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Abstract

Facing increasingly severe environmental problems, as the largest developing country,

achieving regional carbon emission reduction is the performance of China’s fulfillment of the

responsibility of a big government and the key to the smooth realization of the global carbon

emission reduction goal. Since China’s carbon emission data is updated slowly, in order to

better formulate the corresponding emission reduction strategy, it is necessary to propose a

more accurate carbon emission prediction model on the basis of fully analyzing the charac-

teristics of carbon emissions at the provincial and regional levels. Given this, this paper first

calculated the carbon emissions of eight economic regions in China from 2005 to 2019

according to relevant statistical data. Secondly, with the help of kernel density function,

Theil index and decoupling index, the dynamic evolution characteristics of regional carbon

emissions are discussed. Finally, an improved particle swarm optimization radial basis func-

tion (IPSO-RBF) neural network model is established to compare the simulation and predic-

tion models of China’s carbon emissions. The results show significant differences in carbon

emissions in different regions, and the differences between high-value and low-value areas

show an apparent expansion trend. The inter-regional carbon emission difference is the

main factor in the overall carbon emission difference. The economic region in the middle

Yellow River (ERMRYR) has the most considerable contribution to the national carbon

emission difference, and the main contributors affecting the overall carbon emission differ-

ence in different regions are different. The number of regions with strong decoupling

between carbon emissions and economic development is increasing in time series. The

results of the carbon emission prediction model can be seen that IPSO-RBF neural network

model optimizes the radial basis function (RBF) neural network, making the prediction result

in a minor error and higher accuracy. Therefore, when exploring the path of carbon emission

reduction in different regions in the future, the IPSO-RBF neural network model is more suit-

able for predicting carbon emissions and other relevant indicators, laying a foundation for

putting forward more scientific and practical emission reduction plans.
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1. Introduction

The impact of global warming is omnidirectional, multi-scale, and multi-level. Its impact

scope can be roughly divided into the natural ecological environment and human social devel-

opment. Global climate change is closely related to the sustainable development of all countries

globally. Facing the global warming trend, all countries worldwide are actively exploring ways

to curb the further deterioration of climate [1]. As the most critical manufactured greenhouse

gas, the sharp increase in carbon dioxide concentration is the main factor leading to global

warming. Therefore, the research on the emission reduction of greenhouse gases such as car-

bon dioxide has become the main content of countries worldwide to explore and curb the

trend of global warming [2]. On September 22, 2020, Chinese President Xi Jinping delivered

an important speech at the General Debate of the seventy-fifth Session of the United Nations

General Assembly, announcing that China would adopt more effective policies and measures

to make China’s CO2 emissions reach the peak before 2030 and achieve carbon neutrality

before 2060 (referred to as "double carbon goals") [3]. Therefore, energy conservation and

emission reduction are essential strategic issues that China and the world will pay attention to

in the future.

At present, domestic research on carbon emissions mainly focuses on the following aspects:

(1) Accounting and prediction of total carbon emissions. (2) Analysis of driving factors of car-

bon emissions. (3) Regional energy carbon emission pattern and prediction [4, 5]. (4) Carbon

emission reduction technology evaluation and policy analysis. Internationally, the research

focuses on calculating and predicting greenhouse gas emissions and regional energy conserva-

tion and emission reduction [6, 7]. Although domestic and foreign academia has conducted

relevant research on carbon emission prediction, with the determination of China’s dual car-

bon goals, the research on more accurate carbon emission prediction model becomes more

important. Wu and Liu et al. predicted the carbon dioxide emissions of BRICS (Brazil, Russia,

India, China, and South Africa) countries in 2015 and 2020 by considering the rolling multi-

variable grey prediction model of energy consumption and economic growth [8]. Ding and

Dang et al. improved the traditional grey multivariable model. The results show that the pre-

diction results obtained by the new model are more accurate than the four benchmark models

and predicted the carbon dioxide emissions from fuel combustion in China from 2014 to 2020

[9]. Xu and Ding developed the adaptive grey model and combined it with the buffer rolling

method to improve accuracy. Compared with the traditional model, they improved the data

characteristics’ adaptability and predicted China’s energy greenhouse gas emissions from 2017

to 2025 [10]. Gao and Yang et al. used a novel fractional grey Riccati model (FGRM (1,1))

model to estimate and predict the carbon dioxide emissions of the United States, China, and

Japan. They found the best estimation effect [11]. Ren and Long constructed a Fast Learning

Network (FLN) forecasting algorithm improved by Chicken Swarm Optimization (CSO) to

predict carbon emissions in 2020–2060 Guangdong [12]. Phdungsilp analyzed the historical

trend of energy demand and energy-related carbon dioxide emissions in Bangkok, Thailand,

and predicted the carbon emissions of four departments in Bangkok by using a Long-range

Energy Alternative Planning (LEAP) system [13]. Gao and Yang estimated and predicted the

carbon emission of the American industrial sector based on Gompertz law and the fractional

grey model. Their results show that the policy change of the United States has an apparent pro-

moting effect on American industrial carbon emission [14]. Sun and Ren first applied ensem-

ble empirical mode decomposition (EEMD) to the field of carbon emission prediction based

on particle swarm optimization back propagation neural network (PSOBP), which improved

the accuracy of prognosis [15]. Yan and Liu et al. studied the prediction of land carbon emis-

sions based on the principal component analysis back propagation (PCA-BP) neural network,
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which provided a quantitative basis for urban low-carbon planning and carbon emission con-

trol [16]. Taking Xi’an as an example, Hu and Gong predicted the carbon emission of urban

household consumption in Western China based on the back propagation (BP) neural net-

work model, which provided new ideas and guidance for accurately identifying the carbon

emission prediction of urban household consumption [17]. Fan and Zhang predicted the total

amount and intensity of carbon emissions from 30 provinces and cities in China from 2020 to

2030 by establishing a PSO-BP neural network model [18]. Qiu and Cai combined with BP

neural network model to predict the carbon emission value of Shaanxi and reasonably analyze

the expected value and the changing trend of carbon emission. They put forward the solutions

to the related problems of carbon emission reduction [19]. Yang and Liang et al. used the opti-

mized Radial Basis Function (RBF) model to predict the carbon price in the EU carbon emis-

sion trading market, making the model’s prediction accuracy more accurate [20]. LV and Hu

used a grey quantum particle swarm optimization available vector machine to predict and

study the carbon emission transfer of 28 industries in China. They constructed an inter-indus-

try carbon emission transfer network [21].

In terms of existing research methods, RBF neural network has apparent advantages over

BP neural network in terms of generalization ability, approximation accuracy, learning rate,

etc. Although RBF neural network has the advantage of approximating any functions with

arbitrary accuracy, its structure is complex, its convergence speed is slow, the amount of com-

putation is large, and it is easy to fall into the local optimum, and it even may not converge.

Therefore, in order to avoid the above problems, this paper adopts IPSO-RBF neural network

model, which first optimizes the weights and learning factors in the PSO algorithm, and then

applies the improved new particle swarm optimization algorithm to the determination of RBF

neural network parameters. It realizes the optimization of the center value and width vector of

the hidden layer Gaussian function of RBF neural network and the weights between the hidden

layer and the output layer, and improves the prediction accuracy of RBF neural network.

The marginal contribution of this paper is to find out the change trend of carbon emissions

in different regions through detailed analysis of the space-time evolution characteristics and

regional differences of China’s carbon emissions from the provincial and regional levels, so as

to formulate targeted emission reduction measures for carbon emissions in different regions.

In order to ensure the realization of China’s dual carbon goals, this paper forecasts the carbon

emission data from 2016 to 2019 based on the relevant data of carbon emissions from 2005 to

2015 and in combination with different carbon emission prediction models. By comparing

with the actual carbon emission data, the carbon emission prediction model with the highest

accuracy is found, which lays a model and data foundation for the prediction of carbon emis-

sions of different provinces and regions in 2030 and 2060. The innovation of this paper is that

it not only makes a detailed analysis of the spatio-temporal evolution characteristics and

regional differences of regional carbon emissions from the provincial and regional levels, but

also introduces a more accurate carbon emissions prediction model based on the full analysis

of the change trend of carbon emissions in different regions, laying a good foundation for the

prediction of future carbon emissions in different provinces and regions under the dual carbon

goals.

2. Materials and methods

2.1 Regional division standard

Due to China’s vast territory, different provinces differ significantly in terms of development

level, environmental conditions, energy mix and industrial structure. These significant differ-

ences also lead to substantial differences in the current situation of carbon emissions in various
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regions. Therefore, whether the spatial and temporal evolution characteristics of carbon emis-

sions in different provinces can be accurately identified is the key to achieving China’s carbon

peak by 2030 and carbon neutrality by 2060. However, suppose carbon emission reduction

measures are formulated only according to the carbon emissions of different provinces. In that

case, it will increase the decision-making cost and be detrimental to realizing the overall

national carbon emission reduction target. Therefore, some scholars divided China into three

regions: eastern, central and western regions to analyze regional differences in carbon emis-

sions [22]. However, this method of regional division is relatively rough. Therefore, according

to the joint regional development strategy and policy report of the Development Research

Center of the State Council, this paper takes 30 provinces in China as the research object, and

divides them into eight comprehensive economic regions with similar economic development

levels. The division basis mainly includes the following points: keep the spatial distance close,

the regional economic development level is relatively close, the social structure is relatively

similar, the regional scale included in the region is similar, there are reasonably similar devel-

opment problems, and try to maintain the integrity of the administrative area.

In this paper, in addition to Hong Kong, Macao, Taiwan, and Tibet, China’s 30 provinces

are divided into eight economic regions: the Northeast economic region (NEER), the Northern

coastal economic region (NCER), the Eastern coastal economic region (ECER), the Southern

coastal economic region (SCER), the Economic region in the middle Yellow River (ERMRYR),

the Economic region in the middle Yangtze River (ERMRYTR), the Southwest economic

region (SWER) and the Northwest economic region (NWER). The specific division details are

shown in Fig 1.

Given the slow update of official carbon emission data and the difficulty of traditional pre-

diction models to meet the actual needs, this paper uses numerical simulation statistical data

to calculate China’s carbon emissions from 2005 to 2019 through the method recommended

by IPCC [23]. Referring to the IPCC guidelines for national greenhouse gas emission invento-

ries 2006, this paper uses the "bottom-up" carbon emission coefficient method to calculate the

carbon emissions of different regions, and the formula is

CEij ¼
P19

i¼1
Aij � NCVj � EFj �Ojð1Þ, where i represents the ith region, j means the jth fuel,

where j = 1, 2, 3. . . 19, describes 19 types of energy such as coal, oil, natural gas, heat, electricity

and so on. CEij refers to the carbon emission of the j fuel in region i. Aij is the final consump-

tion of the jth fuel in the ith region. EFj is the CO2 emission coefficient of fuel j. NCVj and Oj

represents the calorific value and oxidation rate of the jth fuel, respectively.

2.2 Kernel density function

According to a specific sample set, parametric and nonparametric estimations are used to

obtain its distribution function. The former needs to add subjective factors in advance, so the

fitting effect is relatively poor. The latter only needs to fit its distribution density function

according to the characteristics of the data itself, and the result is better. Therefore, the non-

parametric estimation method with better fitting effect is selected in this paper. The standard

nonparametric estimation method is kernel density function, and it has been widely used in

various fields [24–27]. The kernel density function describes the distribution state of regional

carbon emissions with a continuous density curve. This paper analyzes carbon emission bias

distribution characteristics in China’s eight economic regions and the temporal and spatial

evolution trend with time and space through the distribution position, shape, and flexibility of

carbon emission bias in the nuclear density estimation results. Among them, the position of

the Kernel density curve reflects the degree of carbon emission deviation. The width and

height of wave crest reflect the degree of dispersion and aggregation of carbon emission
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deviation between regions. And the number of wave crests reflects the degree of polarization

[28]. Distribution ductility indicates the regional difference between the region with the high-

est carbon emissions and other regions. The longer the tail, the more significant the regional

carbon emission difference. Based on previous studies, this paper uses the kernel density func-

tion to fit the carbon emissions of the eight economic regions, obtains its probability distribu-

tion curve, and then analyzes the evolution track of carbon emissions in this region. The

specific calculation method is as follows:

f pð Þ ¼
1

nh
Pn

i¼1
g

p � pi

h

� �
ð1Þ

Where f(p) represents the kernel density estimator, n represents the number of observations

in the observation area, p represents the independently distributed observations, pi is the aver-

age observed value, g is the kernel function, and h is the bandwidth. The smaller the band-

width, the more accurate the kernel density estimation is. g(X) represents kernel density

function, which is essentially a weight function. The most commonly used kernel function is

the quadratic kernel Gaussian kernel function [29]. In this paper, the Gaussian kernel function

Fig 1. Detailed information on China’s eight economic regions. (Note: The original picture is from Natural Earth,

http://www.naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0277906.g001
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is adopted, and the expression is:

g Xð Þ ¼
1
ffiffiffiffiffiffi
2p
p exp

� X2

2

� �

ð2Þ

2.3 Theil index

The Theil index was first proposed in 1967 and was initially used to calculate the income dif-

ference between countries [30]. Later, it was widely used in the income difference of different

regions. Its advantage is that it can not only make statistics on the change trend and fluctuation

of inter-regional and intra-regional differences, but also reveal its impact on the overall differ-

ences. The value range of the Theil index is [0,1]. The closer the value is to 0, the smaller the

regional difference. The closer the value is to 1, the more significant the regional difference

[31]. Based on previous studies, the Theil index and its structure of regional carbon emissions

are decomposed as follows:

T ¼ TBR þ TWR ¼
Pn

i¼1

Ci

C
ln

Ci=C
Gi=G

� �

þ
Pn

i¼1

Ci

C
Pm

j¼1

Cij

Ci
ln

Cij=Ci

Gij=Gi

 !" #

ð3Þ

TBR ¼
Pn

i¼1

Ci

C
ln

Ci=C
Gi=G

� �

ð4Þ

TWR ¼
Pn

i¼1

Ci

C
Pm

j¼1

Cij

Ci
ln

Cij=Ci

Gij=Gi

 !" #

ð5Þ

Where T represents the overall Theil index of regional carbon emissions, TBR and TWR rep-

resents the inter-regional difference and intra-regional difference of regional carbon emission,

respectively, C, Ci, and Cij refers to the carbon emissions of the whole country, region i, and

each province j in region i, G, Gi, and Gij respectively refers to the GDP of the whole country,

region i, and each province j in region i.

2.4 Decoupling model between carbon emission and economic growth

Decoupling of carbon emissions refers to the relationship between the change in CO2 emissions

and economic growth. When economic growth is achieved, the growth rate of CO2 emissions is

negative or less than the economic growth rate, which can be regarded as decoupling. Its essence

is to measure whether economic growth is at the cost of resource consumption and environmen-

tal damage. Decoupling carbon emissions is an ideal process. In this process, the relationship

between economic growth and greenhouse gas emissions is weakening or even disappearing, and

energy consumption is gradually reduced on the basis of economic growth. The elasticity between

carbon emissions and economic growth in different regions is an important indicator to measure

regional decoupling status, and also a major tool to measure regional low-carbon status.

Since the economic growth of China’s eight major economic regions was positive during the

study period, their decoupling status only included four states: strong decoupling (SD), weak

decoupling (WD), and expansionary link (EC) and expansionary negative decoupling (END).

The specific division details are shown in Table 1, and the calculation formula is as follows:

dij ¼
DCO2ij

%

DGDPij%
ð6Þ
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Where, δij represents the decoupling elasticity value of i province in j region, DCO2ij
% and

ΔGDPij% represents the growth of carbon emissions and GDP of each region in the three

research periods. The above data of carbon emissions are calculated from Formula 1. The

GDP is based on 2005, excluding the influencing factors of price.

2.5 IPSO-RBF neural network model

Supposing that the relationship between energy consumption and carbon emissions can be

formulated according to the 11 groups of scattered points, which are the data from 2005 to

2015, the future carbon emissions can be obtained using the relationship and the energy con-

sumption. Therefore, the RBF neural network is used to realize continuous compensation,

which can approximate any function with an arbitrary accuracy [32]. Multitudinous scholars

have proved that using an RBF neural network is better than general compensation methods,

such as polynomial fitting and the BP neural network [33]. As shown in Fig 2, the RBF neural

network for the error compensation is a three-layer unidirectional propagation network com-

posed of input, output, and hidden layers. There are 19 nodes in the network’s input layer,

which uses the 19 energy consumption categories, such as coal, oil, natural gas, heat, and elec-

tricity, represented by Ti. There is one node in the output layer, which uses the carbon emis-

sions, described as T’i. The number of nodes in the hidden layer is automatically calculated

and set by the Newrbe function. Repeated debugging showed that for 19 hidden-layer nodes,

Table 1. Division basis of decoupling status.

Decoupling status Abbreviation ΔGDP (%) ΔCO2(%) Value range

Strong decoupling SD >0 <0 (−1, 0)

Weak decoupling WD >0 >0 (0,0.8)

Expansionary connection EC >0 >0 (0.8,1.2)

Expansionary negative decoupling END >0 >0 (1.2, +1)

https://doi.org/10.1371/journal.pone.0277906.t001

Fig 2. Error compensation model.

https://doi.org/10.1371/journal.pone.0277906.g002
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the RBF neural network converges the fastest, and the fitting effect is optimal. Therefore, the

number of hidden-layer nodes was set as 19, with the i-th node represented by Ri. The weight

from Ti to Ri is uik based on the relationship between energy consumption and carbon emis-

sions, as expressed in Eq (7). The hidden layer unit is transformed by the radial basis function

and sent to the output layer. The radial basis function is the Gaussian basis function. The

weight from Ri to T’i is Wik, using a linear function as an output layer function.

The energy consumption and the carbon emissions are used as the learning samples for

training. The hidden layer output is expressed as follows:

Ri ¼ e
�
kuikTi � cik

2s2
i ¼ e

�
k

P17

i¼1
Aij�NCVi�EFi�Oi � cik

2s2
i ð7Þ

In the equations above, ci is the center of the i-th node, σi is the parameter controlling the

receiving domain size, and k�k is the Euclidean Norm. The hidden layer training calculates the

values of the center ci and width σi calculated in the invisible layer training. The model of the

output layer node is expressed as follows:

T 0i ¼
P50

k¼1
WikRi ð8Þ

In the equations above, Wik denotes the output weights from Ri to T’i. The weights are cal-

culated in the training of the last layer. The total error-calculation function is expressed as fol-

lows:

e ¼
Pn

i¼1

P50

k¼1
ðT 0ik � tikÞ

2
ð9Þ

Here, tik denotes the calculation result of the output layer node. The structure and RBF neu-

ral network parameters can be acquired by adjusting the weights and thresholds. The trained

RBF neural network can be used to estimate future carbon emissions.

The RBF neural network parameters, ci, σi, and Wik must be determined through learning

and training. The IPSO algorithm is used to optimize the network parameters of the RBF neu-

ral network used in this study. The model optimization algorithm described in this paper

evolved from the particle swarm optimization (PSO) algorithm [34]. The PSO algorithm simu-

lates bird clusters’ flight and foraging behavior and makes the group achieve its goal through

cooperation between birds. In the PSO algorithm, each particle represents a solution of the

cubic spline equation. Among all solutions, the best solution (with the smallest residual) is the

best position, and each particle will find the best position in this region. In finding the best

place, each particle will find the position closest to the best place, called the individual extre-

mum. The best position of all particles in the search process is the global extremum. These par-

ticles will constantly adjust their speed and direction to approach the best position through

these two positions. The updated formula of particle velocity and function is as follows.

vmþl
ij ¼ wvm

ij þ c1r1ðp
m
ij � xm

ij Þ þ c2r2ðg
m
j � xm

ij Þ ð10Þ

xmþl
ij ¼ xm

ij þ lvmþl
ij ð11Þ

In the equations above, i = 1, 2, . . ., n, j = 1, 2, . . ., j, m = 1, 2, . . ., M. m is the number of iter-

ations, xm
ij is the position of particle i in space, vm

ij is the velocity of particle i in space, pm
ij and gm

j

are defined as individual extremum and global extremum, respectively. c1 and c2 are accelera-

tion coefficients, usually c1 = c2. r1 and r2 are random numbers in the interval [0,1], and w is
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the weight.

w ¼ wmax � ðwmax � wminÞ �m=mmax ð12Þ

In the equation above, mmax is the maximum number of iterations, wmax and wmin repre-

sents the maximum and minimum weights, respectively.

The realization steps of the IPSO-RBF model include three steps: neural network construc-

tion, training, and prediction. We take the data from 2005 to 2015 as the training sample, the

data from 2016 to 2019 as the test simulation sample, and the data from future carbon emis-

sions, such as 2020, 2030, 2060, etc as the prediction target sample. The training is mainly to

assign the optimal weight and threshold obtained by the IPSO algorithm to the RBF neural

network as the initial weight and point of the network. The training and test samples are

substituted into the network for training and testing. If the actual output of 100 test samples is

consistent with the expected result, it indicates that the network’s generalization ability is good

and the training is completed. Finally, the carbon emissions of each region in different years

in the future are predicted. The above three-step process can be realized using the newff func-

tion, train function, and sim function provided by the neural network toolbox in MATLAB

2020b.

3. Results and discussion

3.1 Carbon emission measurement results

Calculate the carbon emissions of different provinces from 2005 to 2019 according to Formula

1. Based on the basic principle of spatial differentiation and combined with the natural discon-

tinuity classification method in ArcGIS 10.2 software, 30 provinces in China are divided into

five categories (lowest, lower, medium, higher, and highest emission areas) to analyze the spa-

tial differentiation pattern of regional carbon emission. The relevant results are shown in

Table 2.

There is a significant difference between the regions with the highest carbon emissions and

the regions with the lowest carbon emissions. From the average carbon emissions of 30 prov-

inces from 2005 to 2019, Hebei has the highest carbon emissions, up to 452.228 million tons,

while Hainan has the lowest carbon emissions, only 219.878 million tons. To more clearly ana-

lyze the temporal and spatial evolution of regional carbon emissions, Fig 3 is drawn using by

GIS visualization method.

As can be seen from Fig 3, the areas with the highest carbon emissions are distributed in

Hebei and Shandong in NCER. The higher value areas are distributed in Shanxi, Inner Mon-

golia, and Henan in ERMRYR, Guangdong in SCER, Jiangsu in ECER, Hunan, and Hubei in

ERMRYTR, and Sichuan in SWER. The lowest value area is mainly distributed in Hainan in

SCER, Qinghai, and Ningxia in NWER. With time, the growth of carbon emissions in this area

is relatively small. It is noteworthy that during the whole study period, Heilongjiang, Fujian,

Jiangxi, Shaanxi, and Xinjiang changed rapidly from low carbon emission areas to medium

value areas and high carbon emission areas.

The cross-sectional data shows significant changes in the spatial differentiation characteris-

tics of carbon emissions in different regions. In 2005, the carbon emissions of Beijing and

Tianjin were in low-value areas, which was closely related to the region’s rapid development

during this period. The relatively high-value emission areas include Hebei, Shandong, Shanxi,

Liaoning, and other provinces dominated by heavy industry. In 2010, Inner Mongolia and

Sichuan entered the high-value area. Jilin, Heilongjiang, Fujian, and Shaanxi also rose from

low-value to median areas, and the changes in other provinces were small. In 2015, Beijing’s

carbon emissions fell rapidly to the lowest value area, mainly caused by the industrial transfer
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brought about by the integration of Beijing, Tianjin, and Hebei. As the first batch of carbon

market pilots, Shanghai has also dropped from the median area to the lower value area, reflect-

ing the initial results of the national pilot carbon market. In 2019, Heilongjiang, Fujian,

Jiangxi, Guizhou, Yunnan, and Xinjiang were upgraded based on the corresponding level

compared with 2015, while Beijing was still in the lowest value area, which shows that the inte-

gration of Beijing, Tianjin, and Hebei and the introduction of high and new technologies have

played a role in carbon emission in this region.

On the whole, carbon emissions show a trend of gradually increasing from west to east, and

the carbon emissions of all provinces gradually increase over time. It can be seen from Fig 3

that the carbon emissions of the relatively developed ECER and NCER are generally high. In

contrast, the carbon emissions of economically underdeveloped areas such as the NWER and

SWER are relatively low.

Table 2. Carbon emission estimation results of each province in 2005, 2010, 2015, and 2019. (Unit:104t).

Region 2005 2010 2015 2019 Mean value

CE Partition CE Partition CE Partition CE Partition CE Partition

Beijing 7016.37 2 7437.03 2 7015.32 1 6441.17 1 7284.89 2

Tianjin 5444.72 2 8038.52 2 6693.81 1 10322.91 2 8246.51 2

Hebei 32999.81 5 43463.33 5 48076.43 5 49313.42 5 45222.83 5

Shanxi 18267.03 4 23063.72 4 24306.43 4 23761.72 4 23259.71 4

Inner-Mongolia 13099.32 3 20979.73 4 23277.83 4 28534.32 4 21416.22 4

Liaoning 17807.13 4 27236.93 4 28921.31 4 28945.33 4 26429.94 4

Jilin 9137.27 2 12259.33 3 11695.61 2 8547.83 2 11353.93 2

Heilongjiang 8598.37 2 11771.41 3 16052.23 3 25359.74 4 13856.14 3

Shanghai 11351.33 3 13437.11 3 13690.04 2 13538.12 3 13561.51 3

Jiangsu 21197.52 4 27239.32 4 31070.73 4 32853.74 4 28367.38 4

Zhejiang 12631.63 3 14717.91 3 17406.82 3 14453.42 3 15049.13 3

Anhui 10442.02 3 14220.32 3 17799.02 3 16737.64 3 15097.45 3

Fujian 8803.69 2 12926.64 3 13256.63 2 13813.73 3 12223.94 3

Jiangxi 5789.24 2 9051.01 2 12380.03 2 12385.43 3 10126.82 2

Shandong 33963.52 5 45130.62 5 41919.23 5 37769.34 5 41512.12 5

Henan 20512.44 4 28682.03 4 27676.24 4 21752.62 4 25847.74 4

Hubei 15127.22 4 24449.54 4 22783.73 4 22224.43 4 22109.35 4

Guangdong 15773.21 4 17924.12 3 20916.42 3 20959.24 4 19349.94 4

Guangxi 19189.73 4 26352.43 4 26512.31 4 26956.16 4 25497.32 4

Hunan 7095.99 2 10475.82 2 12281.53 2 11462.82 2 10990.43 2

Hainan 1031.66 1 1961.68 1 3584.97 1 2664.54 1 2198.78 1

Chongqing 6136.07 2 10501.81 2 11692.72 2 9846.43 2 10144.42 2

Sichuan 12175.82 3 22667.32 4 26786.23 4 22484.43 4 21833.73 4

Guizhou 10017.43 3 11025.74 2 14262.73 2 13055.44 3 12781.14 3

Yunnan 10286.71 3 12926.04 3 13387.44 2 15637.51 3 13215.72 3

Shaanxi 8112.34 2 12657.02 3 15644.32 3 13951.47 3 12590.84 3

Gansu 5643.37 2 6650.08 2 8336.09 1 7267.13 2 7202.06 2

Qinghai 1370.82 1 2252.64 1 3556.26 1 3721.23 1 2884.19 1

Ningxia 2919.23 1 4088.43 1 6117.09 1 8437.71 2 5025.63 1

Xinjiang 7348.59 2 10197.63 2 14182.71 2 15698.44 3 12302.44 3

Note: 1, 2, 3, 4, and 5 in the table represent the lowest, lower, medium, higher, and highest emission areas, respectively.

https://doi.org/10.1371/journal.pone.0277906.t002
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3.2 Analysis of results of temporal and spatial evolution characteristics of

regional carbon emission

According to the kernel density function in Section 2.2, this paper analyzes the dynamic evolu-

tion characteristics of regional carbon emissions from provincial and regional perspectives

and identifies the changing trend of carbon emissions in different regions.

3.2.1 Dynamic analysis of the distribution of provincial carbon emissions in China.

This paper selects 2005–2019 as the research section. It takes 2005, 2010, 2015, and 2019 as the

investigation time points, respectively, to make a dynamic analysis of the regional differences

in carbon emissions of 30 provinces in China from the national and provincial levels, as shown

in Fig 4. From the perspective of the position of the center of gravity, the trend of the right

deviation of the core density curve in the study period from 2005 to 2019 is significant, reflect-

ing the rapid growth of carbon emissions in 30 provinces of China. The two-tailed extension

of the kernel density curve shifts to the right-side year by year. The extension of the right side

is significantly greater than that of the left side, which indicates that the volatility of the high-

value area of local carbon emission is relatively large. From the peak value, the peak height in

2005 was the highest, and the peak moved from left to right, but the moving range was rela-

tively small. However, the peak height decreased significantly, indicating that the aggregation

phenomenon of provincial low-value areas of carbon emissions still exists, and the regional

difference is gradually increasing. From the perspective of shape and flexibility, as time goes

on, the annual curve kurtosis evolves from peak distribution to wide peak distribution on the

whole, and the change range gradually increases, showing a widening trend, which shows that

the provincial carbon emission tends to vary significantly. This shows the rapid growth of

Fig 3. Visualization results of spatial differentiation pattern of regional carbon emissions. (Note: The original

picture is from Natural Earth, http://www.naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0277906.g003
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carbon emissions and the direction of continuous expansion of regional carbon emission dif-

ferences. Therefore, targeted and regional environmental restraint policies need to be formu-

lated for high-value and low-value areas of carbon emissions.

3.2.2 Dynamic evolution analysis of carbon emission in China’s eight economic

regions. This paper analyzes the dynamic evolution characteristics of carbon emissions in

China’s eight economic regions and draws Fig 5. As can be seen from Fig 5, on the whole, the

fluctuation and variation of the kernel density curve of carbon emission in the eight economic

regions are significantly different. Besides the ERMRYTR, the height of the wave crest in the

other areas decreased to varying degrees. Overall, the kernel density curve of the eight eco-

nomic regions showed a trend of moving to the right from 2005 to 2019.

From the point of view of the carbon emission curve, the number of nuclear emission

curves increases to the right. The kernel emission curves decrease in the region with high car-

bon density. In NEER (Fig 5A), except for a certain degree of left shift in 2018, the overall right

shift trend of the kernel density curve in Northeast China from 2005 to 2019 is significant. The

kernel density curve of the NCER (Fig 5B) shows a slight right shift trend. The other six

regions (Fig 5C–5H) showed a right-shift trend. This indicates that during the study period,

the low-value area of carbon emission corresponding to the kernel density curve of each region

is declining, and the high-value area is rising, indicating that the overall regional carbon emis-

sion is increasing.

From the morphological point of view, in most years of 2005–2019, the kernel density

curves of NEER (Fig 5A), ECER (Fig 5C), SCER (Fig 5D), and SWER (Fig 5G) showed an "M"

shape with the prominent peak. A secondary rise coexisted, indicating an apparent two-level

differentiation of carbon emission in these areas. Except for the NEER, the wave peaks of the

other three regions fluctuate considerably, and the average year of 2005 is not the highest peak.

Fig 4. National provincial Kernel density function curve distribution estimation map.

https://doi.org/10.1371/journal.pone.0277906.g004
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The peak heights of the NCER (Fig 5B) and the NWER (Fig 5H) were the highest in 2005, but

the decline of peak heights in these two areas was relatively small. Carbon emissions in the

ERMRYR (Fig 5E) and the ERMRYTR (Fig 5F) increased in 2012 and 2018.

From the perspective of flexibility, the right tail corresponding to the nuclear density curve

in most areas is longer than the left, changing from peak to wide peak distribution. The change

range is relatively increased. The ductility shows a trend of continuous widening. Among

them, the NEER (Fig 5A) shows a stable decline from the peak height over time and changes

Fig 5. Temporal and spatial evolution trend of carbon emissions in China’s eight economic regions.

https://doi.org/10.1371/journal.pone.0277906.g005
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from the peak distribution in 2005 to the wide peak distribution in 2019, which indicates that

the regional carbon emission tends to change significantly, and the growth rate of high-value

areas of carbon emission is fast. The kurtosis of nuclear density in the NCER (Fig 5B) gradually

widened, indicating that the right tail on both sides is longer than the left tail, on the whole,

suggesting that the modified area’s carbon emissions showed the phenomenon of low-value

area accumulation during the study period. The ductility analysis of other regions is consistent

with the analysis methods of the above two areas, which will not be repeated here.

To sum up, it can be seen that the distribution of the kernel density curve in the eight eco-

nomic regions is quite different, and there are significant differences in both the position of

the center of gravity of the kernel density curve and the shape and flexibility of the kernel den-

sity curve. This shows substantial differences in regional carbon emissions due to significant

differences in resource endowment and energy consumption structure in different develop-

ment stages.

3.3 Analysis of regional carbon emission differences

According to Formulas (4–6), the Theil index of the overall inter-regional and intra-regional

difference of the eight economic regions from 2005 to 2019 is calculated, as shown in Table 3.

From the value of α, the intra-regional difference between the NCER and the ERMRYR is

the largest. The regional differences in the NCER show a fluctuating upward trend, and the

Table 3. Theil index of regional carbon emission difference and its decomposition results.

Region Index 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

NEER α 1.50 1.53 1.56 1.47 1.50 1.44 1.40 1.22 0.84 0.78 0.62 0.46 0.74 1.79 0.76

β 2.62 3.03 3.45 2.83 3.06 3.06 3.21 3.26 3.02 2.94 3.18 3.52 3.24 1.88 4.49

γ 4.12 4.56 5.01 4.30 4.56 4.50 4.61 4.48 3.85 3.73 3.80 3.99 3.98 3.67 5.25

NCER α 5.49 5.58 5.43 5.46 5.46 5.82 6.43 6.07 6.89 6.27 6.11 6.19 6.12 7.78 5.79

β 2.86 2.98 3.22 3.38 3.19 3.55 3.64 3.66 3.56 3.25 2.75 3.43 2.34 4.44 2.97

γ 8.35 8.56 8.65 8.84 8.64 9.36 10.08 9.74 10.45 9.52 8.86 9.62 8.47 12.23 8.75

ECER α 0.25 0.16 0.27 0.32 0.39 0.59 0.77 0.77 0.71 0.80 0.86 0.91 0.95 1.12 1.16

β 5.57 5.67 5.76 5.86 5.91 5.92 5.87 5.94 5.58 5.69 5.57 5.23 5.41 5.53 5.53

γ 5.82 5.82 6.04 6.18 6.30 6.51 6.64 6.72 6.29 6.49 6.43 6.14 6.37 6.66 6.69

SCER α 0.93 0.86 0.81 0.87 0.94 1.15 1.17 1.15 1.20 1.19 1.22 2.89 0.96 0.91 0.94

β 4.68 4.79 4.84 4.83 4.74 4.85 4.92 4.95 4.93 4.80 4.74 5.72 4.72 4.71 4.66

γ 5.61 5.65 5.65 5.70 5.68 6.00 6.09 6.09 6.13 5.98 5.96 8.61 5.68 5.62 5.60

ERMRYR α 5.21 5.27 5.29 5.78 5.74 5.45 5.73 5.88 6.26 6.03 6.28 6.74 6.88 7.82 8.26

β 4.94 5.01 4.99 5.16 5.16 5.25 5.40 4.72 4.88 4.93 4.92 5.56 4.57 4.71 4.73

γ 10.16 10.27 10.28 10.94 10.91 10.70 11.13 10.60 11.14 10.96 11.20 12.31 11.46 12.52 12.99

ERMRYTR α 1.61 1.39 1.27 1.35 1.23 1.52 1.71 1.71 0.73 0.68 0.39 0.32 0.23 0.33 0.41

β 0.05 0.01 0.02 0.23 0.43 0.64 0.70 0.79 1.38 1.49 1.38 1.15 1.41 2.05 2.11

γ 1.65 1.40 1.29 1.58 1.66 2.16 2.42 2.50 2.11 2.17 1.77 1.47 1.64 2.38 2.52

SWER α 3.99 3.77 3.33 2.56 2.56 2.43 2.48 2.68 2.75 2.82 2.68 2.83 3.07 4.21 3.21

β 1.42 1.27 1.11 1.52 1.68 1.56 1.15 1.58 1.12 1.27 0.86 1.27 0.57 0.56 0.08

γ 5.40 5.04 4.45 4.08 4.24 3.98 3.63 4.26 3.87 4.10 3.54 4.10 3.64 4.78 3.29

NWER α 0.85 0.98 0.94 1.15 1.12 1.21 1.34 1.23 1.25 1.31 1.51 1.86 1.91 1.96 1.99

β 2.92 2.96 2.74 3.05 3.06 3.37 3.78 4.48 5.49 5.83 6.17 7.04 7.32 7.49 7.34

γ 3.77 3.94 3.68 4.21 4.18 4.58 5.12 5.71 6.74 7.14 7.68 8.90 9.23 9.46 9.33

Note: α, β, and γ represent the Theil index of intra-regional differences, inter-regional differences, and absolute differences.

https://doi.org/10.1371/journal.pone.0277906.t003
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regional differences in the ERMRYR show a slow upward trend. Among them, the regional

carbon emission differences in the NEER, the ERMRYTR, and the SWER show a fluctuating

downward trend, which indicates that these regions have achieved phased results in carbon

emission reduction. The difference in carbon emission in the ECER has the most significant

change, rising from 0.25 in 2005 to 1.16 in 2019, increasing 458%.

From the value of β, there are significant differences in inter-regional carbon emissions

among the eight economic regions. The ECER and the NWER are the regions with the most

considerable difference in carbon emissions. The NWER has the most prominent change

range, rising from 2.92 in 2005 to 7.34 in 2019, about 151.5%. The regional differences in the

ERMRYTR, the NEER, and the NCER showed a fluctuating upward trend, and the other four

regions showed a slight downward trend.

From the value of γ, there are apparent differences in the overall carbon emissions in differ-

ent regions. Among them, the overall Theil index in the ERMRYR is the largest and shows a

fluctuating upward trend, rising from 10.16 in 2005 to 12.99 in 2019. The SCER and SWER

decreased slightly, from 5.61 and 5.40 in 2005 to 5.60 and 3.29 in 2019. Secondly, the NCER

also increased slightly from 8.35 in 2005 to 8.75 in 2019, indicating that the region needs to

make more efforts to reduce carbon emissions in the future.

To further analyze the impact of inter-regional and intra-regional differences on the overall

differences, this paper calculates the contribution rate of inter-regional and intra-regional dif-

ferences to the overall regional differences, as shown in Fig 6. From the contribution rate

change of intra-regional differences, the ERMRYTR decreased the most during the study

period, from 97.08% in 2005 to 16.12% in 2019. It is the region with the most significant

decline in the contribution rate of eight regions, with a decrease of 83.40%. The second is the

NEER, which decreased from 36.338% in 2005 to 14.49% in 2019, decreasing by 21.89%. The

change in NWER is relatively small, and the intra-regional contribution rate declined by only

1.2% during the study period. The contribution rates of intra-regional differences in the other

five regions vary. The ECER has the most remarkable change, rising from 4.26% in 2005 to

17.35% in 2019, rising 13.1 percentage points. The intra-regional contribution rate in the

Fig 6. The contribution rate of intra-regional differences.

https://doi.org/10.1371/journal.pone.0277906.g006
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ERMRYR accounts for more than half. The intra-regional difference is the main contributor

to the regional carbon emission difference and shows a rising trend during the study period,

from 51.34% in 2005 to 63.56% in 2019, with 23.81%. The contribution of intra-regional differ-

ences in the SWER is enormous. In 2005, the region’s contribution rate of intra-regional dif-

ferences was as high as 73.79%. It fluctuated and rose during this period, reaching the

maximum value of 97.58% in 2019. The difference in intra-regional carbon emissions has a

decisive impact on the region’s difference in carbon emissions. However, the contribution rate

of intra-regional differences in the NCER and the SCER changes is relatively minor, increasing

by 0.5% and 0.4%, respectively. However, the difference is that the contribution rate of intra-

regional differences in the NCER has been more than 60% over the years, indicating that the

intra-regional differences have a significant impact on the difference in carbon emissions in

this area, while the contribution rate of intra-regional differences in the SCER is mostly less

than 20%. It shows that the impact of intra-regional differences on the overall carbon emission

difference is limited.

Similarly, it can be seen from Fig 7 that the change in the inter-regional difference contribu-

tion rate in corresponding regions corresponds to the changing trend of the intra-regional dif-

ference contribution rate. The regions with a relatively stable contribution rate of inter-

regional differences accounting for more than 50% are the ECER, SCER, NWER, and NEER

during the study period. The contribution rate of inter-regional differences in the ERMRYTR

increased significantly in 2013, from 31.45% in 2012 to 65.41% in 2013. Since then, it has

grown steadily and gradually increased to 83.88% in 2019, becoming the region with the most

considerable contribution to interregional differences.

3.4 Analysis of decoupling state results in different regions

Due to space constraints, this paper divides the decoupling state analysis of the eight economic

regions into four stages: 2005–2010, 2010–2015, 2015–2019, and 2005–2019 (Table 4). In the

whole study period from 2005 to 2019, only Jilin and Beijing showed strong decoupling, and

the other 28 provinces showed weak decoupling. Overall, the dependence of GDP growth on

Fig 7. The contribution rate of inter-regional differences.

https://doi.org/10.1371/journal.pone.0277906.g007
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fossil energy in most parts of the country is declining. Economic growth is developing from

extensive to intensive, and the overall economic growth model is resource-friendly.

To observe the change in the decoupling state of carbon emission in each region, Fig 8 is

drawn to observe the evolution of the decoupling state in different periods.

It can be seen that the relationship between carbon dioxide emissions and GDP in most

regions from 2005 to 2010 is in a weak decoupling state. Hainan, Sichuan, and Qinghai are in an

expansionary connection state. Only Hainan has a decoupling elasticity value greater than 1,

Table 4. One-dimensional decoupling state for China’s eight economic regions over 2005–2019.

Regions 2005–2010 2010–2015 2015–2019 Mean value (2005–2019)

ΔGDP% ΔCO2% EP ΔGDP% ΔCO2% EP ΔGDP% ΔCO2% EP ΔGDP% ΔCO2% EP

Liaoning 69.69 52.96 0.76 41.74 6.18 0.15 16.56 0.08 0.01 180.35 62.55 0.35

Jilin 68.64 34.17 0.50 47.25 -4.60 -0.10 20.48 -26.91 -1.31 199.18 -6.45 -0.03

Heilongjiang 64.43 36.90 0.57 43.96 36.37 0.83 20.27 57.98 2.86 184.70 194.94 1.06

NEER 67.80 44.24 0.65 43.48 10.54 0.24 18.49 10.91 0.59 185.28 76.84 0.41

Beijing 70.81 6.00 0.08 43.96 -5.67 -0.13 29.25 -8.18 -0.28 217.83 -8.20 -0.04

Tianjin 86.84 47.64 0.55 59.69 -16.73 -0.28 18.77 54.22 2.89 254.37 89.60 0.35

Hebei 54.12 31.71 0.59 47.55 10.61 0.22 29.25 2.57 0.09 193.93 49.44 0.25

Shandong 67.10 32.88 0.49 55.39 -7.12 -0.13 28.99 -9.90 -0.34 234.95 11.20 0.05

NCER 66.39 31.03 0.47 51.61 -0.35 -0.01 28.01 0.14 0.00 222.93 30.75 0.14

Shanghai 70.29 18.37 0.26 43.96 1.88 0.04 29.49 -1.11 -0.04 217.43 19.27 0.09

Jiangsu 88.48 28.50 0.32 58.26 14.07 0.24 30.58 5.74 0.19 289.49 54.99 0.19

Zhejiang 75.29 16.52 0.22 48.43 18.27 0.38 32.55 -16.97 -0.52 244.88 14.42 0.06

ECER 80.07 22.61 0.28 52.09 12.23 0.23 30.96 -2.13 -0.07 258.66 34.67 0.13

Fujian 90.98 46.83 0.51 66.34 2.55 0.04 36.42 4.20 0.12 333.40 56.91 0.17

Guangdong 80.52 37.33 0.46 50.76 0.61 0.01 31.07 1.67 0.05 256.72 40.47 0.16

Hainan 83.04 90.15 1.09 57.50 82.75 1.44 28.75 -25.67 -0.89 271.18 158.28 0.58

SCER 82.89 42.09 0.51 54.53 5.12 0.09 32.32 0.19 0.01 273.97 49.64 0.18

Shanxi 57.49 26.26 0.46 41.47 5.39 0.13 25.75 -2.24 -0.09 180.17 30.08 0.17

Inner Mongolia 114.70 60.16 0.52 58.70 10.95 0.19 23.15 22.58 0.98 319.64 117.83 0.37

Henan 83.36 39.83 0.48 58.67 -3.51 -0.06 34.04 -21.40 -0.63 289.96 6.05 0.02

Shaanxi 88.15 56.02 0.64 65.52 23.60 0.36 32.79 -10.82 -0.33 313.53 71.97 0.23

ERMRYR 84.43 42.33 0.50 57.14 6.47 0.11 30.52 -3.20 -0.10 278.26 46.69 0.17

Anhui 87.01 36.18 0.42 65.10 25.17 0.39 36.92 -5.96 -0.16 322.76 60.29 0.19

Jiangxi 85.87 56.34 0.66 64.40 36.78 0.57 39.09 0.04 0.00 325.03 113.93 0.35

Hubei 92.02 61.63 0.67 66.57 -6.81 -0.10 34.79 -2.45 -0.07 331.14 46.92 0.14

Hunan 93.37 13.64 0.15 64.37 16.69 0.26 35.29 0.20 0.01 330.01 32.88 0.10

ERMRYTR 90.06 39.28 0.44 65.20 12.54 0.19 36.20 -2.13 -0.06 327.63 53.41 0.16

Guangxi 72.46 47.63 0.66 57.80 17.24 0.30 29.73 -6.67 -0.22 253.06 61.54 0.24

Chongqing 101.74 71.15 0.70 82.80 11.34 0.14 36.33 -15.79 -0.43 402.77 60.47 0.15

Sichuan 90.11 86.17 0.96 65.42 18.17 0.28 35.17 -16.06 -0.46 325.08 84.66 0.26

Guizhou 81.11 10.07 0.12 79.78 29.36 0.37 43.88 -8.46 -0.19 368.46 30.33 0.08

Yunnan 74.65 25.66 0.34 67.89 3.57 0.05 40.12 16.81 0.42 310.86 52.02 0.17

SWER 85.19 47.87 0.56 69.16 16.00 0.23 36.22 -7.55 -0.21 326.74 58.57 0.18

Gansu 70.61 17.84 0.25 66.13 25.35 0.38 25.49 -12.82 -0.50 255.66 28.77 0.11

Qinghai 77.30 64.33 0.83 63.77 57.87 0.91 31.32 4.64 0.15 281.30 171.46 0.61

Ningxia 73.72 40.05 0.54 58.64 49.62 0.85 31.08 37.94 1.22 261.24 189.04 0.72

Xinjiang 65.28 38.77 0.59 65.60 39.08 0.60 30.33 10.69 0.35 256.72 113.62 0.44

NWER 69.09 34.18 0.49 64.85 38.83 0.60 28.82 9.11 0.32 259.09 103.24 0.40

https://doi.org/10.1371/journal.pone.0277906.t004
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which indicates that the growth of carbon emissions in each region is slower than that of GDP.

Moreover, the decoupling elasticity value in ECER is the most minor, only 0.28, and this shows

that while achieving the same economic growth, the region emits relatively less carbon dioxide.

From 2010 to 2015, more than half of the regions were still weakly decoupled, while Jilin, Beijing,

Tianjin, Shandong, Henan, and Hubei are strongly decoupled, indicating that the economic

growth mode of the above regions is resource-saving and environment-friendly. Hainan is in an

expansionary negative decoupled state, and the growth of carbon emission is 1.44 times that of

GDP. It shows that the region’s economic development depends heavily on fossil energy at this

stage, which is an extensive economic growth model. From 2015 to 2019, more than half of the

regions showed strong decoupling, and Heilongjiang, Tianjin, and Ningxia were in expansionary

negative decoupling, which was closely related to the high dependence on fossil energy consump-

tion in the process of seeking development, and the other third showed weak decoupling.

3.5 Analysis of numerical simulation results

Due to the relatively slow updating of China’s carbon emission data, the previous prediction

models cannot meet the actual demand. In order to more accurately predict the relevant data

Fig 8. Decoupling pattern and type distribution of carbon emissions and economic growth. (Note: The original

picture is from Natural Earth, http://www.naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0277906.g008

PLOS ONE Prediction and analysis of carbon emissions in China’s eight economic regions

PLOS ONE | https://doi.org/10.1371/journal.pone.0277906 December 1, 2022 18 / 23

http://www.naturalearthdata.com
https://doi.org/10.1371/journal.pone.0277906.g008
https://doi.org/10.1371/journal.pone.0277906


of future carbon emissions, such as the carbon emissions of provinces and eight economic

regions under the dual carbon goals of 2030 and 2060, this paper introduces different carbon

emission prediction models for comparative analysis. We take the national carbon emission

data from 2005 to 2015 as the training array and simulate the prediction results from 2016 to

2019. The comparison of simulation results is shown in Fig 9. A large number of data statistics

show that the prediction results of the IPSO-RBF neural network model are closer to the actual

value. The diagonal in the figure and the prediction points are more compact; The diagonal

deviation of the RBF neural network model is larger than the actual value, which is more scat-

tered. This shows that the prediction result of the IPSO-RBF model is better than RBF neural

network. The improved particle swarm optimization algorithm optimizes RBF neural network,

making the prediction result more stable and accurate.

The root means square error (RMSE), mean relative error (MRE), mean absolute error

(MAE), standard deviation (SD), and coefficient of determination (R2) are used to measure

the error and accuracy of the two prediction models, as shown in Table 4. RMSE, MRE, MAE,

and SD reflect the deviation of prediction data from the actual value. The smaller the value, the

smaller the prediction error and the higher the prediction accuracy; Therefore, it is evident

that the RMSE, MRE, Mae, and SD values of the IPSO-RBF model are smaller than those of

the RBF neural network, indicating that the prediction error of IPSO-RBF model is less than

that of RBF neural network.

The more the coefficient of determination (R2) tends to 1, the higher the degree of interpre-

tation of the independent variable to the dependent variable [35]. They take the actual value as

the x-axis and the predicted value as the y-axis. When R2 tends to 1, the higher the reference

value of equation y = x, indicating that the expected value tends to be the actual value. There-

fore, it is evident that the R2 of IPSO-RBF and RBF neural network models are above 0.9

(Table 5), but the former value is greater than that of the latter, indicating the goodness of fit

in the IPSO-RBF model is better. Therefore, the IPSO-RBF model is more suitable for

Table 5. Comparative analysis of error indexes of two neural network models.

Indicator Model RMSE MRE% MAE% SD R2

Carbon emission RBF 31256.635 0.434 3.873 93642.361 0.956

IPSO-RBF 8323.034 0.272 0.956 73243.652 0.989

https://doi.org/10.1371/journal.pone.0277906.t005

Fig 9. Comparison of simulation results between IPSO-RBF model and RBF neural network.

https://doi.org/10.1371/journal.pone.0277906.g009
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predicting carbon emissions and related indicators. This model should predict carbon emis-

sions in the whole country and different regions in future research.

4. Conclusion and implications

Based on the complete analysis of carbon emission characteristics in China’s eight economic

regions, this paper explores carbon emission’s temporal and spatial evolution characteristics in

different regions, the leading causes of carbon emission differences, and the evolution law of

regional carbon emission decoupling states. Through comparative analysis, a more accurate

carbon emission prediction method is found. The main conclusions of this paper are as

follows:

1. There are significant differences in carbon emissions among China’s eight economic

regions. The high-value areas of carbon emissions are mainly concentrated in Shandong

and Hebei in NCER. In contrast, the low-value areas are Hainan, Qinghai, and Ningxia,

and the growth over time is relatively small. On the whole, carbon emissions are gradually

increasing from west to east. The dynamic characteristics of national carbon emissions

slowly evolve from peak to broad peak, which indicating that the difference between high-

value and low-value areas of provincial carbon emissions is expanding. The overall kernel

density curve shifts to the right. This shows that that the high carbon emission area fluctua-

tion is relatively large. From the regional perspective, there are significant differences in the

dynamic evolution trend of carbon emissions in different regions. Among them, from the

position of the center of gravity, the gap between high-value and low-value areas of carbon

emissions in most regions is increasing. From the morphological point of view, most areas

show the coexistence of double or multi-peaks. There are also significant differences in scal-

ability, which indicates that there are significant differences in regional carbon emissions

due to significant differences in resource endowments and energy consumption structures

at different development stages.

2. The decomposition results of regional carbon emission differences show that the reasons

for the overall differences of carbon emissions in different regions are different. Inter-

regional differences are the leading causes of regional carbon emission differences, and the

overall Theil index of ERMRYR is the highest. Regarding the contribution rate of intra-

regional differences, ERMRYTR decreased the most. In terms of the time change of the

decoupling state, the regions with strong decoupling are increasing, which shows that the

dependence of GDP growth on fossil energy is decreasing in most regions. And the model

of economic growth is developing from extensive to intensive and resource-friendly.

3. From the comparison of regional carbon emission prediction models, it can be seen that the

IPSO-RBF neural network model is more feasible. And the RMSE, MRE, MAE, and SD values

are less than those of the RBF neural network. The value of R2 is greater than that of the RBF

neural network. The improved particle swarm optimization algorithm significantly optimizes

the RBF neural network. The prediction result of the IPSO-RBF neural network model is more

stable, with minor errors and higher accuracy. It is more suitable for predicting regional carbon

emissions and related indicators. Therefore, in realizing China’s double carbon goal,

IPSO-RBF neural network model is more suitable for predicting carbon emissions and other

relevant indicators in various regions due to its higher accuracy and training speed.

Through the above research, we get the following main implications:

1. There are significant differences in the spatio-temporal evolution trends and differences in

regional carbon emissions. On the whole, the eastern regions with more developed
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economies have relatively large carbon emissions. On the contrary, the less developed

regions have relatively small carbon emissions. The causes of significant differences in car-

bon emissions in different regions are also significantly different. Furthermore, the decou-

pling relationship between carbon emissions and economic development in different

regions has also significantly changed over time. Therefore, on the whole, when formulating

regional carbon emission reduction countermeasures, we should not cut across the board

but should formulate corresponding emission reduction measures according to the charac-

teristics of different regions’ carbon emissions. First, targeted emission reduction measures

should be taken at the regional level, and the overall regional emission reduction targets

should be broken down into different provinces based on the respective characteristics of

different provinces in different regions. Through this national—regional—provincial distri-

bution method, we can achieve a proper decomposition of carbon emission reduction tar-

gets and help to achieve China’s dual carbon goals.

2. Based on thoroughly studying the characteristics of carbon emissions in different provinces

and regions and finding targeted carbon emission reduction targets in different regions, we

should further explore regional carbon emission reduction issues in the next decade or

even longer in combination with China’s recent dual carbon targets. Therefore, the predic-

tion of future provincial and regional carbon emissions will become the focus of future

research. Based on comprehensively analyzing the prediction effects of different models,

the carbon emission prediction model with the best goodness of fit and the most stable and

accurate prediction results were found. From the experimental data, it can be concluded

that the IPSO-RBF model has the best prediction effect, so it can be given priority in pre-

dicting future provincial, regional, and national carbon emissions.
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