decessors, which makes the texture gradient of the fusion result easier to reflect the informa-

tion carried by the image. As a result, the clarity of the fused image is improved. Third, we

propose a fusion method based on the principle of expanding texture and the layer eigenvalue

as the weight. This makes the weight-average strategy more effective, addressing the poor tex-

ture definition of existing fused images.

The remainder of this paper is structured as follows. Section 2 describes the proposed

method in detail. Section 3 introduces the parameter settings of the proposed fusion theory.

Section 4 provides experimental results, and Section 5 concludes this paper.

Proposed method

This section describes the proposed method in detail, followed by the analysis of the parameter

setting. The proposed method first decomposes images in multi-scale by using the superpixel-

Fig 1. Schematic illustration of image fusion. (a) IR, (b) Vis, (c) GTF, (d) FusionGAN, (e) MDLatLRR, (f) Our.

https://doi.org/10.1371/journal.pone.0278055.g001
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based fast fuzzy C-means. Then, the high-frequency layer and low-frequency layer of the

source image are extracted. Lastly, those layers are combined with a fusion strategy to obtain

the final fused image.

A. Mathematical model

The multi-scale decomposition for image fusion requires the following two conditions. 1) it

can reasonably and effectively decompose the source image information in multi-scales, and

2) the computational time should be fast. Accordingly, the multi-scale decomposition method

is designed to achieve multi-scale decomposition with a low computational time. We propose

the superpixel-based fast fuzzy C-means image hierarchical multi-scale decomposition

method. The decomposition effect of the source image is shown in Fig 2.

Fig 2 shows the schematic diagram of the proposed multi-scale decomposition method to

extract the intermediate frequency layer. In the intermediate frequency layer, the clustered

areas of the source image are effectively retained, and the texture gradient between the seg-

ments is weakened. However, the clustering results (Fig 2B) still have a lot of texture informa-

tion. Therefore, we need to improve the algorithm to fully extract texture information.

In order to evaluate the image clustering ability of the proposed clustering algorithm, the

image clustering algorithm in [24] is employed for comparison, and the resulting surf graph is

shown in Fig 3.

As shown in Fig 3, the proposed clustering algorithm has a higher degree of image blurring

than ADF. Combined with the surf map observation, the surf map corresponding to the infra-

red image contains many texture gradients. Although the surf map of ADF smooths a lot of

details texture, there is still a lot of nonsmoothed information compared with our surf map,

which will lead to multi-scale decomposition. Accordingly, our fusion results are more precise

since part of the information in the feature layer cannot be extracted.

1) Mathematical model of the proposed multi-scale decomposition. According to the

above multi-scale decomposition tool conditions, the existing image clustering algorithms,

such as the C-means clustering algorithm and K-means clustering algorithm, are analyzed

while developing the multi-scale decomposition tool. The iterative calculation of distances

between pixels increases the computational cost of the clustering algorithm. At the same time,

the local features are destroyed due to the fixed dimension of the clustering window, making

the clustering result unfavorable for subsequent multi-scale decomposition. Therefore, image

clustering is implemented by adopting a filter window based on c-means with better adaptive

Fig 2. Example of the multi-scale decomposition (a) source image, (b) the proposed multi-scale decomposition.

https://doi.org/10.1371/journal.pone.0278055.g002
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and irregular local space provided by superpixels, which can effectively solve the problems of

high computational time cost and local structure damage during clustering.

The objective function of the proposed multi-scale decomposition is defined as follows. The

determination of the multipliers is given by [25]:

Jm ¼
Xq

l¼1

Xc

k¼1
Slu
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kl
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where l represents the gray intensity levels, q is the number of superpixels, and 1�l�q.Sl repre-

sents the number of pixels in the lth region Rl, and c indicates the number of image clusters.

ukl is the membership matrix of the area of the lth superpixel, and the uk represents the center

of the kth cluster. xp represents a pixel value in the image. c is the number of clusters.

The optimization problem of Formula (1) can be transformed into an unconstrained prob-

lem using a Lagrangian multiplier, thereby minimizing the objective function and satisfying:
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where λ is the Lagrangian multiplier. The ukl and uk partial differential equation in Eq (2) satis-

fies:
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Fig 3. A surf plot of the proposed clustering algorithm versus ADF clustering results. The first row includes, from

left to right: infrared image, ADF clustering results, and the proposed algorithm clustering results; the second row

includes, from left to right: infrared image partial area surf map, ADF clustering partial area surf map, and the

proposed clustering algorithm partial area surf map. The abscissa of the Surf map represents the spatial position of the

pixel, and the ordinate represents the size of the pixel value.

https://doi.org/10.1371/journal.pone.0278055.g003
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Combining the Formulas (3) and (4), ukl and uk are computed as follows:
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The process of decomposition is conducted as follows:

(A) The same pixels of the source image are combined according to the function Jm, denoted

as I (x).

(B) Morphological expansion processing is performed. I (x) and b represent the morphological

window dimension and the window dimension value, respectively. The result after the

expansion is denoted as I1 (x), where I1(x) = I(x)�b (Fig 6).

(C) Morphological corrosion treatment is performed. The result after the expansion is denoted

by I2 (x), where I2 (x) = I1(x)⊝b. Therefore, we have:

I2ðxÞ ¼ ðI1ðxÞ � bÞ � b ð7Þ

(D) The processed layers are composed into an image I2 (x), followed by the mean filtering

with a m×m window to obtain the final rsults, denoted as IM.

2) Extraction of high-frequency and low-frequency layers. The multi-scale decomposed

image IM is obtained with the window Wn×n where n = 150 as the intermediate frequency

layer. The high-frequency layer IH is obtained by subtracting the intermediate frequency layer
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IM from the source image IS:

IH ¼ IS � IM ð8Þ

The low-frequency layer image IL is obtained by subtracting the source image IE from the

intermediate frequency layer IM:

IL ¼ IM � IS ð9Þ

The multi-scale decomposition results of the source image are shown in Fig 4.

B. Fusion strategy

The fusion process consists of two parts:

1) intermediate-frequency layer fusion and 2) high-frequency and low-frequency layers

fusion. First, in the fusion process of the intermediate-frequency layer, the pixels with the

larger value between visible-light and infrared images are selected for the maximum layer. The

pixel with the smaller value is selected at the corresponding coordinates of the two images to

form the minimum layer.

Then, the fused image is computed as follows:

IZ ¼
minðs1; s2Þ

s1 þ s2

maxðIM1; IM2Þþ

maxðs1; s2Þ

s1 þ s2

minðIM1; IM2Þ

ð10Þ

where IZ indicates the fusion result of the frequency images in each source image. IM1 and IM2

represent the intermediate frequency layers of the visible-light and infrared images. max(IM1,

IM2) represents the pixel standard deviation corresponding to the extremely large layer of the

intermediate frequency image expressed by σ1, and min(IM1,IM2) represents the pixel standard

Fig 4. Multi-scale decomposed images for visible-light and infrared images. I(ir) represents the infrared image, I(vis)

represents the visible image, and the yellow cube represents the proposed smoothing method. The processed infrared

and visible images are denoted as IM(ir) and IM(vis), respectively. Through Eq (8), the visible image is decomposed into

bright detail layer IH(vis) and dark detail layer IL(vis), while, through Eq (9), the infrared image is decomposed into

bright detail layer IH(ir) and dark detail layer IL(ir).

https://doi.org/10.1371/journal.pone.0278055.g004
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deviation corresponding to the extremely small layer of the intermediate frequency image

expressed by σ2.

The existing multi-scale algorithm converts the image from the spatial domain into the fre-

quency domain and extracts the image features in the frequency domain using the correspond-

ing fusion strategy, such as orthogonal change, sparse representation, and other methods. In

order to avoid information loss and increase the amount of computation caused by the trans-

formation between the frequency and spatial domains, the image features in the spatial domain

are directly extracted, and the multi-scale decomposition method is applied to linear addition

and subtraction. The fusion strategy also linearly reconstructs the fused image. The target is

not outlined, although IZ retained the basic texture of the source image. In order to compen-

sate for this limitation, the maximum mixed image max(IS1,IS2) and the minimum mixed

image min(IS1,IS2) of the source image are used. IS1 and IS2 represent the visible-light and

infrared source images, respectively.max(IE, II) and min(IE, II) are respectively linearly fused

with the intermediate frequency layer IM with a weight of 0.1. The fused image IZF of the new

intermediate frequency layer after the texture enhancement is formulated as follows:

IZF ¼ IZ þ
maxðIS1; IS2Þ

minðIS1; IS2Þ
� maxðIS1; IS2Þ � min IS1; IS2ð Þð Þ ð11Þ

The formulation process of IZ at the intermediate frequency layer is shown in Fig 5.

In the second part of the fusion process, the high-frequency and low-frequency layers are

fused based on the fused intermediate layer IZF under the principle of texture gradient expan-

sion. It is defined as follows:

IF ¼ IZF þ o1 � IH1 þ o2 � IH2 � o1 � IL1 � o2 � IL2 ð12Þ

Where IF represents the fused image. IH1 and IL1 are the high-frequency layer and low-fre-

quency layer of the visible-light image, respectively. IH2 and IL2 are the infrared image’s high-

frequency and low-frequency layers, respectively. Inspired by the existing linear fusion algo-

rithm, the total weight of linear fusion is 1, and the fusion weight of each base layer is 0.5, such

as the basic fusion strategy of the ADF algorithm. We believe that the fixed fusion weight can-

not provide strong robustness to the algorithm. Therefore, since the total weight is 1 and the

fusion weight of each layer is 0.5, the weights are adjusted appropriately according to the fea-

ture ratio of the layers to be fused to improve the robustness of the fusion algorithm. ω1 and ω2

respectively represent the fusion weights controlling the relative significance of the visible-

Fig 5. Formulation process of IZ at intermediate frequency layer.

https://doi.org/10.1371/journal.pone.0278055.g005
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light and infrared high-frequency layers, defined as follows:

W ¼ 1þ
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3 þ s4

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2

p ð13Þ

o1 ¼W � ð0:5þ
s5 � s6

s3 þ s4

Þ ð14Þ

o2 ¼W � ð0:5þ
s6 � s5

s3 þ s4

Þ ð15Þ

where W indicates the sum of the weights of the high-frequency detail layer fusion of each

source image. σ3, σ4, σ5, and σ6 represent the standard deviations of visible-light image IS1,

infrared image IS2, the visible-light intermediate frequency layer IM1, and the visible-light

intermediate frequency layer IM2, respectively.

In combination with intermediate frequency layer IZ, high- and low-frequency layers of

infrared ad visible light layers are fused into the final fusion result IF, as shown in Fig 6.

Parameter settings

The proposed algorithm includes several parameters required to be set. In this Section, the

influence of the parameters on the results is analyzed to determine the optimal settings.

A. The dimension of the clustering window

The clustering results IC are varied according to the clustering window dimension n, affecting

the frequency layers extraction and, consequently, the image fusion results. Fig 7 depicts the

fusion results according to the clustering window dimension n. As shown in Fig 7, when n is 0,

many scattered artifacts appear in the fusion result. As the dimension n increases, such arti-

facts gradually gather to form a concentrated artifact area. Also, the overall brightness and

sharpness of the image gradually increase until n = 150, while most artifacts are eliminated.

Fig 6. The fusion process to obtain the final result IF.

https://doi.org/10.1371/journal.pone.0278055.g006
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When n = 200, the effect of the "smoke" image is almost the same as that of n = 150, and the

artifacts of the "military car" become more severe. Accordingly, the window dimension n is set

to 150.

B. The dimension of the mean filter window

In this Section, the mean filtering result, applied to remove the artifacts in IC, is analyzed

according to the window dimension m. The fusion results according to a varied dimension m

are shown in Fig 8 as the dimension of the mean filter window Wm×m increases, the artifacts

are removed more. When m = 11, the obtained fusion result is almost the same as in the

’smoke’ image when m = 11. There is a slight difference in the ’Military Vehicles’, and the

fusion effect when m = 11 is better than when m = 9. Thus, the window dimension m is set

to 11.

The flow chart of the proposed method is given in Table 1.

It is worth noting that the most time-consuming part of the proposed algorithm is step 2:

the image multi-scale decomposition. The diagram of the proposed algorithm is depicted in

Fig 9.

The computational complexity of the proposed method mainly includes the following

categories:

1. Multi-scale decomposition includes image clustering and image smoothing. Therefore, its

computational complexity is O(n2).

Fig 7. Fusion results according to the clustering window dimension. (a) n = 0, (b) n = 50, (c) n = 100, (d) n = 150,

(e) n = 200.

https://doi.org/10.1371/journal.pone.0278055.g007

Fig 8. Fusion results according to mean filter window dimension. (a)m = 3, (b) m = 5, (c) m = 7, (d) m = 9, (e)

m = 11.

https://doi.org/10.1371/journal.pone.0278055.g008
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2. The computational complexity of image reconstruction for each layer is O(n)

3. The final complexity T(n) of the proposed method is expressed as follows:

TðnÞ ! Oðn2Þ þ OðnÞ þ OðnÞ ð16Þ

Simulation results

The performance of the proposed method is validated in terms of both objective and subjective

evaluations, compared with the comparison algorithms, including Nestfuse [26], FusionGAN

[27], MDLatLRR [28], SEDRFuse [29], STDFusionNet, GANMcC [22], and ResNetFusion

[30]. All experiments were conducted on Windows 10, 2.60GHz CPU, 8GB RAM, with

MATLAB2016a. The experimental data were obtained from: TNO_Image_Fusion_Dataset

(https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029).

Table 1. The flow chart of the proposed algorithm.

Infrared and visible image fusion based on spatial domain and image features

Input: Visible image IV, Infrared image II.

Output: Fusion image IF.

1. The superpixel fast pixel clustering method proposed in this paper is used to process the source map respectively

to obtain the source map base map IM1, IM2.

2. Then, the respective high-frequency image and low-frequency image are proposed through Eqs (8) and (9) and

various intermediate frequency layers IM1, IM2.

3. The base level image of each source image is fused by Eq (10) to obtain the base level fusion image IZ.

4. Eq (11) enhances the texture of the base image IZ to obtain IZF.

5. Fuse the high-frequency image and low-frequency image of each source image obtained in step 3 with IZ

according to Eq (12) to obtain the final fusion result IF.

https://doi.org/10.1371/journal.pone.0278055.t001

Fig 9. The diagram of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0278055.g009

PLOS ONE Infrared and visible image fusion algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0278055 December 30, 2022 11 / 20

https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029
https://doi.org/10.1371/journal.pone.0278055.t001
https://doi.org/10.1371/journal.pone.0278055.g009
https://doi.org/10.1371/journal.pone.0278055


A. Evaluation metrics

The objective evaluation indexes include average gradient (AG) [31], information entropy (H)

[32], standard deviation (SD) [33], spatial frequency (SF) [34], edge strength (EI) [35], fusion

function (Qab/f) [36], the amount of artifact (Nab/f) [37], and the fusion loss function (Lab/f)

[33]. The larger the evaluation value of AG, H, SD, SF, and EI, the better the image quality, the

larger the Qab/f value indicates that the fusion image contains more information of the source

image, and the smaller the Nab/f value indicates that the fusion image is produced, the fewer

artifacts. The smaller the Lab/f value, the smaller the loss of source image information during

the fusion process.

B. Evaluation of fusion performance

1) Dataset. The performance of the compared methods was evaluated on the surveillance

images from TNO Human Factors. The dataset includes registered multispectral night-time

imagery of different military-relevant scenarios. We selected seven typical pairs for qualitative

illustration: Two men in front of the house, Soldierbehindsmoke_3, Soldierintrench_1, House-

swith3men, Kaptein_1123, Marne_04, and Sandpath. In addition, we tested our method on

the INO database, which is provided by the National Optics Institute of Canada and contains

several pairs of visible and infrared videos representing different scenarios captured under var-

ious weather conditions. Specifically, we grabbed 21 visible and infrared image pairs from the

video named Trees and runner for qualitative and quantitative comparisons.

2) Results of the TNO dataset. Eight typical image pairs from the TNO dataset were used

to qualitatively evaluate the performance of the proposed method and the compared seven

methods, as shown in Fig 10.

As shown in Figs 10–12, all the methods provide comparable fusion results with respective

advantages. In overall quality, FusionGAN, GANMcC, and ResNetFusion generate more infra-

red-like images, taking advantage of a significant target retaining heat source but losing the

background texture information. Although the MDLatLRR algorithm can keep the heat source

target and background texture information at the same time, the overall fusion result is fuzzy,

the significance of the heat source target is lost, and the target is not easily found. NestFuse,

SEDRFuse, STDFusionNet, and our method can clearly reflect the critical information in

infrared and visible images. In combination with the visible light evaluation analysis, our

results of AG, SD, and EI evaluation indexes ranked first in all the images except for the fifth

image (third rank). In terms of the H and SF indices, our method ranked second, reflecting the

change degree between image pixels and the sharpness of the image. From the perspective of

the evaluation indicators, the sharpness of this paper is superior to the other compared meth-

ods in most of the evaluation indicators. To reflect the fusion image consisting of infrared and

visible light image information of each evaluation function Qab\f, the mean of the evaluation

results of our algorithm is 0.3505, which is at the median level, showing that our results fusion

of infrared and visible light information is not the most. The reason is that the infrared image

contains a lot of interference information, such as heat-source target (e.g., humans), which

makes the background saturated. Also, over-exposed backgrounds in visible light images influ-

ence the observation of the background texture. The proposed method can adaptively com-

pensate for this part of the interference, obtaining a clearly fused image. From the loss

function Lab/f and artifact function Nab/f, it can be proved that although some information is

lost in our algorithm, both of them are loss interference information. Therefore, in Lab/f evalu-

ation, our results can provide the best performance, and Nab/f evaluation value is the largest. It

also proves that our algorithm considers the average of infrared and visible image information.

When some parts where heat-source target highlights, our fusion results can also be observed
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that the texture of the goals of the heat source form, Nab/f large source of value, i.e., the cause of

the picture without the part information. Our algorithm uses adaptive weights to jointly dis-

play the information of infrared and visible images in this area in order to make full use of the

fusion advantages; thus, the average Nab/f is too large.

The compared methods were also evaluated on different weather conditions of images from

the INO dataset. The videos, Runner and Tree, were split into 21 image frames, which were

used for quantitative and qualitative evaluations. Figs 13 and 14 present the qualitative and

Fig 10. Qualitative fusion results for eight typical infrared and visible image pairs from the TNO database. (The first row: Infrared

images; The second row: Visible images; The third row: FusionGAN; The fourth row: GANMcC; The fifth row: MDLatLRR; The sixth row:

NestFuse; The seventh row: RESNetFusion; The eighth row: SEDRFuse; The ninth row: STDFusionNet; The tenth row: OUR).

https://doi.org/10.1371/journal.pone.0278055.g010
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Fig 11. Quantitative comparisons in terms of the eight metrics: AG, H, SD, SF, EI, Qab/f, Lab/f, and Nab/f, for ten image

pairs from the TNO database.

https://doi.org/10.1371/journal.pone.0278055.g011
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Fig 12. Quantitative comparisons in terms of the eight metrics; AG, H, SD, SF, EI, Qab/f, Lab/f, and Nab/f, for the

Nato_campsequence from the TNO dataset.

https://doi.org/10.1371/journal.pone.0278055.g012
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quantitative comparisons, respectively, showing that all the eight compared algorithms can

preserve texture information well. However, FusionGAN and ResNetFusion generated infra-

red-lie results, while GANMcC generated a relatively fuzzy result. NestFuse, SEDRFUSE, and

STDFusionNet can retain visible light texture and infrared heat source targets. Our algorithm

can retain not only infrared information but also background texture information with better

sharpness. As quantitative evaluations show, our algorithm also can provide high robustness,

clarity, and balanced information inclusion between infrared and visible images.

It should be noted that in practical engineering, the operation time of the algorithm is criti-

cal. Since the proposed algorithm operates pixel-wise in the spatial domain, the computational

complexity is far lower than other frequency-domain algorithms. Table 2 compares the

computational time for each dataset.

Conclusion

This study employs the clustering algorithm to decompose the source image into the spatial

domain directly. The results indicate that the multi-scale image decomposition into the spatial

domain can extract more image features, eliminating the requirements while converting from

the frequency domain to the spatial domain. As a result, the proposed algorithm consumes less

time than the contrasting algorithm, and generates fusion results with higher clarity. Although

the image features of the layers are employed as a reference for the fusion weights in the fusion

process of the extracted layers, from a global perspective, these weights are still relatively

rough. At the same time, feature extraction relies on the internal information of the source

image, and there is a lack of correlation between the source image and the fused one, resulting

in a poor fit of the proposed feature layer. When extracting image features, each source image

can reference each other so that the obtained layer features have a high degree of fit. In future

research, a new multi-scale tool will be applied to solve this problem. At the same time, the

fusion weights with better performance are further explored.

Fig 13. Qualitative comparison for 20th frame of Trees and runner from the INO dataset. (a) the infrared and

visible images.(b) the fusion results of FusionGAN, GANMcC, MDLatLRR, and NestFuse. (c) the fusion results of

ResNetFusion, SEDRFuse, STDFusionNet, and OUR.

https://doi.org/10.1371/journal.pone.0278055.g013
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Fig 14. Quantitative comparisons in terms of the eight metrics, AG, H, SD, SF, EI, Q ab/f, Lab/f, and Nab/f, for the

Nato_campsequence from the Trees and runner sequence from the INO dataset.

https://doi.org/10.1371/journal.pone.0278055.g014
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